complete musan rezonspeech integration

This commit is contained in:
Bailey Hirota 2025-04-16 13:25:40 +09:00
parent c5c35859ec
commit cb4f4a941b
4 changed files with 198 additions and 8 deletions

View File

@ -0,0 +1,152 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file computes fbank features of the musan dataset.
It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/manifests.
"""
import argparse
import logging
import os
from pathlib import Path
import torch
from lhotse import (
CutSet,
Fbank,
FbankConfig,
LilcomChunkyWriter,
MonoCut,
WhisperFbank,
WhisperFbankConfig,
combine,
)
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor, str2bool
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def is_cut_long(c: MonoCut) -> bool:
return c.duration > 5
def compute_fbank_musan(
num_mel_bins: int = 80, whisper_fbank: bool = False, output_dir: str = "data/manifests"
):
src_dir = Path("data/manifests")
output_dir = Path(output_dir)
num_jobs = min(15, os.cpu_count())
dataset_parts = (
"music",
"speech",
"noise",
)
prefix = "musan"
suffix = "jsonl.gz"
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts,
output_dir=src_dir,
prefix=prefix,
suffix=suffix,
)
assert manifests is not None
assert len(manifests) == len(dataset_parts), (
len(manifests),
len(dataset_parts),
list(manifests.keys()),
dataset_parts,
)
musan_cuts_path = output_dir / "musan_cuts.jsonl.gz"
if musan_cuts_path.is_file():
logging.info(f"{musan_cuts_path} already exists - skipping")
return
logging.info("Extracting features for Musan")
if whisper_fbank:
extractor = WhisperFbank(
WhisperFbankConfig(num_filters=num_mel_bins, device="cuda")
)
else:
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
with get_executor() as ex: # Initialize the executor only once.
# create chunks of Musan with duration 5 - 10 seconds
musan_cuts = (
CutSet.from_manifests(
recordings=combine(part["recordings"] for part in manifests.values())
)
.cut_into_windows(10.0)
.filter(is_cut_long)
.compute_and_store_features(
extractor=extractor,
storage_path=f"{output_dir}/musan_feats",
num_jobs=num_jobs if ex is None else 80,
executor=ex,
storage_type=LilcomChunkyWriter,
)
)
musan_cuts.to_file(musan_cuts_path)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--num-mel-bins",
type=int,
default=80,
help="""The number of mel bins for Fbank""",
)
parser.add_argument(
"--whisper-fbank",
type=str2bool,
default=False,
help="Use WhisperFbank instead of Fbank. Default: False.",
)
parser.add_argument(
"--output-dir",
type=str,
default="data/manifests",
help="Output directory. Default: data/manifests.",
)
return parser.parse_args()
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
compute_fbank_musan(
num_mel_bins=args.num_mel_bins,
whisper_fbank=args.whisper_fbank,
output_dir=args.output_dir,
)

@ -0,0 +1 @@
Subproject commit e6ca0bf179779b512a2ce5dd3fdc3e3e17570459

View File

@ -17,8 +17,16 @@ stop_stage=100
# You can find FLAC files in this directory.
# You can download them from https://huggingface.co/datasets/reazon-research/reazonspeech
#
# - $dl_dir/dataset.json
# - $dl_dir/ReazonSpeech/dataset.json
# The metadata of the ReazonSpeech dataset.
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download
@ -48,7 +56,15 @@ if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
#
if [ ! -d $dl_dir/ReazonSpeech/downloads ]; then
# Download small-v1 by default.
lhotse download reazonspeech --subset small-v1 $dl_dir
lhotse download reazonspeech --subset medium $dl_dir
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
@ -64,7 +80,18 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Compute ReazonSpeech fbank"
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to $dl_dir/musan
mkdir -p data/manifests
if [ ! -e data/manifests/.musan_prep.done ]; then
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan_prep.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute ReazonSpeech fbank"
if [ ! -e data/manifests/.reazonspeech-validated.done ]; then
python local/compute_fbank_reazonspeech.py --manifest-dir data/manifests
python local/validate_manifest.py --manifest data/manifests/reazonspeech_cuts_train.jsonl.gz
@ -74,13 +101,22 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Prepare ReazonSpeech lang_char"
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
mkdir -p data/manifests
if [ ! -e data/manifests/.musan_fbank.done ]; then
./local/compute_fbank_musan.py
touch data/manifests/.musan_fbank.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Prepare ReazonSpeech lang_char"
python local/prepare_lang_char.py data/manifests/reazonspeech_cuts_train.jsonl.gz
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Show manifest statistics"
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Show manifest statistics"
python local/display_manifest_statistics.py --manifest-dir data/manifests > data/manifests/manifest_statistics.txt
cat data/manifests/manifest_statistics.txt
fi
fi

View File

@ -68,6 +68,7 @@ from joiner import Joiner
from lhotse.cut import Cut
from lhotse.dataset.sampling.base import CutSampler
from lhotse.utils import fix_random_seed
from lhotse import load_manifest
from model import AsrModel
from optim import Eden, ScaledAdam
from scaling import ScheduledFloat