mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-09 09:04:19 +00:00
Remove decomposition code from checkpoint.py; restore double precision model_avg
This commit is contained in:
parent
03e07e80ce
commit
ca09b9798f
@ -781,7 +781,6 @@ def train_one_epoch(
|
||||
params=params,
|
||||
model_cur=model,
|
||||
model_avg=model_avg,
|
||||
decompose=True
|
||||
)
|
||||
|
||||
if (
|
||||
@ -905,7 +904,7 @@ def run(rank, world_size, args):
|
||||
model_avg: Optional[nn.Module] = None
|
||||
if rank == 0:
|
||||
# model_avg is only used with rank 0
|
||||
model_avg = copy.deepcopy(model)
|
||||
model_avg = copy.deepcopy(model).to(torch.float64)
|
||||
|
||||
assert params.start_epoch > 0, params.start_epoch
|
||||
checkpoints = load_checkpoint_if_available(
|
||||
|
@ -86,7 +86,7 @@ def save_checkpoint(
|
||||
}
|
||||
|
||||
if model_avg is not None:
|
||||
checkpoint["model_avg"] = model_avg.state_dict()
|
||||
checkpoint["model_avg"] = model_avg.to(torch.float32).state_dict()
|
||||
|
||||
if params:
|
||||
for k, v in params.items():
|
||||
@ -351,7 +351,6 @@ def update_averaged_model(
|
||||
params: Dict[str, Tensor],
|
||||
model_cur: Union[nn.Module, DDP],
|
||||
model_avg: nn.Module,
|
||||
decompose: bool = False
|
||||
) -> None:
|
||||
"""Update the averaged model:
|
||||
model_avg = model_cur * (average_period / batch_idx_train)
|
||||
@ -364,12 +363,6 @@ def update_averaged_model(
|
||||
The current model.
|
||||
model_avg:
|
||||
The averaged model to be updated.
|
||||
decompose:
|
||||
If true, do the averaging after decomposing each non-scalar tensor into
|
||||
a log-magnitude and a direction (note: the magnitude is computed with an
|
||||
epsilon of 1e-5). You should give the same argument to
|
||||
average_checkpoints_with_averaged_model() when you use the averaged
|
||||
model.
|
||||
"""
|
||||
weight_cur = params.average_period / params.batch_idx_train
|
||||
weight_avg = 1 - weight_cur
|
||||
@ -385,7 +378,6 @@ def update_averaged_model(
|
||||
state_dict_2=cur,
|
||||
weight_1=weight_avg,
|
||||
weight_2=weight_cur,
|
||||
decompose=decompose
|
||||
)
|
||||
|
||||
|
||||
@ -393,7 +385,6 @@ def average_checkpoints_with_averaged_model(
|
||||
filename_start: str,
|
||||
filename_end: str,
|
||||
device: torch.device = torch.device("cpu"),
|
||||
decompose: bool = False,
|
||||
) -> Dict[str, Tensor]:
|
||||
"""Average model parameters over the range with given
|
||||
start model (excluded) and end model.
|
||||
@ -425,12 +416,6 @@ def average_checkpoints_with_averaged_model(
|
||||
is saved by :func:`save_checkpoint`.
|
||||
device:
|
||||
Move checkpoints to this device before averaging.
|
||||
decompose:
|
||||
If true, do the averaging after decomposing each non-scalar tensor into
|
||||
a log-magnitude and a direction (note: the magnitude is computed with an
|
||||
epsilon of 1e-5). You should give the same argument to
|
||||
average_checkpoints_with_averaged_model() when you use the averaged
|
||||
model.
|
||||
"""
|
||||
state_dict_start = torch.load(filename_start, map_location=device)
|
||||
state_dict_end = torch.load(filename_end, map_location=device)
|
||||
@ -440,56 +425,22 @@ def average_checkpoints_with_averaged_model(
|
||||
interval = batch_idx_train_end - batch_idx_train_start
|
||||
assert interval > 0, interval
|
||||
weight_end = batch_idx_train_end / interval
|
||||
# note: weight_start will be negative.
|
||||
weight_start = 1 - weight_end
|
||||
|
||||
model_end = state_dict_end["model_avg"]
|
||||
model_start = state_dict_start["model_avg"]
|
||||
avg = model_end
|
||||
|
||||
# scale the weight to avoid overflow
|
||||
average_state_dict(
|
||||
state_dict_1=model_end,
|
||||
state_dict_1=avg,
|
||||
state_dict_2=model_start,
|
||||
weight_1=weight_end,
|
||||
weight_2=weight_start,
|
||||
decompose=decompose
|
||||
weight_1=1.0,
|
||||
weight_2=weight_start / weight_end,
|
||||
scaling_factor=weight_end,
|
||||
)
|
||||
|
||||
# model_end contains averaged model
|
||||
return model_end
|
||||
|
||||
|
||||
def average_tensor(
|
||||
t1: Tensor,
|
||||
t2: Tensor,
|
||||
weight_1: float,
|
||||
weight_2: float,
|
||||
decompose: bool):
|
||||
"""
|
||||
Computes, in-place,
|
||||
t1[:] = weight_1 * t1 + weight_2 * t2
|
||||
If decompose == True and t1 and t2 have numel()>1, does this after
|
||||
decomposing them into a log-magnitude and a direction (note: the magnitude
|
||||
is computed with an epsilon of 1e-5).
|
||||
"""
|
||||
if t1.numel() == 1 or not decompose:
|
||||
t1.mul_(weight_1)
|
||||
t1.add_(t2, alpha=weight_2)
|
||||
else:
|
||||
# do this in double precision to reduce roundoff error.
|
||||
output = t1
|
||||
t1 = t1.to(torch.float64)
|
||||
t2 = t2.to(torch.float64)
|
||||
eps = 1.0e-05
|
||||
scale_1 = (t1 ** 2).mean().sqrt() + eps
|
||||
direction_1 = t1 / scale_1
|
||||
scale_2 = (t2 ** 2).mean().sqrt() + eps
|
||||
direction_2 = t2 / scale_2
|
||||
log_scale_1 = scale_1.log()
|
||||
log_scale_2 = scale_2.log()
|
||||
average_tensor(log_scale_1, log_scale_2, weight_1, weight_2, False)
|
||||
average_tensor(direction_1, direction_2, weight_1, weight_2, False)
|
||||
output.copy_((log_scale_1.exp() * direction_1).to(dtype=t1.dtype))
|
||||
return avg
|
||||
|
||||
|
||||
def average_state_dict(
|
||||
@ -497,17 +448,12 @@ def average_state_dict(
|
||||
state_dict_2: Dict[str, Tensor],
|
||||
weight_1: float,
|
||||
weight_2: float,
|
||||
decompose: bool = False,
|
||||
scaling_factor: float = 1.0,
|
||||
) -> Dict[str, Tensor]:
|
||||
"""Average two state_dict with given weights:
|
||||
state_dict_1 = (state_dict_1 * weight_1 + state_dict_2 * weight_2)
|
||||
|
||||
The weights do not have to be positive.
|
||||
* scaling_factor
|
||||
It is an in-place operation on state_dict_1 itself.
|
||||
|
||||
If decompose == True, we do this operation after decomposing
|
||||
each non-scalar tensor into a log-magnitude and a direction (note:
|
||||
the magnitude is computed with an epsilon of 1e-5).
|
||||
"""
|
||||
# Identify shared parameters. Two parameters are said to be shared
|
||||
# if they have the same data_ptr
|
||||
@ -520,8 +466,8 @@ def average_state_dict(
|
||||
|
||||
uniqued_names = list(uniqued.values())
|
||||
for k in uniqued_names:
|
||||
average_tensor(state_dict_1[k],
|
||||
state_dict_2[k].to(device=state_dict_1[k].device),
|
||||
weight_1,
|
||||
weight_2,
|
||||
decompose=decompose)
|
||||
state_dict_1[k] *= weight_1
|
||||
state_dict_1[k] += (
|
||||
state_dict_2[k].to(device=state_dict_1[k].device) * weight_2
|
||||
)
|
||||
state_dict_1[k] *= scaling_factor
|
||||
|
Loading…
x
Reference in New Issue
Block a user