add decoding with avg model

This commit is contained in:
Yuekai Zhang 2023-09-07 20:18:14 +08:00
parent 5f399dc780
commit cc6432443d
3 changed files with 29 additions and 10 deletions

View File

@ -5,4 +5,5 @@
export PYTHONPATH=$PYTHONPATH:/lustre/fsw/sa/yuekaiz/asr/icefall
export PYTHONPATH=$PYTHONPATH:/lustre/fsw/sa/yuekaiz/asr/seamless_communication/src
export TORCH_HOME=/lustre/fsw/sa/yuekaiz/asr/hub
python3 seamlessm4t/decode.py --epoch 3 --exp-dir seamlessm4t/exp
python3 seamlessm4t/decode.py --epoch 5 --exp-dir seamlessm4t/exp
python3 seamlessm4t/decode.py --epoch 5 --avg 2 --exp-dir seamlessm4t/exp

View File

@ -5,4 +5,4 @@ pip install k2==1.24.3.dev20230524+cuda11.8.torch2.0.1 -f https://k2-fsa.github.
export PYTHONPATH=$PYTHONPATH:/lustre/fsw/sa/yuekaiz/asr/icefall
export PYTHONPATH=$PYTHONPATH:/lustre/fsw/sa/yuekaiz/asr/seamless_communication/src
export TORCH_HOME=/lustre/fsw/sa/yuekaiz/asr/hub
torchrun --nproc-per-node 8 seamlessm4t/train2.py --use-fp16 1 --max-duration 300 --base-lr 1e-5 --exp-dir seamlessm4t/exp --start-epoch 4
torchrun --nproc-per-node 8 seamlessm4t/train2.py --use-fp16 1 --max-duration 300 --base-lr 1e-5 --exp-dir seamlessm4t/exp --start-epoch 6

View File

@ -30,7 +30,7 @@ from asr_datamodule import AishellAsrDataModule
#from conformer import Conformer
from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
from icefall.checkpoint import average_checkpoints, load_checkpoint
from icefall.checkpoint import average_checkpoints, load_checkpoint, average_checkpoints_with_averaged_model
from icefall.decode import (
get_lattice,
nbest_decoding,
@ -74,7 +74,7 @@ def get_parser():
parser.add_argument(
"--avg",
type=int,
default=20,
default=1,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch'. ",
@ -277,7 +277,7 @@ def save_results(
enable_log = True
test_set_wers = dict()
for key, results in results_dict.items():
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt"
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
results = sorted(results)
store_transcripts(filename=recog_path, texts=results)
if enable_log:
@ -285,7 +285,7 @@ def save_results(
# The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs.
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
# we compute CER for aishell dataset.
results_char = []
for res in results:
@ -300,7 +300,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = params.exp_dir / f"cer-summary-{test_set_name}.txt"
errs_info = params.exp_dir / f"cer-summary-{test_set_name}-{params.suffix}.txt"
with open(errs_info, "w") as f:
print("settings\tCER", file=f)
for key, val in test_set_wers:
@ -323,8 +323,8 @@ def main():
params = get_params()
params.update(vars(args))
setup_logger(f"{params.exp_dir}/log-{params.method}/log-decode")
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}
setup_logger(f"{params.exp_dir}/log-{params.method}/log-decode-{params.suffix}")
logging.info("Decoding started")
logging.info(params)
@ -342,7 +342,25 @@ def main():
del model.text_encoder
del model.text_encoder_frontend
if params.epoch > 0:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
if params.avg > 1:
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
model.to(device)
model.eval()
num_param = sum([p.numel() for p in model.parameters()])