mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-19 05:54:20 +00:00
from local
This commit is contained in:
parent
adba1328e9
commit
ca85302fa0
Binary file not shown.
@ -63,7 +63,6 @@ else
|
||||
--additional-block True \
|
||||
--prune-range 10 \
|
||||
--spk-id $2 \
|
||||
--prefix vox
|
||||
touch ./pruned_transducer_stateless_d2v_v2/$1/.train.done
|
||||
fi
|
||||
fi
|
||||
|
Binary file not shown.
Binary file not shown.
@ -1345,23 +1345,19 @@ def run(rank, world_size, args, wb=None):
|
||||
register_inf_check_hooks(model)
|
||||
|
||||
#librispeech = LibriSpeechAsrDataModule(args)
|
||||
ted = TedLiumAsrDataModule(args)
|
||||
|
||||
train_cuts = librispeech.train_clean_100_cuts()
|
||||
if params.full_libri:
|
||||
train_cuts += librispeech.train_clean_360_cuts()
|
||||
train_cuts += librispeech.train_other_500_cuts()
|
||||
tedlium = TedLiumAsrDataModule(args)
|
||||
train_cuts = tedlium.train_cuts()
|
||||
|
||||
def remove_short_and_long_utt(c: Cut):
|
||||
# Keep only utterances with duration between 1 second and 20 seconds
|
||||
# Keep only utterances with duration between 1 second and 17 seconds
|
||||
#
|
||||
# Caution: There is a reason to select 20.0 here. Please see
|
||||
# Caution: There is a reason to select 17.0 here. Please see
|
||||
# ../local/display_manifest_statistics.py
|
||||
#
|
||||
# You should use ../local/display_manifest_statistics.py to get
|
||||
# an utterance duration distribution for your dataset to select
|
||||
# the threshold
|
||||
return 1.0 <= c.duration <= 20.0
|
||||
return 1.0 <= c.duration <= 17.0
|
||||
|
||||
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||
|
||||
@ -1372,15 +1368,12 @@ def run(rank, world_size, args, wb=None):
|
||||
else:
|
||||
sampler_state_dict = None
|
||||
|
||||
train_dl = librispeech.train_dataloaders(
|
||||
train_cuts, sampler_state_dict=sampler_state_dict
|
||||
)
|
||||
train_dl = tedlium.train_dataloaders(train_cuts)
|
||||
valid_cuts = tedlium.dev_cuts()
|
||||
valid_dl = tedlium.valid_dataloaders(valid_cuts)
|
||||
|
||||
valid_cuts = librispeech.dev_clean_cuts()
|
||||
valid_cuts += librispeech.dev_other_cuts()
|
||||
valid_dl = librispeech.valid_dataloaders(valid_cuts)
|
||||
|
||||
scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0)
|
||||
|
||||
if checkpoints and "grad_scaler" in checkpoints:
|
||||
logging.info("Loading grad scaler state dict")
|
||||
scaler.load_state_dict(checkpoints["grad_scaler"])
|
||||
@ -1537,24 +1530,18 @@ def run_pea(rank, world_size, args, wb=None):
|
||||
scheduler_pea = Eden(optimizer_pea, 10000, 7)
|
||||
optimizer, scheduler = optimizer_pea, scheduler_pea
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
train_cuts = librispeech.vox_cuts(option=params.spk_id)
|
||||
tedlium = TedLiumAsrDataModule(args)
|
||||
train_cuts = tedlium.user_test_cuts(spk_id=params.spk_id)
|
||||
|
||||
def remove_short_and_long_utt(c: Cut):
|
||||
return 1.0 <= c.duration <= 20.0
|
||||
|
||||
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||
|
||||
sampler_state_dict = None
|
||||
|
||||
train_dl = tedlium.train_dataloaders(train_cuts)
|
||||
valid_dl = None
|
||||
|
||||
train_dl = librispeech.train_dataloaders(
|
||||
train_cuts, sampler_state_dict=sampler_state_dict
|
||||
)
|
||||
|
||||
valid_cuts = librispeech.dev_clean_cuts(option=params.gender)
|
||||
valid_cuts += librispeech.dev_other_cuts(option=params.gender)
|
||||
valid_dl = librispeech.valid_dataloaders(valid_cuts)
|
||||
|
||||
scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0)
|
||||
|
||||
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
||||
|
Loading…
x
Reference in New Issue
Block a user