mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-27 02:34:21 +00:00
Minor fixes.
This commit is contained in:
parent
9a62a0e7bc
commit
ca0d7c5795
109
.github/workflows/run-pretrained-transducer.yml
vendored
Normal file
109
.github/workflows/run-pretrained-transducer.yml
vendored
Normal file
@ -0,0 +1,109 @@
|
||||
# Copyright 2021 Fangjun Kuang (csukuangfj@gmail.com)
|
||||
|
||||
# See ../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: run-pre-trained-tranducer
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
pull_request:
|
||||
types: [labeled]
|
||||
|
||||
jobs:
|
||||
run_pre_trained_transducer:
|
||||
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-18.04]
|
||||
python-version: [3.7, 3.8, 3.9]
|
||||
torch: ["1.10.0"]
|
||||
torchaudio: ["0.10.0"]
|
||||
k2-version: ["1.9.dev20211101"]
|
||||
|
||||
fail-fast: false
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v1
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
|
||||
- name: Install Python dependencies
|
||||
run: |
|
||||
python3 -m pip install --upgrade pip pytest
|
||||
# numpy 1.20.x does not support python 3.6
|
||||
pip install numpy==1.19
|
||||
pip install torch==${{ matrix.torch }}+cpu torchaudio==${{ matrix.torchaudio }}+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html
|
||||
pip install k2==${{ matrix.k2-version }}+cpu.torch${{ matrix.torch }} -f https://k2-fsa.org/nightly/
|
||||
|
||||
python3 -m pip install git+https://github.com/lhotse-speech/lhotse
|
||||
python3 -m pip install kaldifeat
|
||||
# We are in ./icefall and there is a file: requirements.txt in it
|
||||
pip install -r requirements.txt
|
||||
|
||||
- name: Install graphviz
|
||||
shell: bash
|
||||
run: |
|
||||
python3 -m pip install -qq graphviz
|
||||
sudo apt-get -qq install graphviz
|
||||
|
||||
- name: Download pre-trained model
|
||||
shell: bash
|
||||
run: |
|
||||
sudo apt-get -qq install git-lfs tree sox
|
||||
cd egs/librispeech/ASR
|
||||
mkdir tmp
|
||||
cd tmp
|
||||
git lfs install
|
||||
git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-bpe-500-2021-12-23
|
||||
|
||||
cd ..
|
||||
tree tmp
|
||||
soxi tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/test_wavs/*.wav
|
||||
ls -lh tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/test_wavs/*.wav
|
||||
|
||||
- name: Run greedy search decoding
|
||||
shell: bash
|
||||
run: |
|
||||
export PYTHONPATH=$PWD:PYTHONPATH
|
||||
cd egs/librispeech/ASR
|
||||
./transducer_stateless/pretrained.py \
|
||||
--method greedy_search \
|
||||
--checkpoint ./tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/exp/pretrained.pt \
|
||||
--bpe-model ./tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/data/lang_bpe_500/bpe.model \
|
||||
./tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/test_wavs/1089-134686-0001.wav \
|
||||
./tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/test_wavs/1221-135766-0001.wav \
|
||||
./tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/test_wavs/1221-135766-0002.wav
|
||||
|
||||
- name: Run beam search decoding
|
||||
shell: bash
|
||||
run: |
|
||||
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||
cd egs/librispeech/ASR
|
||||
./transducer_stateless/pretrained.py \
|
||||
--method beam_search \
|
||||
--beam-size 4 \
|
||||
--checkpoint ./tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/exp/pretrained.pt \
|
||||
--bpe-model ./tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/data/lang_bpe_500/bpe.model \
|
||||
./tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/test_wavs/1089-134686-0001.wav \
|
||||
./tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/test_wavs/1221-135766-0001.wav \
|
||||
./tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/test_wavs/1221-135766-0002.wav
|
@ -71,7 +71,7 @@ The best WER with greedy search is:
|
||||
|
||||
| | test-clean | test-other |
|
||||
|-----|------------|------------|
|
||||
| WER | 3.16 | 7.71 |
|
||||
| WER | 3.07 | 7.51 |
|
||||
|
||||
We provide a Colab notebook to run a pre-trained RNN-T conformer model: [](https://colab.research.google.com/drive/1_u6yK9jDkPwG_NLrZMN2XK7Aeq4suMO2?usp=sharing)
|
||||
|
||||
|
@ -2,7 +2,10 @@
|
||||
|
||||
### LibriSpeech BPE training results (Transducer)
|
||||
|
||||
#### 2021-12-22
|
||||
#### Conformer encoder + embedding decoder
|
||||
|
||||
Using commit `fb6a57e9e01dd8aae2af2a6b4568daad8bc8ab32`.
|
||||
|
||||
Conformer encoder + non-current decoder. The decoder
|
||||
contains only an embedding layer and a Conv1d (with kernel size 2).
|
||||
|
||||
@ -60,8 +63,8 @@ avg=10
|
||||
```
|
||||
|
||||
|
||||
#### 2021-12-17
|
||||
Using commit `cb04c8a7509425ab45fae888b0ca71bbbd23f0de`.
|
||||
#### Conformer encoder + LSTM decoder
|
||||
Using commit `TODO`.
|
||||
|
||||
Conformer encoder + LSTM decoder.
|
||||
|
||||
@ -69,9 +72,9 @@ The best WER is
|
||||
|
||||
| | test-clean | test-other |
|
||||
|-----|------------|------------|
|
||||
| WER | 3.16 | 7.71 |
|
||||
| WER | 3.07 | 7.51 |
|
||||
|
||||
using `--epoch 26 --avg 12` with **greedy search**.
|
||||
using `--epoch 34 --avg 11` with **greedy search**.
|
||||
|
||||
The training command to reproduce the above WER is:
|
||||
|
||||
@ -80,19 +83,19 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
./transducer/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 30 \
|
||||
--num-epochs 35 \
|
||||
--start-epoch 0 \
|
||||
--exp-dir transducer/exp-lr-2.5-full \
|
||||
--full-libri 1 \
|
||||
--max-duration 250 \
|
||||
--max-duration 180 \
|
||||
--lr-factor 2.5
|
||||
```
|
||||
|
||||
The decoding command is:
|
||||
|
||||
```
|
||||
epoch=26
|
||||
avg=12
|
||||
epoch=34
|
||||
avg=11
|
||||
|
||||
./transducer/decode.py \
|
||||
--epoch $epoch \
|
||||
@ -102,7 +105,7 @@ avg=12
|
||||
--max-duration 100
|
||||
```
|
||||
|
||||
You can find the tensorboard log at: <https://tensorboard.dev/experiment/PYIbeD6zRJez1ViXaRqqeg/>
|
||||
You can find the tensorboard log at: <https://tensorboard.dev/experiment/D7NQc3xqTpyVmWi5FnWjrA>
|
||||
|
||||
|
||||
### LibriSpeech BPE training results (Conformer-CTC)
|
||||
|
@ -70,14 +70,14 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=26,
|
||||
default=34,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=12,
|
||||
default=11,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
|
@ -23,8 +23,8 @@ Usage:
|
||||
./transducer/export.py \
|
||||
--exp-dir ./transducer/exp \
|
||||
--bpe-model data/lang_bpe_500/bpe.model \
|
||||
--epoch 26 \
|
||||
--avg 12
|
||||
--epoch 34 \
|
||||
--avg 11
|
||||
|
||||
It will generate a file exp_dir/pretrained.pt
|
||||
|
||||
@ -66,7 +66,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=26,
|
||||
default=34,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
@ -74,7 +74,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=12,
|
||||
default=11,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
|
@ -16,7 +16,6 @@
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class Joiner(nn.Module):
|
||||
@ -48,7 +47,7 @@ class Joiner(nn.Module):
|
||||
# Now decoder_out is (N, 1, U, C)
|
||||
|
||||
logit = encoder_out + decoder_out
|
||||
logit = F.tanh(logit)
|
||||
logit = torch.tanh(logit)
|
||||
|
||||
output = self.output_linear(logit)
|
||||
|
||||
|
@ -23,7 +23,7 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
./transducer/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 30 \
|
||||
--num-epochs 35 \
|
||||
--start-epoch 0 \
|
||||
--exp-dir transducer/exp \
|
||||
--full-libri 1 \
|
||||
@ -92,7 +92,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=30,
|
||||
default=35,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user