diff --git a/egs/tedlium3/ASR/pruned_transducer_stateless_d2v_v2/.decode.py.swp b/egs/tedlium3/ASR/pruned_transducer_stateless_d2v_v2/.decode.py.swp index c93ef140c..060529158 100644 Binary files a/egs/tedlium3/ASR/pruned_transducer_stateless_d2v_v2/.decode.py.swp and b/egs/tedlium3/ASR/pruned_transducer_stateless_d2v_v2/.decode.py.swp differ diff --git a/egs/tedlium3/ASR/pruned_transducer_stateless_d2v_v2/decode.py b/egs/tedlium3/ASR/pruned_transducer_stateless_d2v_v2/decode.py index 9ccc99a41..1390c7e44 100755 --- a/egs/tedlium3/ASR/pruned_transducer_stateless_d2v_v2/decode.py +++ b/egs/tedlium3/ASR/pruned_transducer_stateless_d2v_v2/decode.py @@ -823,47 +823,10 @@ def main(): # we need cut ids to display recognition results. args.return_cuts = True - librispeech = LibriSpeechAsrDataModule(args) + tedlium = TedLiumAsrDataModule(args) + test_cuts = tedlium.test_cuts() + test_dl = tedlium.train_dataloaders(train_cuts) - #test_clean_cuts = librispeech.test_clean_cuts(option='male') - #test_other_cuts = librispeech.test_other_cuts(option='male') - if 0: - test_clean_cuts = librispeech.test_clean_user(option=option) - test_other_cuts = librispeech.test_other_user(option=option) - test_clean_dl = librispeech.test_dataloaders(test_clean_cuts) - test_other_dl = librispeech.test_dataloaders(test_other_cuts) - test_sets = [f"test-clean", f"test-other"] - test_dl = [test_clean_dl, test_other_dl] - - if 0: - option = 'big' - test_clean_cuts = librispeech.test_clean_user(option=option) - test_other_cuts = librispeech.test_other_user(option=option) - test_clean_dl = librispeech.test_dataloaders(test_clean_cuts) - test_other_dl = librispeech.test_dataloaders(test_other_cuts) - - test_sets = [f"test-clean_sampling"] - test_dl = [test_clean_dl] - - #test_sets = [f"test-other_sampling"] - #test_dl = [test_other_dl] - - #test_sets = [f"test-clean_sampling", f"test-other_sampling"] - #test_dl = [test_clean_dl, test_other_dl] - - if 0: - option = '6938' - test_clean_cuts = librispeech.vox_cuts(option=option) - test_clean_dl = librispeech.test_dataloaders(test_clean_cuts) - test_sets = [f"test-clean_sampling"] - test_dl = [test_clean_dl] - - if 1: - test_clean_cuts = librispeech.userlibri_cuts(option=params.spk_id) - test_clean_dl = librispeech.test_dataloaders(test_clean_cuts) - test_sets = [f"{params.spk_id}"] - test_dl = [test_clean_dl] - for test_set, test_dl in zip(test_sets, test_dl): results_dict = decode_dataset( dl=test_dl,