mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-27 10:44:19 +00:00
Update docs, pretrained.py & results
This commit is contained in:
parent
943244642f
commit
cbc5557c87
@ -97,13 +97,17 @@ Configurable options
|
|||||||
shows you the training options that can be passed from the commandline.
|
shows you the training options that can be passed from the commandline.
|
||||||
The following options are used quite often:
|
The following options are used quite often:
|
||||||
|
|
||||||
|
- ``--exp-dir``
|
||||||
|
|
||||||
|
The experiment folder to save logs and model checkpoints,
|
||||||
|
default ``./conformer_ctc/exp``.
|
||||||
|
|
||||||
- ``--num-epochs``
|
- ``--num-epochs``
|
||||||
|
|
||||||
It is the number of epochs to train. For instance,
|
It is the number of epochs to train. For instance,
|
||||||
``./conformer_ctc/train.py --num-epochs 30`` trains for 30 epochs
|
``./conformer_ctc/train.py --num-epochs 30`` trains for 30 epochs
|
||||||
and generates ``epoch-0.pt``, ``epoch-1.pt``, ..., ``epoch-29.pt``
|
and generates ``epoch-0.pt``, ``epoch-1.pt``, ..., ``epoch-29.pt``
|
||||||
in the folder ``./conformer_ctc/exp``.
|
in the folder set with ``--exp-dir``.
|
||||||
|
|
||||||
- ``--start-epoch``
|
- ``--start-epoch``
|
||||||
|
|
||||||
@ -174,7 +178,7 @@ Pre-configured options
|
|||||||
~~~~~~~~~~~~~~~~~~~~~~
|
~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
There are some training options, e.g., weight decay,
|
There are some training options, e.g., weight decay,
|
||||||
number of warmup steps, results dir, etc,
|
number of warmup steps, etc,
|
||||||
that are not passed from the commandline.
|
that are not passed from the commandline.
|
||||||
They are pre-configured by the function ``get_params()`` in
|
They are pre-configured by the function ``get_params()`` in
|
||||||
`conformer_ctc/train.py <https://github.com/k2-fsa/icefall/blob/master/egs/aishell/ASR/conformer_ctc/train.py>`_
|
`conformer_ctc/train.py <https://github.com/k2-fsa/icefall/blob/master/egs/aishell/ASR/conformer_ctc/train.py>`_
|
||||||
@ -192,8 +196,8 @@ them, please modify ``./conformer_ctc/train.py`` directly.
|
|||||||
Training logs
|
Training logs
|
||||||
~~~~~~~~~~~~~
|
~~~~~~~~~~~~~
|
||||||
|
|
||||||
Training logs and checkpoints are saved in ``conformer_ctc/exp``.
|
Training logs and checkpoints are saved in the folder set by ``--exp-dir``
|
||||||
You will find the following files in that directory:
|
(default ``conformer_ctc/exp``). You will find the following files in that directory:
|
||||||
|
|
||||||
- ``epoch-0.pt``, ``epoch-1.pt``, ...
|
- ``epoch-0.pt``, ``epoch-1.pt``, ...
|
||||||
|
|
||||||
@ -223,10 +227,10 @@ You will find the following files in that directory:
|
|||||||
|
|
||||||
To stop uploading, press Ctrl-C.
|
To stop uploading, press Ctrl-C.
|
||||||
|
|
||||||
New experiment created. View your TensorBoard at: https://tensorboard.dev/experiment/qvNrx6JIQAaN5Ly3uQotrg/
|
New experiment created. View your TensorBoard at: https://tensorboard.dev/experiment/WE1DocDqRRCOSAgmGyClhg/
|
||||||
|
|
||||||
[2021-09-12T16:41:16] Started scanning logdir.
|
[2021-11-16T10:51:46] Started scanning logdir.
|
||||||
[2021-09-12T16:42:17] Total uploaded: 125346 scalars, 0 tensors, 0 binary objects
|
[2021-11-16T10:52:32] Total uploaded: 111606 scalars, 0 tensors, 0 binary objects
|
||||||
Listening for new data in logdir...
|
Listening for new data in logdir...
|
||||||
|
|
||||||
Note there is a URL in the above output, click it and you will see
|
Note there is a URL in the above output, click it and you will see
|
||||||
@ -236,7 +240,7 @@ You will find the following files in that directory:
|
|||||||
:width: 600
|
:width: 600
|
||||||
:alt: TensorBoard screenshot
|
:alt: TensorBoard screenshot
|
||||||
:align: center
|
:align: center
|
||||||
:target: https://tensorboard.dev/experiment/qvNrx6JIQAaN5Ly3uQotrg/
|
:target: https://tensorboard.dev/experiment/WE1DocDqRRCOSAgmGyClhg/
|
||||||
|
|
||||||
TensorBoard screenshot.
|
TensorBoard screenshot.
|
||||||
|
|
||||||
@ -307,9 +311,9 @@ The commonly used options are:
|
|||||||
.. code-block::
|
.. code-block::
|
||||||
|
|
||||||
$ cd egs/aishell/ASR
|
$ cd egs/aishell/ASR
|
||||||
$ ./conformer_ctc/decode.py --method attention-decoder --max-duration 30 --lattice-score-scale 0.5
|
$ ./conformer_ctc/decode.py --method attention-decoder --max-duration 30 --nbest-scale 0.5
|
||||||
|
|
||||||
- ``--lattice-score-scale``
|
- ``--nbest-scale``
|
||||||
|
|
||||||
It is used to scale down lattice scores so that there are more unique
|
It is used to scale down lattice scores so that there are more unique
|
||||||
paths for rescoring.
|
paths for rescoring.
|
||||||
@ -403,7 +407,7 @@ After downloading, you will have the following files:
|
|||||||
- ``exp/pretrained.pt``
|
- ``exp/pretrained.pt``
|
||||||
|
|
||||||
It contains pre-trained model parameters, obtained by averaging
|
It contains pre-trained model parameters, obtained by averaging
|
||||||
checkpoints from ``epoch-18.pt`` to ``epoch-40.pt``.
|
checkpoints from ``epoch-25.pt`` to ``epoch-84.pt``.
|
||||||
Note: We have removed optimizer ``state_dict`` to reduce file size.
|
Note: We have removed optimizer ``state_dict`` to reduce file size.
|
||||||
|
|
||||||
- ``test_waves/*.wav``
|
- ``test_waves/*.wav``
|
||||||
|
Binary file not shown.
Before Width: | Height: | Size: 544 KiB After Width: | Height: | Size: 308 KiB |
@ -1,16 +1,16 @@
|
|||||||
## Results
|
## Results
|
||||||
|
|
||||||
### Aishell training results (Conformer-CTC)
|
### Aishell training results (Conformer-CTC)
|
||||||
#### 2021-09-13
|
#### 2021-11-16
|
||||||
(Wei Kang): Result of https://github.com/k2-fsa/icefall/pull/30
|
(Wei Kang): Result of https://github.com/k2-fsa/icefall/pull/30
|
||||||
|
|
||||||
Pretrained model is available at https://huggingface.co/pkufool/icefall_asr_aishell_conformer_ctc
|
Pretrained model is available at https://huggingface.co/pkufool/icefall_asr_aishell_conformer_ctc
|
||||||
|
|
||||||
The best decoding results (CER) are listed below, we got this results by averaging models from epoch 23 to 40, and using `attention-decoder` decoder with num_paths equals to 100.
|
The best decoding results (CER) are listed below, we got this results by averaging models from epoch 25 to 84, and using `attention-decoder` decoder with num_paths equals to 100.
|
||||||
|
|
||||||
||test|
|
||test|
|
||||||
|--|--|
|
|--|--|
|
||||||
|CER| 4.74% |
|
|CER| 4.26% |
|
||||||
|
|
||||||
To get more unique paths, we scaled the lattice.scores with 0.5 (see https://github.com/k2-fsa/icefall/pull/10#discussion_r690951662 for more details), we searched the lm_score_scale and attention_score_scale for best results, the scales that produced the CER above are also listed below.
|
To get more unique paths, we scaled the lattice.scores with 0.5 (see https://github.com/k2-fsa/icefall/pull/10#discussion_r690951662 for more details), we searched the lm_score_scale and attention_score_scale for best results, the scales that produced the CER above are also listed below.
|
||||||
|
|
||||||
@ -27,17 +27,18 @@ cd icefall
|
|||||||
cd egs/aishell/ASR
|
cd egs/aishell/ASR
|
||||||
./prepare.sh
|
./prepare.sh
|
||||||
|
|
||||||
export CUDA_VISIBLE_DEVICES="0,1"
|
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||||
python conformer_ctc/train.py --bucketing-sampler False \
|
python conformer_ctc/train.py --bucketing-sampler True \
|
||||||
--concatenate-cuts False \
|
|
||||||
--max-duration 200 \
|
--max-duration 200 \
|
||||||
--world-size 2
|
--start-epoch 0 \
|
||||||
|
--num-epoch 90 \
|
||||||
|
--world-size 4
|
||||||
|
|
||||||
python conformer_ctc/decode.py --lattice-score-scale 0.5 \
|
python conformer_ctc/decode.py --nbest-scale 0.5 \
|
||||||
--epoch 40 \
|
--epoch 84 \
|
||||||
--avg 18 \
|
--avg 25 \
|
||||||
--method attention-decoder \
|
--method attention-decoder \
|
||||||
--max-duration 50 \
|
--max-duration 20 \
|
||||||
--num-paths 100
|
--num-paths 100
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -53,4 +54,3 @@ The best decoding results (CER) are listed below, we got this results by averagi
|
|||||||
||test|
|
||test|
|
||||||
|--|--|
|
|--|--|
|
||||||
|CER| 10.16% |
|
|CER| 10.16% |
|
||||||
|
|
||||||
|
@ -77,6 +77,8 @@ def get_parser():
|
|||||||
default="attention-decoder",
|
default="attention-decoder",
|
||||||
help="""Decoding method.
|
help="""Decoding method.
|
||||||
Supported values are:
|
Supported values are:
|
||||||
|
- (0) ctc-decoding. Use CTC decoding. It maps the tokens ids to
|
||||||
|
tokens using token symbol tabel directly.
|
||||||
- (1) 1best. Extract the best path from the decoding lattice as the
|
- (1) 1best. Extract the best path from the decoding lattice as the
|
||||||
decoding result.
|
decoding result.
|
||||||
- (2) nbest. Extract n paths from the decoding lattice; the path
|
- (2) nbest. Extract n paths from the decoding lattice; the path
|
||||||
|
@ -34,7 +34,7 @@ from icefall.decode import (
|
|||||||
one_best_decoding,
|
one_best_decoding,
|
||||||
rescore_with_attention_decoder,
|
rescore_with_attention_decoder,
|
||||||
)
|
)
|
||||||
from icefall.utils import AttributeDict, get_texts
|
from icefall.utils import AttributeDict, get_env_info, get_texts
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
def get_parser():
|
||||||
@ -52,14 +52,21 @@ def get_parser():
|
|||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--words-file",
|
"--tokens-file",
|
||||||
type=str,
|
type=str,
|
||||||
required=True,
|
help="Path to tokens.txt" "Used only when method is ctc-decoding",
|
||||||
help="Path to words.txt",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--HLG", type=str, required=True, help="Path to HLG.pt."
|
"--words-file",
|
||||||
|
type=str,
|
||||||
|
help="Path to words.txt" "Used when method is NOT ctc-decoding",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--HLG",
|
||||||
|
type=str,
|
||||||
|
help="Path to HLG.pt." "Used when method is NOT ctc-decoding",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -68,6 +75,8 @@ def get_parser():
|
|||||||
default="1best",
|
default="1best",
|
||||||
help="""Decoding method.
|
help="""Decoding method.
|
||||||
Possible values are:
|
Possible values are:
|
||||||
|
(0) ctc-decoding - Use ctc decoding. It maps the tokens ids to tokens
|
||||||
|
using the token symbol table directly.
|
||||||
(1) 1best - Use the best path as decoding output. Only
|
(1) 1best - Use the best path as decoding output. Only
|
||||||
the transformer encoder output is used for decoding.
|
the transformer encoder output is used for decoding.
|
||||||
We call it HLG decoding.
|
We call it HLG decoding.
|
||||||
@ -111,7 +120,7 @@ def get_parser():
|
|||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--lattice-score-scale",
|
"--nbest-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.5,
|
default=0.5,
|
||||||
help="""
|
help="""
|
||||||
@ -125,7 +134,7 @@ def get_parser():
|
|||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--sos-id",
|
"--sos-id",
|
||||||
type=float,
|
type=int,
|
||||||
default=1,
|
default=1,
|
||||||
help="""
|
help="""
|
||||||
Used only when method is attention-decoder.
|
Used only when method is attention-decoder.
|
||||||
@ -135,7 +144,7 @@ def get_parser():
|
|||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--eos-id",
|
"--eos-id",
|
||||||
type=float,
|
type=int,
|
||||||
default=1,
|
default=1,
|
||||||
help="""
|
help="""
|
||||||
Used only when method is attention-decoder.
|
Used only when method is attention-decoder.
|
||||||
@ -143,6 +152,13 @@ def get_parser():
|
|||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num_classes",
|
||||||
|
type=int,
|
||||||
|
default=4336,
|
||||||
|
help="The Vocab size.",
|
||||||
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"sound_files",
|
"sound_files",
|
||||||
type=str,
|
type=str,
|
||||||
@ -160,7 +176,6 @@ def get_params() -> AttributeDict:
|
|||||||
params = AttributeDict(
|
params = AttributeDict(
|
||||||
{
|
{
|
||||||
"sample_rate": 16000,
|
"sample_rate": 16000,
|
||||||
"num_classes": 4336,
|
|
||||||
# parameters for conformer
|
# parameters for conformer
|
||||||
"subsampling_factor": 4,
|
"subsampling_factor": 4,
|
||||||
"feature_dim": 80,
|
"feature_dim": 80,
|
||||||
@ -175,6 +190,7 @@ def get_params() -> AttributeDict:
|
|||||||
"min_active_states": 30,
|
"min_active_states": 30,
|
||||||
"max_active_states": 10000,
|
"max_active_states": 10000,
|
||||||
"use_double_scores": True,
|
"use_double_scores": True,
|
||||||
|
"env_info": get_env_info(),
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
return params
|
return params
|
||||||
@ -212,6 +228,11 @@ def main():
|
|||||||
params.update(vars(args))
|
params.update(vars(args))
|
||||||
logging.info(f"{params}")
|
logging.info(f"{params}")
|
||||||
|
|
||||||
|
if args.method != "attention-decoder":
|
||||||
|
# to save memory as the attention decoder
|
||||||
|
# will not be used
|
||||||
|
params.num_decoder_layers = 0
|
||||||
|
|
||||||
device = torch.device("cpu")
|
device = torch.device("cpu")
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
device = torch.device("cuda", 0)
|
device = torch.device("cuda", 0)
|
||||||
@ -231,17 +252,10 @@ def main():
|
|||||||
)
|
)
|
||||||
|
|
||||||
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||||
model.load_state_dict(checkpoint["model"])
|
model.load_state_dict(checkpoint["model"], strict=False)
|
||||||
model.to(device)
|
model.to(device)
|
||||||
model.eval()
|
model.eval()
|
||||||
|
|
||||||
logging.info(f"Loading HLG from {params.HLG}")
|
|
||||||
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
|
|
||||||
HLG = HLG.to(device)
|
|
||||||
if not hasattr(HLG, "lm_scores"):
|
|
||||||
# For whole-lattice-rescoring and attention-decoder
|
|
||||||
HLG.lm_scores = HLG.scores.clone()
|
|
||||||
|
|
||||||
logging.info("Constructing Fbank computer")
|
logging.info("Constructing Fbank computer")
|
||||||
opts = kaldifeat.FbankOptions()
|
opts = kaldifeat.FbankOptions()
|
||||||
opts.device = device
|
opts.device = device
|
||||||
@ -275,6 +289,42 @@ def main():
|
|||||||
dtype=torch.int32,
|
dtype=torch.int32,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if params.method == "ctc-decoding":
|
||||||
|
logging.info("Use CTC decoding")
|
||||||
|
token_sym_table = k2.SymbolTable.from_file(params.tokens_file)
|
||||||
|
max_token_id = params.num_classes - 1
|
||||||
|
|
||||||
|
H = k2.ctc_topo(
|
||||||
|
max_token=max_token_id,
|
||||||
|
modified=False,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
|
||||||
|
lattice = get_lattice(
|
||||||
|
nnet_output=nnet_output,
|
||||||
|
decoding_graph=H,
|
||||||
|
supervision_segments=supervision_segments,
|
||||||
|
search_beam=params.search_beam,
|
||||||
|
output_beam=params.output_beam,
|
||||||
|
min_active_states=params.min_active_states,
|
||||||
|
max_active_states=params.max_active_states,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
)
|
||||||
|
|
||||||
|
best_path = one_best_decoding(
|
||||||
|
lattice=lattice, use_double_scores=params.use_double_scores
|
||||||
|
)
|
||||||
|
token_ids = get_texts(best_path)
|
||||||
|
hyps = [[token_sym_table[i] for i in ids] for ids in token_ids]
|
||||||
|
hyps = [s.split() for s in hyps]
|
||||||
|
elif params.method in ["1best", "attention-decoder"]:
|
||||||
|
logging.info(f"Loading HLG from {params.HLG}")
|
||||||
|
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
|
||||||
|
HLG = HLG.to(device)
|
||||||
|
if not hasattr(HLG, "lm_scores"):
|
||||||
|
# For whole-lattice-rescoring and attention-decoder
|
||||||
|
HLG.lm_scores = HLG.scores.clone()
|
||||||
|
|
||||||
lattice = get_lattice(
|
lattice = get_lattice(
|
||||||
nnet_output=nnet_output,
|
nnet_output=nnet_output,
|
||||||
HLG=HLG,
|
HLG=HLG,
|
||||||
@ -310,6 +360,8 @@ def main():
|
|||||||
hyps = get_texts(best_path)
|
hyps = get_texts(best_path)
|
||||||
word_sym_table = k2.SymbolTable.from_file(params.words_file)
|
word_sym_table = k2.SymbolTable.from_file(params.words_file)
|
||||||
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
|
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported decoding method: {params.method}")
|
||||||
|
|
||||||
s = "\n"
|
s = "\n"
|
||||||
for filename, hyp in zip(params.sound_files, hyps):
|
for filename, hyp in zip(params.sound_files, hyps):
|
||||||
|
@ -23,6 +23,7 @@ It looks for manifests in the directory data/manifests.
|
|||||||
The generated fbank features are saved in data/fbank.
|
The generated fbank features are saved in data/fbank.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
import os
|
import os
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
@ -43,7 +44,7 @@ torch.set_num_interop_threads(1)
|
|||||||
|
|
||||||
def compute_fbank_aishell(num_mel_bins: int = 80):
|
def compute_fbank_aishell(num_mel_bins: int = 80):
|
||||||
src_dir = Path("data/manifests")
|
src_dir = Path("data/manifests")
|
||||||
output_dir = Path("data/fbank40")
|
output_dir = Path("data/fbank")
|
||||||
num_jobs = min(15, os.cpu_count())
|
num_jobs = min(15, os.cpu_count())
|
||||||
|
|
||||||
dataset_parts = (
|
dataset_parts = (
|
||||||
@ -106,4 +107,3 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
args = get_args()
|
args = get_args()
|
||||||
compute_fbank_aishell(num_mel_bins=args.num_mel_bins)
|
compute_fbank_aishell(num_mel_bins=args.num_mel_bins)
|
||||||
|
|
||||||
|
@ -23,6 +23,7 @@ It looks for manifests in the directory data/manifests.
|
|||||||
The generated fbank features are saved in data/fbank.
|
The generated fbank features are saved in data/fbank.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
import os
|
import os
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
@ -43,7 +44,7 @@ torch.set_num_interop_threads(1)
|
|||||||
|
|
||||||
def compute_fbank_musan(num_mel_bins: int = 80):
|
def compute_fbank_musan(num_mel_bins: int = 80):
|
||||||
src_dir = Path("data/manifests")
|
src_dir = Path("data/manifests")
|
||||||
output_dir = Path("data/fbank40")
|
output_dir = Path("data/fbank")
|
||||||
num_jobs = min(15, os.cpu_count())
|
num_jobs = min(15, os.cpu_count())
|
||||||
|
|
||||||
dataset_parts = (
|
dataset_parts = (
|
||||||
@ -86,6 +87,7 @@ def compute_fbank_musan(num_mel_bins: int = 80):
|
|||||||
)
|
)
|
||||||
musan_cuts.to_json(musan_cuts_path)
|
musan_cuts.to_json(musan_cuts_path)
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
def get_args():
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -106,4 +108,3 @@ if __name__ == "__main__":
|
|||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
args = get_args()
|
args = get_args()
|
||||||
compute_fbank_musan(num_mel_bins=args.num_mel_bins)
|
compute_fbank_musan(num_mel_bins=args.num_mel_bins)
|
||||||
|
|
||||||
|
@ -69,7 +69,7 @@ if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|||||||
# |-- lexicon.txt
|
# |-- lexicon.txt
|
||||||
# `-- speaker.info
|
# `-- speaker.info
|
||||||
|
|
||||||
if [ ! -d $dl_dir/aishell/wav ]; then
|
if [ ! -d $dl_dir/aishell/data_aishell/wav ]; then
|
||||||
lhotse download aishell $dl_dir
|
lhotse download aishell $dl_dir
|
||||||
fi
|
fi
|
||||||
|
|
||||||
@ -160,4 +160,3 @@ if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
|||||||
./local/compile_hlg.py --lang-dir data/lang_phone
|
./local/compile_hlg.py --lang-dir data/lang_phone
|
||||||
./local/compile_hlg.py --lang-dir data/lang_char
|
./local/compile_hlg.py --lang-dir data/lang_char
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user