New recipe: tiny_transducer_ctc (#848)

* initial commit

* update readme

* Update README.md

* change bool to str2bool for arg parser

* run validation only at the end of epoch

* black format

* black format
This commit is contained in:
Tiance Wang 2023-10-30 12:09:39 +08:00 committed by GitHub
parent 161ab90dfb
commit c970df512b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
17 changed files with 5575 additions and 0 deletions

View File

@ -0,0 +1,184 @@
## Introduction
This recipe is intended for streaming ASR on very low cost devices, with model parameters in the range of 1-2M. It uses a small convolutional net as the encoder. It is trained with combined transducer and CTC losses, and supports both phone and BPE lexicons. For phone lexicon, you can do transducer decoding using a method with LG, but the results were bad.
The encoder consists of 2 subsampling layers followed by a stack of Conv1d-batchnorm-activation-causal_squeeze_excite blocks, with optional skip connections. To reduce latency (at the cost of slightly higher WER), half of the blocks use causal convolution.
A few remarks & observations:
1. Phone lexicon works better than BPE for CTC decoding (with HLG) but worse for transducer decoding.
2. SpecAugment is not helpful for very small models as they tend to underfit rather than overfit. For the large model, a less aggressive SpecAugment (see asr_datamodule.py) improved the result a little.
3. Squeeze-and-excitation worked like a charm! It reduces WER quite a bit with marginal increase of parameters and MAC ops. To make it causal I changed the global average pooling layer to a moving average filter, so only historical context is used.
## Pretrained models
You can find pretrained models, training logs, decoding logs, and decoding results at:
<https://huggingface.co/wangtiance/tiny_transducer_ctc/tree/main>
## Results on full libri
I tried 3 different sizes of the encoder. The parameters are around 1M, 2M and 4M, respectively. For CTC decoding, whole-lattice-rescoring frequently causes OOM error so the result is not shown.
### Small encoder
The small encoder uses 10 layers of 1D convolution block with 256 channels, without skip connections. The encoder, decoder and joiner dim is 256. Algorithmic latency is 280ms. Multiply-add ops for the encoder is 22.0Mops. It is more applicable for ASR products with limited vocabulary (like a fixed set of phrases or short sentences).
#### CTC decoding with phone lexicon
Total parameters: 1073392
Parameters for CTC decoding: 865816
| | test-clean | test-other | comment |
|-----------------|------------|------------|----------------------|
| 1best | 9.68 | 24.9 | --epoch 30 --avg 2 |
| nbest-rescoring | 8.2 | 22.7 | --epoch 30 --avg 2 |
The training commands are:
```bash
./tiny_transducer_ctc/train.py \
--num-epochs 30 \
--full-libri 1 \
--max-duration 600 \
--exp-dir tiny_transducer_ctc/exp_small_phone \
--ctc-loss-scale 0.7 \
--enable-spec-aug 0 \
--lang-dir lang_phone \
--encoder-dim 256 \
--decoder-dim 256 \
--joiner-dim 256 \
--conv-layers 10 \
--channels 256 \
--skip-add 0 \
```
#### Transducer decoding with BPE 500 lexicon
Total parameters: 1623264
Parameters for transducer decoding: 1237764
| | test-clean | test-other | comment |
|--------------------|------------|------------|----------------------|
| greedy_search | 14.47 | 32.03 | --epoch 30 --avg 1 |
| fast_beam_search | 13.38 | 29.61 | --epoch 30 --avg 1 |
|modified_beam_search| 13.02 | 29.32 | --epoch 30 --avg 1 |
The training commands are:
```bash
./tiny_transducer_ctc/train.py \
--num-epochs 30 \
--full-libri 1 \
--max-duration 600 \
--exp-dir tiny_transducer_ctc/exp_small_bpe \
--ctc-loss-scale 0.2 \
--enable-spec-aug 0 \
--lang-dir lang_bpe_500 \
--encoder-dim 256 \
--decoder-dim 256 \
--joiner-dim 256 \
--conv-layers 10 \
--channels 256 \
--skip-add 0 \
```
### Middle encoder
The middle encoder uses 18 layers of 1D convolution block with 300 channels, with skip connections. The encoder, decoder and joiner dim is 256. Algorithmic latency is 440ms. Multiply-add ops for the encoder is 50.1Mops. Note that the nbest-rescoring result is better than the tdnn_lstm_ctc recipe with whole-lattice-rescoring.
#### CTC decoding with phone lexicon
Total parameters: 2186242
Parameters for CTC decoding: 1978666
| | test-clean | test-other | comment |
|-----------------|------------|------------|----------------------|
| 1best | 7.48 | 18.94 | --epoch 30 --avg 1 |
| nbest-rescoring | 6.31 | 16.89 | --epoch 30 --avg 1 |
The training commands are:
```bash
./tiny_transducer_ctc/train.py \
--num-epochs 30 \
--full-libri 1 \
--max-duration 600 \
--exp-dir tiny_transducer_ctc/exp_middle_phone \
--ctc-loss-scale 0.7 \
--enable-spec-aug 0 \
--lang-dir lang_phone \
--encoder-dim 256 \
--decoder-dim 256 \
--joiner-dim 256 \
--conv-layers 18 \
--channels 300 \
--skip-add 1 \
```
#### Transducer decoding with BPE 500 lexicon
Total parameters: 2735794
Parameters for transducer decoding: 2350294
| | test-clean | test-other | comment |
|--------------------|------------|------------|----------------------|
| greedy_search | 10.26 | 25.13 | --epoch 30 --avg 2 |
| fast_beam_search | 9.69 | 23.58 | --epoch 30 --avg 2 |
|modified_beam_search| 9.43 | 23.53 | --epoch 30 --avg 2 |
The training commands are:
```bash
./tiny_transducer_ctc/train.py \
--num-epochs 30 \
--full-libri 1 \
--max-duration 600 \
--exp-dir tiny_transducer_ctc/exp_middle_bpe \
--ctc-loss-scale 0.2 \
--enable-spec-aug 0 \
--lang-dir lang_bpe_500 \
--encoder-dim 256 \
--decoder-dim 256 \
--joiner-dim 256 \
--conv-layers 18 \
--channels 300 \
--skip-add 1 \
```
### Large encoder
The large encoder uses 18 layers of 1D convolution block with 400 channels, with skip connections. The encoder, decoder and joiner dim is 400. Algorithmic latency is 440ms. Multiply-add ops for the encoder is 88.8Mops. It is interesting to see how much the gap is if we simply scale down more complicated models like Zipformer or emformer.
#### Transducer decoding with BPE 500 lexicon
Total parameters: 4821330
Parameters for transducer decoding: 4219830
| | test-clean | test-other | comment |
|--------------------|------------|------------|----------------------|
| greedy_search | 8.29 | 21.11 | --epoch 30 --avg 1 |
| fast_beam_search | 7.91 | 20.1 | --epoch 30 --avg 1 |
|modified_beam_search| 7.74 | 19.89 | --epoch 30 --avg 1 |
The training commands are:
```bash
./tiny_transducer_ctc/train.py \
--num-epochs 30 \
--full-libri 1 \
--max-duration 600 \
--exp-dir tiny_transducer_ctc/exp_large_bpe \
--ctc-loss-scale 0.2 \
--enable-spec-aug 1 \
--lang-dir lang_bpe_500 \
--encoder-dim 400 \
--decoder-dim 400 \
--joiner-dim 400 \
--conv-layers 18 \
--channels 400 \
--skip-add 1 \
```

View File

@ -0,0 +1,454 @@
# Copyright 2021 Piotr Żelasko
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import inspect
import logging
from functools import lru_cache
from pathlib import Path
from typing import Any, Dict, Optional
import torch
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
CutConcatenate,
CutMix,
DynamicBucketingSampler,
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SingleCutSampler,
SpecAugment,
)
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
AudioSamples,
OnTheFlyFeatures,
)
from lhotse.utils import fix_random_seed
from torch.utils.data import DataLoader
from icefall.utils import str2bool
class _SeedWorkers:
def __init__(self, seed: int):
self.seed = seed
def __call__(self, worker_id: int):
fix_random_seed(self.seed + worker_id)
class LibriSpeechAsrDataModule:
"""
DataModule for k2 ASR experiments.
It assumes there is always one train and valid dataloader,
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
and test-other).
It contains all the common data pipeline modules used in ASR
experiments, e.g.:
- dynamic batch size,
- bucketing samplers,
- cut concatenation,
- augmentation,
- on-the-fly feature extraction
This class should be derived for specific corpora used in ASR tasks.
"""
def __init__(self, args: argparse.Namespace):
self.args = args
@classmethod
def add_arguments(cls, parser: argparse.ArgumentParser):
group = parser.add_argument_group(
title="ASR data related options",
description="These options are used for the preparation of "
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
"effective batch sizes, sampling strategies, applied data "
"augmentations, etc.",
)
group.add_argument(
"--full-libri",
type=str2bool,
default=True,
help="When enabled, use 960h LibriSpeech. Otherwise, use 100h subset.",
)
group.add_argument(
"--manifest-dir",
type=Path,
default=Path("data/fbank"),
help="Path to directory with train/valid/test cuts.",
)
group.add_argument(
"--max-duration",
type=int,
default=200.0,
help="Maximum pooled recordings duration (seconds) in a "
"single batch. You can reduce it if it causes CUDA OOM.",
)
group.add_argument(
"--bucketing-sampler",
type=str2bool,
default=True,
help="When enabled, the batches will come from buckets of "
"similar duration (saves padding frames).",
)
group.add_argument(
"--num-buckets",
type=int,
default=30,
help="The number of buckets for the DynamicBucketingSampler"
"(you might want to increase it for larger datasets).",
)
group.add_argument(
"--concatenate-cuts",
type=str2bool,
default=False,
help="When enabled, utterances (cuts) will be concatenated "
"to minimize the amount of padding.",
)
group.add_argument(
"--duration-factor",
type=float,
default=1.0,
help="Determines the maximum duration of a concatenated cut "
"relative to the duration of the longest cut in a batch.",
)
group.add_argument(
"--gap",
type=float,
default=1.0,
help="The amount of padding (in seconds) inserted between "
"concatenated cuts. This padding is filled with noise when "
"noise augmentation is used.",
)
group.add_argument(
"--on-the-fly-feats",
type=str2bool,
default=False,
help="When enabled, use on-the-fly cut mixing and feature "
"extraction. Will drop existing precomputed feature manifests "
"if available.",
)
group.add_argument(
"--shuffle",
type=str2bool,
default=True,
help="When enabled (=default), the examples will be "
"shuffled for each epoch.",
)
group.add_argument(
"--drop-last",
type=str2bool,
default=True,
help="Whether to drop last batch. Used by sampler.",
)
group.add_argument(
"--return-cuts",
type=str2bool,
default=True,
help="When enabled, each batch will have the "
"field: batch['supervisions']['cut'] with the cuts that "
"were used to construct it.",
)
group.add_argument(
"--num-workers",
type=int,
default=2,
help="The number of training dataloader workers that "
"collect the batches.",
)
group.add_argument(
"--enable-spec-aug",
type=str2bool,
default=False,
help="When enabled, use SpecAugment for training dataset.",
)
group.add_argument(
"--spec-aug-time-warp-factor",
type=int,
default=0,
help="Used only when --enable-spec-aug is True. "
"It specifies the factor for time warping in SpecAugment. "
"Larger values mean more warping. "
"A value less than 1 means to disable time warp.",
)
group.add_argument(
"--enable-musan",
type=str2bool,
default=True,
help="When enabled, select noise from MUSAN and mix it"
"with training dataset. ",
)
group.add_argument(
"--input-strategy",
type=str,
default="PrecomputedFeatures",
help="AudioSamples or PrecomputedFeatures",
)
def train_dataloaders(
self,
cuts_train: CutSet,
sampler_state_dict: Optional[Dict[str, Any]] = None,
) -> DataLoader:
"""
Args:
cuts_train:
CutSet for training.
sampler_state_dict:
The state dict for the training sampler.
"""
transforms = []
if self.args.enable_musan:
logging.info("Enable MUSAN")
logging.info("About to get Musan cuts")
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
transforms.append(
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
)
else:
logging.info("Disable MUSAN")
if self.args.concatenate_cuts:
logging.info(
f"Using cut concatenation with duration factor "
f"{self.args.duration_factor} and gap {self.args.gap}."
)
# Cut concatenation should be the first transform in the list,
# so that if we e.g. mix noise in, it will fill the gaps between
# different utterances.
transforms = [
CutConcatenate(
duration_factor=self.args.duration_factor, gap=self.args.gap
)
] + transforms
input_transforms = []
if self.args.enable_spec_aug:
logging.info("Enable SpecAugment")
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
# Set the value of num_frame_masks according to Lhotse's version.
# In different Lhotse's versions, the default of num_frame_masks is
# different.
num_frame_masks = 10
num_frame_masks_parameter = inspect.signature(
SpecAugment.__init__
).parameters["num_frame_masks"]
if num_frame_masks_parameter.default == 1:
num_frame_masks = 2
logging.info(f"Num frame mask: {num_frame_masks}")
input_transforms.append(
SpecAugment(
time_warp_factor=self.args.spec_aug_time_warp_factor,
num_feature_masks=2,
features_mask_size=5,
num_frame_masks=10,
frames_mask_size=5,
p=0.5,
)
)
else:
logging.info("Disable SpecAugment")
logging.info("About to create train dataset")
train = K2SpeechRecognitionDataset(
input_strategy=eval(self.args.input_strategy)(),
cut_transforms=transforms,
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
)
if self.args.on_the_fly_feats:
# NOTE: the PerturbSpeed transform should be added only if we
# remove it from data prep stage.
# Add on-the-fly speed perturbation; since originally it would
# have increased epoch size by 3, we will apply prob 2/3 and use
# 3x more epochs.
# Speed perturbation probably should come first before
# concatenation, but in principle the transforms order doesn't have
# to be strict (e.g. could be randomized)
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
# Drop feats to be on the safe side.
train = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
)
if self.args.bucketing_sampler:
logging.info("Using DynamicBucketingSampler.")
train_sampler = DynamicBucketingSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
num_buckets=self.args.num_buckets,
drop_last=self.args.drop_last,
)
else:
logging.info("Using SingleCutSampler.")
train_sampler = SingleCutSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
)
logging.info("About to create train dataloader")
if sampler_state_dict is not None:
logging.info("Loading sampler state dict")
train_sampler.load_state_dict(sampler_state_dict)
# 'seed' is derived from the current random state, which will have
# previously been set in the main process.
seed = torch.randint(0, 100000, ()).item()
worker_init_fn = _SeedWorkers(seed)
train_dl = DataLoader(
train,
sampler=train_sampler,
batch_size=None,
num_workers=self.args.num_workers,
persistent_workers=False,
worker_init_fn=worker_init_fn,
)
return train_dl
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
transforms = []
if self.args.concatenate_cuts:
transforms = [
CutConcatenate(
duration_factor=self.args.duration_factor, gap=self.args.gap
)
] + transforms
logging.info("About to create dev dataset")
if self.args.on_the_fly_feats:
validate = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
return_cuts=self.args.return_cuts,
)
else:
validate = K2SpeechRecognitionDataset(
cut_transforms=transforms,
return_cuts=self.args.return_cuts,
)
valid_sampler = DynamicBucketingSampler(
cuts_valid,
max_duration=self.args.max_duration,
shuffle=False,
)
logging.info("About to create dev dataloader")
valid_dl = DataLoader(
validate,
sampler=valid_sampler,
batch_size=None,
num_workers=2,
persistent_workers=False,
)
return valid_dl
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
logging.debug("About to create test dataset")
test = K2SpeechRecognitionDataset(
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
if self.args.on_the_fly_feats
else eval(self.args.input_strategy)(),
return_cuts=self.args.return_cuts,
)
sampler = DynamicBucketingSampler(
cuts,
max_duration=self.args.max_duration,
shuffle=False,
)
logging.debug("About to create test dataloader")
test_dl = DataLoader(
test,
batch_size=None,
sampler=sampler,
num_workers=self.args.num_workers,
)
return test_dl
@lru_cache()
def train_clean_100_cuts(self) -> CutSet:
logging.info("About to get train-clean-100 cuts")
return load_manifest_lazy(
self.args.manifest_dir / "librispeech_cuts_train-clean-100.jsonl.gz"
)
@lru_cache()
def train_clean_360_cuts(self) -> CutSet:
logging.info("About to get train-clean-360 cuts")
return load_manifest_lazy(
self.args.manifest_dir / "librispeech_cuts_train-clean-360.jsonl.gz"
)
@lru_cache()
def train_other_500_cuts(self) -> CutSet:
logging.info("About to get train-other-500 cuts")
return load_manifest_lazy(
self.args.manifest_dir / "librispeech_cuts_train-other-500.jsonl.gz"
)
@lru_cache()
def train_all_shuf_cuts(self) -> CutSet:
logging.info(
"About to get the shuffled train-clean-100, \
train-clean-360 and train-other-500 cuts"
)
return load_manifest_lazy(
self.args.manifest_dir / "librispeech_cuts_train-all-shuf.jsonl.gz"
)
@lru_cache()
def dev_clean_cuts(self) -> CutSet:
logging.info("About to get dev-clean cuts")
return load_manifest_lazy(
self.args.manifest_dir / "librispeech_cuts_dev-clean.jsonl.gz"
)
@lru_cache()
def dev_other_cuts(self) -> CutSet:
logging.info("About to get dev-other cuts")
return load_manifest_lazy(
self.args.manifest_dir / "librispeech_cuts_dev-other.jsonl.gz"
)
@lru_cache()
def test_clean_cuts(self) -> CutSet:
logging.info("About to get test-clean cuts")
return load_manifest_lazy(
self.args.manifest_dir / "librispeech_cuts_test-clean.jsonl.gz"
)
@lru_cache()
def test_other_cuts(self) -> CutSet:
logging.info("About to get test-other cuts")
return load_manifest_lazy(
self.args.manifest_dir / "librispeech_cuts_test-other.jsonl.gz"
)

View File

@ -0,0 +1 @@
../pruned_transducer_stateless2/beam_search.py

View File

@ -0,0 +1,770 @@
#!/usr/bin/env python3
#
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
# Liyong Guo,
# Quandong Wang,
# Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import math
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import pprint
import k2
import sentencepiece as spm
import torch
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from train import add_model_arguments, get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.decode import (
get_lattice,
nbest_decoding,
nbest_oracle,
one_best_decoding,
rescore_with_n_best_list,
rescore_with_whole_lattice,
)
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
get_texts,
setup_logger,
store_transcripts,
str2bool,
write_error_stats,
)
LOG_EPS = math.log(1e-10)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--exp-dir",
type=str,
default="tiny_transducer_ctc/exp",
help="The experiment dir",
)
parser.add_argument(
"--epoch",
type=int,
default=30,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=1,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--lang-dir",
type=Path,
default="data/lang_phone",
help="The lang dir containing word table and LG graph",
)
parser.add_argument(
"--decoding-method",
type=str,
default="1best",
help="""Decoding method.
Supported values are:
- (1) ctc-decoding. Use CTC decoding. It uses a sentence piece
model, i.e., lang_dir/bpe.model, to convert word pieces to words.
It needs neither a lexicon nor an n-gram LM.
- (2) 1best. Extract the best path from the decoding lattice as the
decoding result.
- (3) nbest. Extract n paths from the decoding lattice; the path
with the highest score is the decoding result.
- (4) nbest-rescoring. Extract n paths from the decoding lattice,
rescore them with an n-gram LM (e.g., a 4-gram LM), the path with
the highest score is the decoding result.
- (5) whole-lattice-rescoring. Rescore the decoding lattice with an
n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice
is the decoding result.
you have trained an RNN LM using ./rnn_lm/train.py
- (6) nbest-oracle. Its WER is the lower bound of any n-best
rescoring method can achieve. Useful for debugging n-best
rescoring method.
""",
)
parser.add_argument(
"--num-paths",
type=int,
default=100,
help="""Number of paths for n-best based decoding method.
Used only when "method" is one of the following values:
nbest, nbest-rescoring, and nbest-oracle
""",
)
parser.add_argument(
"--nbest-scale",
type=float,
default=1.0,
help="""The scale to be applied to `lattice.scores`.
It's needed if you use any kinds of n-best based rescoring.
Used only when "method" is one of the following values:
nbest, nbest-rescoring, and nbest-oracle
A smaller value results in more unique paths.
""",
)
parser.add_argument(
"--hlg-scale",
type=float,
default=0.7,
help="""The scale to be applied to `hlg.scores`.
""",
)
parser.add_argument(
"--lm-dir",
type=str,
default="data/lm",
help="""The n-gram LM dir.
It should contain either G_4_gram.pt or G_4_gram.fst.txt
""",
)
add_model_arguments(parser)
return parser
def get_decoding_params() -> AttributeDict:
"""Parameters for decoding."""
params = AttributeDict(
{
"search_beam": 20,
"output_beam": 8,
"min_active_states": 30,
"max_active_states": 10000,
"use_double_scores": True,
"context_size": 2,
}
)
return params
def decode_one_batch(
params: AttributeDict,
model: nn.Module,
HLG: Optional[k2.Fsa],
H: Optional[k2.Fsa],
bpe_model: Optional[spm.SentencePieceProcessor],
batch: dict,
word_table: k2.SymbolTable,
G: Optional[k2.Fsa] = None,
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
- key: It indicates the setting used for decoding. For example,
if no rescoring is used, the key is the string `no_rescore`.
If LM rescoring is used, the key is the string `lm_scale_xxx`,
where `xxx` is the value of `lm_scale`. An example key is
`lm_scale_0.7`
- value: It contains the decoding result. `len(value)` equals to
batch size. `value[i]` is the decoding result for the i-th
utterance in the given batch.
Args:
params:
It's the return value of :func:`get_params`.
- params.decoding_method is "1best", it uses 1best decoding without LM rescoring.
- params.decoding_method is "nbest", it uses nbest decoding without LM rescoring.
- params.decoding_method is "nbest-rescoring", it uses nbest LM rescoring.
- params.decoding_method is "whole-lattice-rescoring", it uses whole lattice LM
rescoring.
model:
The neural model.
HLG:
The decoding graph. Used only when params.decoding_method is NOT ctc-decoding.
H:
The ctc topo. Used only when params.decoding_method is ctc-decoding.
bpe_model:
The BPE model. Used only when params.decoding_method is ctc-decoding.
batch:
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
for the format of the `batch`.
word_table:
The word symbol table.
G:
An LM. It is not None when params.decoding_method is "nbest-rescoring"
or "whole-lattice-rescoring". In general, the G in HLG
is a 3-gram LM, while this G is a 4-gram LM.
Returns:
Return the decoding result. See above description for the format of
the returned dict. Note: If it decodes to nothing, then return None.
"""
if HLG is not None:
device = HLG.device
else:
device = H.device
feature = batch["inputs"]
assert feature.ndim == 3
feature = feature.to(device)
# at entry, feature is (N, T, C)
supervisions = batch["supervisions"]
feature_lens = supervisions["num_frames"].to(device)
encoder_out, _ = model.encoder(feature, feature_lens)
nnet_output = model.ctc_output(encoder_out)
# nnet_output is (N, T, C)
supervision_segments = torch.stack(
(
supervisions["sequence_idx"],
torch.div(
supervisions["start_frame"],
params.subsampling_factor,
rounding_mode="trunc",
),
torch.div(
supervisions["num_frames"],
params.subsampling_factor,
rounding_mode="trunc",
),
),
1,
).to(torch.int32)
if H is None:
assert HLG is not None
decoding_graph = HLG
else:
assert HLG is None
assert bpe_model is not None
decoding_graph = H
lattice = get_lattice(
nnet_output=nnet_output,
decoding_graph=decoding_graph,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,
min_active_states=params.min_active_states,
max_active_states=params.max_active_states,
subsampling_factor=params.subsampling_factor,
)
if params.decoding_method == "ctc-decoding":
best_path = one_best_decoding(
lattice=lattice, use_double_scores=params.use_double_scores
)
# Note: `best_path.aux_labels` contains token IDs, not word IDs
# since we are using H, not HLG here.
#
# token_ids is a lit-of-list of IDs
token_ids = get_texts(best_path)
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
hyps = bpe_model.decode(token_ids)
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
hyps = [s.split() for s in hyps]
key = "ctc-decoding"
return {key: hyps}
if params.decoding_method == "nbest-oracle":
# Note: You can also pass rescored lattices to it.
# We choose the HLG decoded lattice for speed reasons
# as HLG decoding is faster and the oracle WER
# is only slightly worse than that of rescored lattices.
best_path = nbest_oracle(
lattice=lattice,
num_paths=params.num_paths,
ref_texts=supervisions["text"],
word_table=word_table,
nbest_scale=params.nbest_scale,
oov="<UNK>",
)
hyps = get_texts(best_path)
hyps = [[word_table[i] for i in ids] for ids in hyps]
key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}" # noqa
return {key: hyps}
if params.decoding_method in ["1best", "nbest"]:
if params.decoding_method == "1best":
best_path = one_best_decoding(
lattice=lattice, use_double_scores=params.use_double_scores
)
key = "no_rescore"
else:
best_path = nbest_decoding(
lattice=lattice,
num_paths=params.num_paths,
use_double_scores=params.use_double_scores,
nbest_scale=params.nbest_scale,
)
key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}" # noqa
hyps = get_texts(best_path)
hyps = [[word_table[i] for i in ids] for ids in hyps]
return {key: hyps}
assert params.decoding_method in [
"nbest-rescoring",
"whole-lattice-rescoring",
]
# lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
# lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
# lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
lm_scale_list = [0.6, 0.7, 0.8, 0.9]
if params.decoding_method == "nbest-rescoring":
best_path_dict = rescore_with_n_best_list(
lattice=lattice,
G=G,
num_paths=params.num_paths,
lm_scale_list=lm_scale_list,
nbest_scale=params.nbest_scale,
)
elif params.decoding_method == "whole-lattice-rescoring":
best_path_dict = rescore_with_whole_lattice(
lattice=lattice,
G_with_epsilon_loops=G,
lm_scale_list=lm_scale_list,
)
else:
assert False, f"Unsupported decoding method: {params.decoding_method}"
ans = dict()
if best_path_dict is not None:
for lm_scale_str, best_path in best_path_dict.items():
hyps = get_texts(best_path)
hyps = [[word_table[i] for i in ids] for ids in hyps]
ans[lm_scale_str] = hyps
else:
ans = None
return ans
def decode_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
HLG: Optional[k2.Fsa],
H: Optional[k2.Fsa],
bpe_model: Optional[spm.SentencePieceProcessor],
word_table: k2.SymbolTable,
G: Optional[k2.Fsa] = None,
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
"""Decode dataset.
Args:
dl:
PyTorch's dataloader containing the dataset to decode.
params:
It is returned by :func:`get_params`.
model:
The neural model.
HLG:
The decoding graph. Used only when params.decoding_method is NOT ctc-decoding.
H:
The ctc topo. Used only when params.decoding_method is ctc-decoding.
bpe_model:
The BPE model. Used only when params.decoding_method is ctc-decoding.
word_table:
It is the word symbol table.
G:
An LM. It is not None when params.decoding_method is "nbest-rescoring"
or "whole-lattice-rescoring". In general, the G in HLG
is a 3-gram LM, while this G is a 4-gram LM.
Returns:
Return a dict, whose key may be "no-rescore" if no LM rescoring
is used, or it may be "lm_scale_0.7" if LM rescoring is used.
Its value is a list of tuples. Each tuple contains two elements:
The first is the reference transcript, and the second is the
predicted result.
"""
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):
texts = batch["supervisions"]["text"]
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
hyps_dict = decode_one_batch(
params=params,
model=model,
HLG=HLG,
H=H,
bpe_model=bpe_model,
batch=batch,
word_table=word_table,
G=G,
)
for name, hyps in hyps_dict.items():
this_batch = []
assert len(hyps) == len(texts)
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
ref_words = ref_text.split()
this_batch.append((cut_id, ref_words, hyp_words))
results[name].extend(this_batch)
num_cuts += len(texts)
if batch_idx % 100 == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
return results
def save_results(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
):
test_set_wers = dict()
for key, results in results_dict.items():
recog_path = (
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results)
store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs.
errs_filename = (
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f:
wer = write_error_stats(f, f"{test_set_name}-{key}", results)
test_set_wers[key] = wer
logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = params.res_dir / f"{wer}-{test_set_name}-{key}-{params.suffix}.txt"
with open(errs_info, "w") as f:
print("settings\tWER", file=f)
for key, val in test_set_wers:
print("{}\t{}".format(key, val), file=f)
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
note = "\tbest for {}".format(test_set_name)
for key, val in test_set_wers:
s += "{}\t{}{}\n".format(key, val, note)
note = ""
logging.info(s)
@torch.no_grad()
def main():
parser = get_parser()
LibriSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
args.lang_dir = Path(args.lang_dir)
args.lm_dir = Path(args.lm_dir)
params = get_params()
# add decoding params
params.update(get_decoding_params())
params.update(vars(args))
assert params.decoding_method in (
"ctc-decoding",
"1best",
"nbest",
"nbest-rescoring",
"whole-lattice-rescoring",
"nbest-oracle",
)
params.res_dir = params.exp_dir / params.decoding_method
if params.iter > 0:
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
else:
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
params.suffix += f"-hlg-scale-{params.hlg_scale}"
if params.use_averaged_model:
params.suffix += "-uam"
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
logging.info("Decoding started")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
logging.info(pprint.pformat(params, indent=2))
lexicon = Lexicon(params.lang_dir)
max_token_id = max(lexicon.tokens)
num_classes = max_token_id + 1 # +1 for the blank
params.vocab_size = num_classes
# <blk> and <unk> are defined in local/train_bpe_model.py
params.blank_id = 0
if params.decoding_method == "ctc-decoding":
assert "lang_bpe" in str(
params.lang_dir
), "ctc-decoding only supports BPE lexicons."
HLG = None
H = k2.ctc_topo(
max_token=max_token_id,
modified=False,
device=device,
)
bpe_model = spm.SentencePieceProcessor()
bpe_model.load(str(params.lang_dir / "bpe.model"))
else:
H = None
bpe_model = None
HLG = k2.Fsa.from_dict(
torch.load(f"{params.lang_dir}/HLG.pt", map_location=device)
)
assert HLG.requires_grad is False
HLG.scores *= params.hlg_scale
if not hasattr(HLG, "lm_scores"):
HLG.lm_scores = HLG.scores.clone()
if params.decoding_method in (
"nbest-rescoring",
"whole-lattice-rescoring",
):
if not (params.lm_dir / "G_4_gram.pt").is_file():
logging.info("Loading G_4_gram.fst.txt")
logging.warning("It may take 8 minutes.")
with open(params.lm_dir / "G_4_gram.fst.txt") as f:
first_word_disambig_id = lexicon.word_table["#0"]
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
# G.aux_labels is not needed in later computations, so
# remove it here.
del G.aux_labels
# CAUTION: The following line is crucial.
# Arcs entering the back-off state have label equal to #0.
# We have to change it to 0 here.
G.labels[G.labels >= first_word_disambig_id] = 0
# See https://github.com/k2-fsa/k2/issues/874
# for why we need to set G.properties to None
G.__dict__["_properties"] = None
G = k2.Fsa.from_fsas([G]).to(device)
G = k2.arc_sort(G)
# Save a dummy value so that it can be loaded in C++.
# See https://github.com/pytorch/pytorch/issues/67902
# for why we need to do this.
G.dummy = 1
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
else:
logging.info("Loading pre-compiled G_4_gram.pt")
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location=device)
G = k2.Fsa.from_dict(d)
if params.decoding_method == "whole-lattice-rescoring":
# Add epsilon self-loops to G as we will compose
# it with the whole lattice later
G = k2.add_epsilon_self_loops(G)
G = k2.arc_sort(G)
G = G.to(device)
# G.lm_scores is used to replace HLG.lm_scores during
# LM rescoring.
G.lm_scores = G.scores.clone()
else:
G = None
logging.info("About to create model")
model = get_transducer_model(params)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to(device)
model.eval()
num_param = sum([p.numel() for p in model.parameters()])
enc_param = sum([p.numel() for p in model.encoder.parameters()])
ctc_param = sum([p.numel() for p in model.ctc_output.parameters()])
logging.info(f"Number of model parameters: {num_param}")
logging.info(f"Parameters for CTC decoding: {enc_param + ctc_param}")
# we need cut ids to display recognition results.
args.return_cuts = True
librispeech = LibriSpeechAsrDataModule(args)
test_clean_cuts = librispeech.test_clean_cuts()
test_other_cuts = librispeech.test_other_cuts()
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
test_sets = ["test-clean", "test-other"]
test_dl = [test_clean_dl, test_other_dl]
for test_set, test_dl in zip(test_sets, test_dl):
results_dict = decode_dataset(
dl=test_dl,
params=params,
model=model,
HLG=HLG,
H=H,
bpe_model=bpe_model,
word_table=lexicon.word_table,
G=G,
)
save_results(
params=params,
test_set_name=test_set,
results_dict=results_dict,
)
logging.info("Done!")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,717 @@
import argparse
import logging
import math
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import pprint
import k2
import sentencepiece as spm
import torch
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from beam_search import (
beam_search,
fast_beam_search_nbest,
fast_beam_search_nbest_LG,
fast_beam_search_nbest_oracle,
fast_beam_search_one_best,
greedy_search,
greedy_search_batch,
modified_beam_search,
)
from train import add_model_arguments, get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
setup_logger,
store_transcripts,
str2bool,
write_error_stats,
)
LOG_EPS = math.log(1e-10)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--exp-dir",
type=str,
default="tiny_transducer_ctc/exp",
help="The experiment dir",
)
parser.add_argument(
"--epoch",
type=int,
default=30,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=1,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--lang-dir",
type=Path,
default="data/lang_bpe_500",
help="The lang dir containing word table and LG graph",
)
parser.add_argument(
"--decoding-method",
type=str,
default="fast_beam_search",
help="""Possible values are:
- greedy_search
- beam_search
- modified_beam_search
- fast_beam_search
- fast_beam_search_LG
- fast_beam_search_nbest
- fast_beam_search_nbest_oracle
- fast_beam_search_nbest_LG
""",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
help="""An integer indicating how many candidates we will keep for each
frame. Used only when --decoding-method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=20.0,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --decoding-method is fast_beam_search, fast_beam_search_LG,
fast_beam_search_nbest, fast_beam_search_nbest_LG,
and fast_beam_search_nbest_oracle
""",
)
parser.add_argument(
"--ngram-lm-scale",
type=float,
default=0.1,
help="""
Used only when --decoding_method is fast_beam_search_LG or
fast_beam_search_nbest_LG.
It specifies the scale for n-gram LM scores.
""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=8,
help="""Used only when --decoding-method is
fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest,
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--max-states",
type=int,
default=64,
help="""Used only when --decoding-method is
fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest,
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; " "2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
default=1,
help="""Maximum number of symbols per frame.
Used only when --decoding_method is greedy_search""",
)
parser.add_argument(
"--num-paths",
type=int,
default=100,
help="""Number of paths for nbest decoding.
Used only when the decoding method is fast_beam_search_nbest,
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--nbest-scale",
type=float,
default=0.5,
help="""Scale applied to lattice scores when computing nbest paths.
Used only when the decoding method is fast_beam_search_nbest,
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
)
add_model_arguments(parser)
return parser
def decode_one_batch(
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
batch: dict,
word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
- key: It indicates the setting used for decoding. For example,
if greedy_search is used, it would be "greedy_search"
If beam search with a beam size of 7 is used, it would be
"beam_7"
- value: It contains the decoding result. `len(value)` equals to
batch size. `value[i]` is the decoding result for the i-th
utterance in the given batch.
Args:
params:
It's the return value of :func:`get_params`.
model:
The neural model.
sp:
The BPE model.
batch:
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
for the format of the `batch`.
word_table:
The word symbol table.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search, fast_beam_search_LG,
fast_beam_search_nbest,
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
Returns:
Return the decoding result. See above description for the format of
the returned dict.
"""
device = next(model.parameters()).device
feature = batch["inputs"]
assert feature.ndim == 3
feature = feature.to(device)
# at entry, feature is (N, T, C)
supervisions = batch["supervisions"]
feature_lens = supervisions["num_frames"].to(device)
encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
hyps = []
if (
params.decoding_method == "fast_beam_search"
or params.decoding_method == "fast_beam_search_LG"
):
hyp_tokens = fast_beam_search_one_best(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
)
if params.decoding_method == "fast_beam_search":
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
else:
for hyp in hyp_tokens:
hyps.append([word_table[i] for i in hyp])
elif params.decoding_method == "fast_beam_search_nbest_LG":
hyp_tokens = fast_beam_search_nbest_LG(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
num_paths=params.num_paths,
nbest_scale=params.nbest_scale,
)
for hyp in hyp_tokens:
hyps.append([word_table[i] for i in hyp])
elif params.decoding_method == "fast_beam_search_nbest":
hyp_tokens = fast_beam_search_nbest(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
num_paths=params.num_paths,
nbest_scale=params.nbest_scale,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "fast_beam_search_nbest_oracle":
hyp_tokens = fast_beam_search_nbest_oracle(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
num_paths=params.num_paths,
ref_texts=sp.encode(supervisions["text"]),
nbest_scale=params.nbest_scale,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
hyp_tokens = greedy_search_batch(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "modified_beam_search":
hyp_tokens = modified_beam_search(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
else:
batch_size = encoder_out.size(0)
for i in range(batch_size):
# fmt: off
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
# fmt: on
if params.decoding_method == "greedy_search":
hyp = greedy_search(
model=model,
encoder_out=encoder_out_i,
max_sym_per_frame=params.max_sym_per_frame,
)
elif params.decoding_method == "beam_search":
hyp = beam_search(
model=model,
encoder_out=encoder_out_i,
beam=params.beam_size,
)
else:
raise ValueError(
f"Unsupported decoding method: {params.decoding_method}"
)
hyps.append(sp.decode(hyp).split())
if params.decoding_method == "greedy_search":
return {"greedy_search": hyps}
elif "fast_beam_search" in params.decoding_method:
key = f"beam_{params.beam}_"
key += f"max_contexts_{params.max_contexts}_"
key += f"max_states_{params.max_states}"
if "nbest" in params.decoding_method:
key += f"_num_paths_{params.num_paths}_"
key += f"nbest_scale_{params.nbest_scale}"
if "LG" in params.decoding_method:
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
return {key: hyps}
else:
return {f"beam_size_{params.beam_size}": hyps}
def decode_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
"""Decode dataset.
Args:
dl:
PyTorch's dataloader containing the dataset to decode.
params:
It is returned by :func:`get_params`.
model:
The neural model.
sp:
The BPE model.
word_table:
The word symbol table.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
Returns:
Return a dict, whose key may be "greedy_search" if greedy search
is used, or it may be "beam_7" if beam size of 7 is used.
Its value is a list of tuples. Each tuple contains two elements:
The first is the reference transcript, and the second is the
predicted result.
"""
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
if params.decoding_method == "greedy_search":
log_interval = 50
else:
log_interval = 20
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):
texts = batch["supervisions"]["text"]
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
hyps_dict = decode_one_batch(
params=params,
model=model,
sp=sp,
decoding_graph=decoding_graph,
word_table=word_table,
batch=batch,
)
for name, hyps in hyps_dict.items():
this_batch = []
assert len(hyps) == len(texts)
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
ref_words = ref_text.split()
this_batch.append((cut_id, ref_words, hyp_words))
results[name].extend(this_batch)
num_cuts += len(texts)
if batch_idx % log_interval == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
return results
def save_results(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
):
test_set_wers = dict()
for key, results in results_dict.items():
recog_path = (
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results)
store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs.
errs_filename = (
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f:
wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True
)
test_set_wers[key] = wer
logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = params.res_dir / f"{wer}-{test_set_name}-{key}-{params.suffix}.txt"
with open(errs_info, "w") as f:
print("settings\tWER", file=f)
for key, val in test_set_wers:
print("{}\t{}".format(key, val), file=f)
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
note = "\tbest for {}".format(test_set_name)
for key, val in test_set_wers:
s += "{}\t{}{}\n".format(key, val, note)
note = ""
logging.info(s)
@torch.no_grad()
def main():
parser = get_parser()
LibriSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
assert params.decoding_method in (
"greedy_search",
"beam_search",
"fast_beam_search",
"fast_beam_search_LG",
"fast_beam_search_nbest",
"fast_beam_search_nbest_LG",
"fast_beam_search_nbest_oracle",
"modified_beam_search",
)
if "lang_phone" in str(params.lang_dir):
assert params.decoding_method in (
"fast_beam_search_LG",
"fast_beam_search_nbest_LG",
), "For phone lexicon, use a decoding method with LG."
params.res_dir = params.exp_dir / params.decoding_method
if params.iter > 0:
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
else:
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
if "fast_beam_search" in params.decoding_method:
params.suffix += f"-beam-{params.beam}"
params.suffix += f"-max-contexts-{params.max_contexts}"
params.suffix += f"-max-states-{params.max_states}"
if "nbest" in params.decoding_method:
params.suffix += f"-nbest-scale-{params.nbest_scale}"
params.suffix += f"-num-paths-{params.num_paths}"
if "LG" in params.decoding_method:
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
elif "beam_search" in params.decoding_method:
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
else:
params.suffix += f"-context-{params.context_size}"
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
if params.use_averaged_model:
params.suffix += "-uam"
setup_logger(f"{params.res_dir}/log-{params.suffix}")
logging.info("Decoding started")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
lexicon = Lexicon(params.lang_dir)
if "lang_bpe" in str(params.lang_dir):
sp = spm.SentencePieceProcessor()
sp.load(str(params.lang_dir / "bpe.model"))
# <blk> and <unk> are defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.piece_to_id("<unk>")
params.vocab_size = sp.get_piece_size()
else:
params.blank_id = lexicon.token_table.get("<eps>")
params.unk_id = lexicon.token_table.get("SPN")
params.vocab_size = max(lexicon.tokens) + 1
sp = None
logging.info(pprint.pformat(params, indent=2))
logging.info("About to create model")
model = get_transducer_model(params)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to(device)
model.eval()
if "fast_beam_search" in params.decoding_method:
if "LG" in params.decoding_method:
word_table = lexicon.word_table
lg_filename = params.lang_dir / "LG.pt"
logging.info(f"Loading {lg_filename}")
decoding_graph = k2.Fsa.from_dict(
torch.load(lg_filename, map_location=device)
)
decoding_graph.scores *= params.ngram_lm_scale
else:
word_table = None
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
else:
decoding_graph = None
word_table = None
num_param = sum([p.numel() for p in model.parameters()])
enc_param = sum([p.numel() for p in model.encoder.parameters()])
dec_param = sum([p.numel() for p in model.decoder.parameters()])
join_param = sum([p.numel() for p in model.joiner.parameters()])
logging.info(f"Number of model parameters: {num_param}")
logging.info(
f"Parameters for transducer decoding: {enc_param + dec_param + join_param}"
)
# we need cut ids to display recognition results.
args.return_cuts = True
librispeech = LibriSpeechAsrDataModule(args)
test_clean_cuts = librispeech.test_clean_cuts()
test_other_cuts = librispeech.test_other_cuts()
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
test_sets = ["test-clean", "test-other"]
test_dl = [test_clean_dl, test_other_dl]
for test_set, test_dl in zip(test_sets, test_dl):
results_dict = decode_dataset(
dl=test_dl,
params=params,
model=model,
sp=sp,
word_table=word_table,
decoding_graph=decoding_graph,
)
save_results(
params=params,
test_set_name=test_set,
results_dict=results_dict,
)
logging.info("Done!")
if __name__ == "__main__":
main()

View File

@ -0,0 +1 @@
../pruned_transducer_stateless7/decoder.py

View File

@ -0,0 +1,379 @@
#!/usr/bin/env python3
# Copyright (c) 2022 Spacetouch Inc. (author: Tiance Wang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple
import torch
import torch.nn.functional as F
from encoder_interface import EncoderInterface
from scaling import ActivationBalancer, DoubleSwish
from torch import Tensor, nn
class Conv1dNet(EncoderInterface):
"""
1D Convolution network with causal squeeze and excitation
module and optional skip connections.
Latency: 80ms + (conv_layers+1) // 2 * 40ms, assuming 10ms stride.
Args:
output_dim (int): Number of output channels of the last layer.
input_dim (int): Number of input features
conv_layers (int): Number of convolution layers,
excluding the subsampling layers.
channels (int): Number of output channels for each layer,
except the last layer.
subsampling_factor (int): The subsampling factor for the model.
skip_add (bool): Whether to use skip connection for each convolution layer.
dscnn (bool): Whether to use depthwise-separated convolution.
activation (str): Activation function type.
"""
def __init__(
self,
output_dim: int,
input_dim: int = 80,
conv_layers: int = 10,
channels: int = 256,
subsampling_factor: int = 4,
skip_add: bool = False,
dscnn: bool = True,
activation: str = "relu",
) -> None:
super().__init__()
assert subsampling_factor == 4, "Only support subsampling = 4"
self.conv_layers = conv_layers
self.skip_add = skip_add
# 80ms latency for subsample_layer
self.subsample_layer = nn.Sequential(
conv1d_bn_block(
input_dim, channels, 9, stride=2, activation=activation, dscnn=dscnn
),
conv1d_bn_block(
channels, channels, 5, stride=2, activation=activation, dscnn=dscnn
),
)
self.conv_blocks = nn.ModuleList()
cin = [channels] * conv_layers
cout = [channels] * (conv_layers - 1) + [output_dim]
# Use causal and standard convolution alternatively
for ly in range(conv_layers):
self.conv_blocks.append(
nn.Sequential(
conv1d_bn_block(
cin[ly],
cout[ly],
3,
activation=activation,
dscnn=dscnn,
causal=ly % 2,
),
CausalSqueezeExcite1d(cout[ly], 16, 30),
)
)
def forward(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
x:
The input tensor. Its shape is (batch_size, seq_len, feature_dim).
x_lens:
A tensor of shape (batch_size,) containing the number of frames in
`x` before padding.
Returns:
Return a tuple containing 2 tensors:
- embeddings: its shape is (batch_size, output_seq_len, encoder_dims)
- lengths, a tensor of shape (batch_size,) containing the number
of frames in `embeddings` before padding.
"""
x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T)
x = self.subsample_layer(x)
for idx, layer in enumerate(self.conv_blocks):
if self.skip_add and 0 < idx < self.conv_layers - 1:
x = layer(x) + x
else:
x = layer(x)
x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C)
lengths = x_lens >> 2
return x, lengths
def get_activation(
name: str,
channels: int,
channel_dim: int = -1,
min_val: int = 0,
max_val: int = 1,
) -> nn.Module:
"""
Get activation function from name in string.
Args:
name: activation function name
channels: only used for PReLU, should be equal to x.shape[1].
channel_dim: the axis/dimension corresponding to the channel,
interprted as an offset from the input's ndim if negative.
e.g. for NCHW tensor, channel_dim = 1
min_val: minimum value of hardtanh
max_val: maximum value of hardtanh
Returns:
The activation function module
"""
act_layer = nn.Identity()
name = name.lower()
if name == "prelu":
act_layer = nn.PReLU(channels)
elif name == "relu":
act_layer = nn.ReLU()
elif name == "relu6":
act_layer = nn.ReLU6()
elif name == "hardtanh":
act_layer = nn.Hardtanh(min_val, max_val)
elif name in ["swish", "silu"]:
act_layer = nn.SiLU()
elif name == "elu":
act_layer = nn.ELU()
elif name == "doubleswish":
act_layer = nn.Sequential(
ActivationBalancer(num_channels=channels, channel_dim=channel_dim),
DoubleSwish(),
)
elif name == "":
act_layer = nn.Identity()
else:
raise Exception(f"Unknown activation function: {name}")
return act_layer
class CausalSqueezeExcite1d(nn.Module):
"""
Causal squeeze and excitation module with input and output shape
(batch, channels, time). The global average pooling in the original
SE module is replaced by a causal filter, so
the layer does not introduce any algorithmic latency.
Args:
channels (int): Number of channels
reduction (int): channel reduction rate
context_window (int): Context window size for the moving average operation.
For EMA, the smoothing factor is 1 / context_window.
"""
def __init__(
self,
channels: int,
reduction: int = 16,
context_window: int = 10,
) -> None:
super(CausalSqueezeExcite1d, self).__init__()
assert channels >= reduction
self.context_window = context_window
c_squeeze = channels // reduction
self.linear1 = nn.Linear(channels, c_squeeze, bias=True)
self.act1 = nn.ReLU(inplace=True)
self.linear2 = nn.Linear(c_squeeze, channels, bias=True)
self.act2 = nn.Sigmoid()
# EMA worked better than MA empirically
# self.avg_filter = self.moving_avg
self.avg_filter = self.exponential_moving_avg
self.ema_matrix = torch.tensor([0])
self.ema_matrix_size = 0
def _precompute_ema_matrix(self, N: int, device: torch.device):
a = 1.0 / self.context_window # smoothing factor
w = [[(1 - a) ** k * a for k in range(n, n - N, -1)] for n in range(N)]
w = torch.tensor(w).to(device).tril()
w[:, 0] *= self.context_window
self.ema_matrix = w.T
self.ema_matrix_size = N
def exponential_moving_avg(self, x: Tensor) -> Tensor:
"""
Exponential moving average filter, which is calculated as:
y[t] = (1-a) * y[t-1] + a * x[t]
where a = 1 / self.context_window is the smoothing factor.
For training, the iterative version is too slow. A better way is
to expand y[t] as a function of x[0..t] only and use matrix-vector multiplication.
The weight matrix can be precomputed if the smoothing factor is fixed.
"""
if self.training:
# use matrix version to speed up training
N = x.shape[-1]
if N > self.ema_matrix_size:
self._precompute_ema_matrix(N, x.device)
y = torch.matmul(x, self.ema_matrix[:N, :N])
else:
# use iterative version to save memory
a = 1.0 / self.context_window
y = torch.empty_like(x)
y[:, :, 0] = x[:, :, 0]
for t in range(1, y.shape[-1]):
y[:, :, t] = (1 - a) * y[:, :, t - 1] + a * x[:, :, t]
return y
def moving_avg(self, x: Tensor) -> Tensor:
"""
Simple moving average with context_window as window size.
"""
y = torch.empty_like(x)
k = min(x.shape[2], self.context_window)
w = [[1 / n] * n + [0] * (k - n - 1) for n in range(1, k)]
w = torch.tensor(w, device=x.device)
y[:, :, : k - 1] = torch.matmul(x[:, :, : k - 1], w.T)
y[:, :, k - 1 :] = F.avg_pool1d(x, k, 1)
return y
def forward(self, x: Tensor) -> Tensor:
assert len(x.shape) == 3, "Input is not a 3D tensor!"
y = self.exponential_moving_avg(x)
y = y.permute(0, 2, 1) # make channel last for squeeze op
y = self.act1(self.linear1(y))
y = self.act2(self.linear2(y))
y = y.permute(0, 2, 1) # back to original shape
y = x * y
return y
def conv1d_bn_block(
in_channels: int,
out_channels: int,
kernel_size: int = 3,
stride: int = 1,
dilation: int = 1,
activation: str = "relu",
dscnn: bool = False,
causal: bool = False,
) -> nn.Sequential:
"""
Conv1d - batchnorm - activation block.
If kernel size is even, output length = input length + 1.
Otherwise, output and input lengths are equal.
Args:
in_channels (int): Number of input channels
out_channels (int): Number of output channels
kernel_size (int): kernel size
stride (int): convolution stride
dilation (int): convolution dilation rate
dscnn (bool): Use depthwise separated convolution.
causal (bool): Use causal convolution
activation (str): Activation function type.
"""
if dscnn:
return nn.Sequential(
CausalConv1d(
in_channels,
in_channels,
kernel_size,
stride=stride,
dilation=dilation,
groups=in_channels,
bias=False,
)
if causal
else nn.Conv1d(
in_channels,
in_channels,
kernel_size,
stride=stride,
padding=(kernel_size // 2) * dilation,
dilation=dilation,
groups=in_channels,
bias=False,
),
nn.BatchNorm1d(in_channels),
get_activation(activation, in_channels),
nn.Conv1d(in_channels, out_channels, 1, bias=False),
nn.BatchNorm1d(out_channels),
get_activation(activation, out_channels),
)
else:
return nn.Sequential(
CausalConv1d(
in_channels,
out_channels,
kernel_size,
stride=stride,
dilation=dilation,
bias=False,
)
if causal
else nn.Conv1d(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=(kernel_size // 2) * dilation,
dilation=dilation,
bias=False,
),
nn.BatchNorm1d(out_channels),
get_activation(activation, out_channels),
)
class CausalConv1d(nn.Module):
"""
Causal convolution with padding automatically chosen to match input/output length.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
dilation: int = 1,
groups: int = 1,
bias: bool = True,
) -> None:
super(CausalConv1d, self).__init__()
assert kernel_size > 2
self.padding = dilation * (kernel_size - 1)
self.stride = stride
self.conv = nn.Conv1d(
in_channels,
out_channels,
kernel_size,
stride,
self.padding,
dilation,
groups,
bias=bias,
)
def forward(self, x: Tensor) -> Tensor:
return self.conv(x)[:, :, : -self.padding // self.stride]

View File

@ -0,0 +1 @@
../pruned_transducer_stateless2/encoder_interface.py

View File

@ -0,0 +1,316 @@
#!/usr/bin/env python3
#
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This script converts several saved checkpoints
# to a single one using model averaging.
"""
Usage:
(1) Export to torchscript model using torch.jit.script()
./tiny_transducer_ctc/export.py \
--exp-dir ./tiny_transducer_ctc/exp \
--lang-dir data/lang_bpe_500 \
--epoch 30 \
--avg 2 \
--jit 1
It will generate a file `cpu_jit.pt` in the given `exp_dir`. You can later
load it by `torch.jit.load("cpu_jit.pt")`.
Note `cpu` in the name `cpu_jit.pt` means the parameters when loaded into Python
are on CPU. You can use `to("cuda")` to move them to a CUDA device.
Check
https://github.com/k2-fsa/sherpa
for how to use the exported models outside of icefall.
(2) Export `model.state_dict()`
./tiny_transducer_ctc/export.py \
--exp-dir ./tiny_transducer_ctc/exp \
--lang-dir data/lang_bpe_500 \
--epoch 30 \
--avg 2
It will generate a file `pretrained.pt` in the given `exp_dir`. You can later
load it by `icefall.checkpoint.load_checkpoint()`.
To use the generated file with `tiny_transducer_ctc/decode.py`,
you can do:
cd /path/to/exp_dir
ln -s pretrained.pt epoch-9999.pt
cd /path/to/egs/librispeech/ASR
./tiny_transducer_ctc/decode.py \
--exp-dir ./tiny_transducer_ctc/exp \
--epoch 9999 \
--use-averaged-model 0
--avg 1 \
--max-duration 600 \
--decoding-method greedy_search \
--lang-dir data/lang_bpe_500 \
Check ./pretrained.py for its usage.
"""
import argparse
import logging
from pathlib import Path
import sentencepiece as spm
import torch
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.lexicon import UniqLexicon
from icefall.utils import str2bool
from train import add_model_arguments, get_params, get_transducer_model
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=30,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=1,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="tiny_transducer_ctc/exp_4m_bpe500_halfdelay_specaug",
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_bpe_500",
help="""The lang dir
It contains language related input files such as
"lexicon.txt"
""",
)
parser.add_argument(
"--jit",
type=str2bool,
default=False,
help="""True to save a model after applying torch.jit.script.
It will generate a file named cpu_jit.pt
Check ./jit_pretrained.py for how to use it.
""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
add_model_arguments(parser)
return parser
@torch.no_grad()
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
if "lang_bpe" in str(params.lang_dir):
sp = spm.SentencePieceProcessor()
sp.load(params.lang_dir + "/bpe.model")
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.vocab_size = sp.get_piece_size()
else:
assert "lang_phone" in str(params.lang_dir)
phone_lexicon = UniqLexicon(params.lang_dir)
params.blank_id = 0
params.vocab_size = max(phone_lexicon.tokens) + 1
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
model.to(device)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to("cpu")
model.eval()
if params.jit is True:
logging.info("Using torch.jit.script()")
# We won't use the forward() method of the model in C++, so just ignore
# it here.
# Otherwise, one of its arguments is a ragged tensor and is not
# torch scriptabe.
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
logging.info("Using torch.jit.script")
model = torch.jit.script(model)
filename = params.exp_dir / "cpu_jit.pt"
model.save(str(filename))
logging.info(f"Saved to {filename}")
else:
logging.info("Not using torchscript. Export model.state_dict()")
# Save it using a format so that it can be loaded
# by :func:`load_checkpoint`
filename = params.exp_dir / "pretrained.pt"
torch.save({"model": model.state_dict()}, str(filename))
logging.info(f"Saved to {filename}")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1,271 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script loads torchscript models, exported by `torch.jit.script()`
and uses them to decode waves.
You can use the following command to get the exported models:
./tiny_transducer_ctc/export.py \
--exp-dir ./tiny_transducer_ctc/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 20 \
--avg 10 \
--jit 1
Usage of this script:
./tiny_transducer_ctc/jit_pretrained.py \
--nn-model-filename ./tiny_transducer_ctc/exp/cpu_jit.pt \
/path/to/foo.wav \
/path/to/bar.wav
"""
import argparse
import logging
import math
from typing import List
import kaldifeat
import sentencepiece as spm
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--nn-model-filename",
type=str,
required=True,
help="Path to the torchscript model cpu_jit.pt",
)
parser.add_argument(
"--bpe-model",
type=str,
help="""Path to bpe.model.""",
)
parser.add_argument(
"sound_files",
type=str,
nargs="+",
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
return parser
def read_sound_files(
filenames: List[str], expected_sample_rate: float = 16000
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert (
sample_rate == expected_sample_rate
), f"Expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
# We use only the first channel
ans.append(wave[0])
return ans
def greedy_search(
model: torch.jit.ScriptModule,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
) -> List[List[int]]:
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
Args:
model:
The transducer model.
encoder_out:
A 3-D tensor of shape (N, T, C)
encoder_out_lens:
A 1-D tensor of shape (N,).
Returns:
Return the decoded results for each utterance.
"""
assert encoder_out.ndim == 3
assert encoder_out.size(0) >= 1, encoder_out.size(0)
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
input=encoder_out,
lengths=encoder_out_lens.cpu(),
batch_first=True,
enforce_sorted=False,
)
device = encoder_out.device
blank_id = 0 # hard-code to 0
batch_size_list = packed_encoder_out.batch_sizes.tolist()
N = encoder_out.size(0)
assert torch.all(encoder_out_lens > 0), encoder_out_lens
assert N == batch_size_list[0], (N, batch_size_list)
context_size = model.decoder.context_size
hyps = [[blank_id] * context_size for _ in range(N)]
decoder_input = torch.tensor(
hyps,
device=device,
dtype=torch.int64,
) # (N, context_size)
decoder_out = model.decoder(
decoder_input,
need_pad=torch.tensor([False]),
).squeeze(1)
offset = 0
for batch_size in batch_size_list:
start = offset
end = offset + batch_size
current_encoder_out = packed_encoder_out.data[start:end]
current_encoder_out = current_encoder_out
# current_encoder_out's shape: (batch_size, encoder_out_dim)
offset = end
decoder_out = decoder_out[:batch_size]
logits = model.joiner(
current_encoder_out,
decoder_out,
)
# logits'shape (batch_size, vocab_size)
assert logits.ndim == 2, logits.shape
y = logits.argmax(dim=1).tolist()
emitted = False
for i, v in enumerate(y):
if v != blank_id:
hyps[i].append(v)
emitted = True
if emitted:
# update decoder output
decoder_input = [h[-context_size:] for h in hyps[:batch_size]]
decoder_input = torch.tensor(
decoder_input,
device=device,
dtype=torch.int64,
)
decoder_out = model.decoder(
decoder_input,
need_pad=torch.tensor([False]),
)
decoder_out = decoder_out.squeeze(1)
sorted_ans = [h[context_size:] for h in hyps]
ans = []
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
for i in range(N):
ans.append(sorted_ans[unsorted_indices[i]])
return ans
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
logging.info(vars(args))
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
model = torch.jit.load(args.nn_model_filename)
model.eval()
model.to(device)
sp = spm.SentencePieceProcessor()
sp.load(args.bpe_model)
logging.info("Constructing Fbank computer")
opts = kaldifeat.FbankOptions()
opts.device = device
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = 16000
opts.mel_opts.num_bins = 80
fbank = kaldifeat.Fbank(opts)
logging.info(f"Reading sound files: {args.sound_files}")
waves = read_sound_files(
filenames=args.sound_files,
)
waves = [w.to(device) for w in waves]
logging.info("Decoding started")
features = fbank(waves)
feature_lengths = [f.size(0) for f in features]
features = pad_sequence(
features,
batch_first=True,
padding_value=math.log(1e-10),
)
feature_lengths = torch.tensor(feature_lengths, device=device)
encoder_out, encoder_out_lens = model.encoder(
x=features,
x_lens=feature_lengths,
)
hyps = greedy_search(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
s = "\n"
for filename, hyp in zip(args.sound_files, hyps):
words = sp.decode(hyp)
s += f"{filename}:\n{words}\n\n"
logging.info(s)
logging.info("Decoding Done")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1,426 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang,
# Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script loads torchscript models, exported by `torch.jit.script()`
and uses them to decode waves.
You can use the following command to get the exported models:
./tiny_transducer_ctc/export.py \
--exp-dir ./tiny_transducer_ctc/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 20 \
--avg 10 \
--jit 1
Usage of this script:
(1) ctc-decoding
./tiny_transducer_ctc/jit_pretrained_ctc.py \
--model-filename ./tiny_transducer_ctc/exp/cpu_jit.pt \
--bpe-model data/lang_bpe_500/bpe.model \
--method ctc-decoding \
--sample-rate 16000 \
/path/to/foo.wav \
/path/to/bar.wav
(2) 1best
./tiny_transducer_ctc/jit_pretrained_ctc.py \
--model-filename ./tiny_transducer_ctc/exp/cpu_jit.pt \
--HLG data/lang_bpe_500/HLG.pt \
--words-file data/lang_bpe_500/words.txt \
--method 1best \
--sample-rate 16000 \
/path/to/foo.wav \
/path/to/bar.wav
(3) nbest-rescoring
./tiny_transducer_ctc/jit_pretrained_ctc.py \
--model-filename ./tiny_transducer_ctc/exp/cpu_jit.pt \
--HLG data/lang_bpe_500/HLG.pt \
--words-file data/lang_bpe_500/words.txt \
--G data/lm/G_4_gram.pt \
--method nbest-rescoring \
--sample-rate 16000 \
/path/to/foo.wav \
/path/to/bar.wav
(4) whole-lattice-rescoring
./tiny_transducer_ctc/jit_pretrained_ctc.py \
--model-filename ./tiny_transducer_ctc/exp/cpu_jit.pt \
--HLG data/lang_bpe_500/HLG.pt \
--words-file data/lang_bpe_500/words.txt \
--G data/lm/G_4_gram.pt \
--method whole-lattice-rescoring \
--sample-rate 16000 \
/path/to/foo.wav \
/path/to/bar.wav
"""
import argparse
import logging
import math
from typing import List
import k2
import kaldifeat
import sentencepiece as spm
import torch
import torchaudio
from ctc_decode import get_decoding_params
from torch.nn.utils.rnn import pad_sequence
from train import get_params
from icefall.decode import (
get_lattice,
one_best_decoding,
rescore_with_n_best_list,
rescore_with_whole_lattice,
)
from icefall.utils import get_texts
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--model-filename",
type=str,
required=True,
help="Path to the torchscript model.",
)
parser.add_argument(
"--words-file",
type=str,
help="""Path to words.txt.
Used only when method is not ctc-decoding.
""",
)
parser.add_argument(
"--HLG",
type=str,
help="""Path to HLG.pt.
Used only when method is not ctc-decoding.
""",
)
parser.add_argument(
"--bpe-model",
type=str,
help="""Path to bpe.model.
Used only when method is ctc-decoding.
""",
)
parser.add_argument(
"--method",
type=str,
default="1best",
help="""Decoding method.
Possible values are:
(0) ctc-decoding - Use CTC decoding. It uses a sentence
piece model, i.e., lang_dir/bpe.model, to convert
word pieces to words. It needs neither a lexicon
nor an n-gram LM.
(1) 1best - Use the best path as decoding output. Only
the transformer encoder output is used for decoding.
We call it HLG decoding.
(2) nbest-rescoring. Extract n paths from the decoding lattice,
rescore them with an LM, the path with
the highest score is the decoding result.
We call it HLG decoding + n-gram LM rescoring.
(3) whole-lattice-rescoring - Use an LM to rescore the
decoding lattice and then use 1best to decode the
rescored lattice.
We call it HLG decoding + n-gram LM rescoring.
""",
)
parser.add_argument(
"--G",
type=str,
help="""An LM for rescoring.
Used only when method is
whole-lattice-rescoring or nbest-rescoring.
It's usually a 4-gram LM.
""",
)
parser.add_argument(
"--num-paths",
type=int,
default=100,
help="""
Used only when method is attention-decoder.
It specifies the size of n-best list.""",
)
parser.add_argument(
"--ngram-lm-scale",
type=float,
default=1.3,
help="""
Used only when method is whole-lattice-rescoring and nbest-rescoring.
It specifies the scale for n-gram LM scores.
(Note: You need to tune it on a dataset.)
""",
)
parser.add_argument(
"--nbest-scale",
type=float,
default=0.5,
help="""
Used only when method is nbest-rescoring.
It specifies the scale for lattice.scores when
extracting n-best lists. A smaller value results in
more unique number of paths with the risk of missing
the best path.
""",
)
parser.add_argument(
"--num-classes",
type=int,
default=500,
help="""
Vocab size in the BPE model.
""",
)
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="The sample rate of the input sound file",
)
parser.add_argument(
"sound_files",
type=str,
nargs="+",
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
return parser
def read_sound_files(
filenames: List[str], expected_sample_rate: float = 16000
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert (
sample_rate == expected_sample_rate
), f"Expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
# We use only the first channel
ans.append(wave[0])
return ans
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
params = get_params()
# add decoding params
params.update(get_decoding_params())
params.update(vars(args))
logging.info(f"{params}")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
model = torch.jit.load(args.model_filename)
model.to(device)
model.eval()
logging.info("Constructing Fbank computer")
opts = kaldifeat.FbankOptions()
opts.device = device
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = params.sample_rate
opts.mel_opts.num_bins = params.feature_dim
fbank = kaldifeat.Fbank(opts)
logging.info(f"Reading sound files: {params.sound_files}")
waves = read_sound_files(
filenames=params.sound_files, expected_sample_rate=params.sample_rate
)
waves = [w.to(device) for w in waves]
logging.info("Decoding started")
features = fbank(waves)
feature_lengths = [f.size(0) for f in features]
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
feature_lengths = torch.tensor(feature_lengths, device=device)
encoder_out, encoder_out_lens = model.encoder(
x=features,
x_lens=feature_lengths,
)
nnet_output = model.ctc_output(encoder_out)
batch_size = nnet_output.shape[0]
supervision_segments = torch.tensor(
[
[i, 0, feature_lengths[i] // params.subsampling_factor]
for i in range(batch_size)
],
dtype=torch.int32,
)
if params.method == "ctc-decoding":
logging.info("Use CTC decoding")
bpe_model = spm.SentencePieceProcessor()
bpe_model.load(params.bpe_model)
max_token_id = params.num_classes - 1
H = k2.ctc_topo(
max_token=max_token_id,
modified=False,
device=device,
)
lattice = get_lattice(
nnet_output=nnet_output,
decoding_graph=H,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,
min_active_states=params.min_active_states,
max_active_states=params.max_active_states,
subsampling_factor=params.subsampling_factor,
)
best_path = one_best_decoding(
lattice=lattice, use_double_scores=params.use_double_scores
)
token_ids = get_texts(best_path)
hyps = bpe_model.decode(token_ids)
hyps = [s.split() for s in hyps]
elif params.method in [
"1best",
"nbest-rescoring",
"whole-lattice-rescoring",
]:
logging.info(f"Loading HLG from {params.HLG}")
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
HLG = HLG.to(device)
if not hasattr(HLG, "lm_scores"):
# For whole-lattice-rescoring and attention-decoder
HLG.lm_scores = HLG.scores.clone()
if params.method in [
"nbest-rescoring",
"whole-lattice-rescoring",
]:
logging.info(f"Loading G from {params.G}")
G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu"))
G = G.to(device)
if params.method == "whole-lattice-rescoring":
# Add epsilon self-loops to G as we will compose
# it with the whole lattice later
G = k2.add_epsilon_self_loops(G)
G = k2.arc_sort(G)
# G.lm_scores is used to replace HLG.lm_scores during
# LM rescoring.
G.lm_scores = G.scores.clone()
lattice = get_lattice(
nnet_output=nnet_output,
decoding_graph=HLG,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,
min_active_states=params.min_active_states,
max_active_states=params.max_active_states,
subsampling_factor=params.subsampling_factor,
)
if params.method == "1best":
logging.info("Use HLG decoding")
best_path = one_best_decoding(
lattice=lattice, use_double_scores=params.use_double_scores
)
if params.method == "nbest-rescoring":
logging.info("Use HLG decoding + LM rescoring")
best_path_dict = rescore_with_n_best_list(
lattice=lattice,
G=G,
num_paths=params.num_paths,
lm_scale_list=[params.ngram_lm_scale],
nbest_scale=params.nbest_scale,
)
best_path = next(iter(best_path_dict.values()))
elif params.method == "whole-lattice-rescoring":
logging.info("Use HLG decoding + LM rescoring")
best_path_dict = rescore_with_whole_lattice(
lattice=lattice,
G_with_epsilon_loops=G,
lm_scale_list=[params.ngram_lm_scale],
)
best_path = next(iter(best_path_dict.values()))
hyps = get_texts(best_path)
word_sym_table = k2.SymbolTable.from_file(params.words_file)
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
else:
raise ValueError(f"Unsupported decoding method: {params.method}")
s = "\n"
for filename, hyp in zip(params.sound_files, hyps):
words = " ".join(hyp)
s += f"{filename}:\n{words}\n\n"
logging.info(s)
logging.info("Decoding Done")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1 @@
../pruned_transducer_stateless7/joiner.py

View File

@ -0,0 +1 @@
../pruned_transducer_stateless7_ctc/model.py

View File

@ -0,0 +1,357 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script loads a checkpoint and uses it to decode waves.
You can generate the checkpoint with the following command:
./tiny_transducer_ctc/export.py \
--exp-dir ./tiny_transducer_ctc/exp \
--lang-dir data/lang_bpe_500 \
--epoch 20 \
--avg 10
Usage of this script:
(1) greedy search
./tiny_transducer_ctc/pretrained.py \
--checkpoint ./tiny_transducer_ctc/exp/pretrained.pt \
--lang-dir data/lang_bpe_500 \
--method greedy_search \
/path/to/foo.wav \
/path/to/bar.wav
(2) beam search
./tiny_transducer_ctc/pretrained.py \
--checkpoint ./tiny_transducer_ctc/exp/pretrained.pt \
--lang-dir data/lang_bpe_500 \
--method beam_search \
--beam-size 4 \
/path/to/foo.wav \
/path/to/bar.wav
(3) modified beam search
./tiny_transducer_ctc/pretrained.py \
--checkpoint ./tiny_transducer_ctc/exp/pretrained.pt \
--lang-dir data/lang_bpe_500 \
--method modified_beam_search \
--beam-size 4 \
/path/to/foo.wav \
/path/to/bar.wav
(4) fast beam search
./tiny_transducer_ctc/pretrained.py \
--checkpoint ./tiny_transducer_ctc/exp/pretrained.pt \
--lang-dir data/lang_bpe_500 \
--method fast_beam_search \
--beam-size 4 \
/path/to/foo.wav \
/path/to/bar.wav
You can also use `./tiny_transducer_ctc/exp/epoch-xx.pt`.
Note: ./tiny_transducer_ctc/exp/pretrained.pt is generated by
./tiny_transducer_ctc/export.py
"""
import argparse
import logging
import math
from typing import List
import k2
import kaldifeat
import sentencepiece as spm
import torch
import torchaudio
from beam_search import (
beam_search,
fast_beam_search_one_best,
greedy_search,
greedy_search_batch,
modified_beam_search,
)
from torch.nn.utils.rnn import pad_sequence
from train import add_model_arguments, get_params, get_transducer_model
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--checkpoint",
type=str,
required=True,
help="Path to the checkpoint. "
"The checkpoint is assumed to be saved by "
"icefall.checkpoint.save_checkpoint().",
)
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_bpe_500",
help="""The lang dir
It contains language related input files such as
"lexicon.txt"
""",
)
parser.add_argument(
"--method",
type=str,
default="greedy_search",
help="""Possible values are:
- greedy_search
- beam_search
- modified_beam_search
- fast_beam_search
""",
)
parser.add_argument(
"sound_files",
type=str,
nargs="+",
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="The sample rate of the input sound file",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
help="""An integer indicating how many candidates we will keep for each
frame. Used only when --method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=4,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=4,
help="""Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--max-states",
type=int,
default=8,
help="""Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
default=1,
help="""Maximum number of symbols per frame. Used only when
--method is greedy_search.
""",
)
add_model_arguments(parser)
return parser
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert (
sample_rate == expected_sample_rate
), f"Expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
# We use only the first channel
ans.append(wave[0])
return ans
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
params = get_params()
params.update(vars(args))
sp = spm.SentencePieceProcessor()
sp.load(params.lang_dir + "/bpe.model")
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.piece_to_id("<unk>")
params.vocab_size = sp.get_piece_size()
logging.info(f"{params}")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
logging.info("Creating model")
model = get_transducer_model(params)
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
checkpoint = torch.load(args.checkpoint, map_location="cpu")
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()
model.device = device
logging.info("Constructing Fbank computer")
opts = kaldifeat.FbankOptions()
opts.device = device
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = params.sample_rate
opts.mel_opts.num_bins = params.feature_dim
fbank = kaldifeat.Fbank(opts)
logging.info(f"Reading sound files: {params.sound_files}")
waves = read_sound_files(
filenames=params.sound_files, expected_sample_rate=params.sample_rate
)
waves = [w.to(device) for w in waves]
logging.info("Decoding started")
features = fbank(waves)
feature_lengths = [f.size(0) for f in features]
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
feature_lengths = torch.tensor(feature_lengths, device=device)
encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lengths)
num_waves = encoder_out.size(0)
hyps = []
msg = f"Using {params.method}"
if params.method == "beam_search":
msg += f" with beam size {params.beam_size}"
logging.info(msg)
if params.method == "fast_beam_search":
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
hyp_tokens = fast_beam_search_one_best(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.method == "modified_beam_search":
hyp_tokens = modified_beam_search(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
hyp_tokens = greedy_search_batch(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
else:
for i in range(num_waves):
# fmt: off
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
# fmt: on
if params.method == "greedy_search":
hyp = greedy_search(
model=model,
encoder_out=encoder_out_i,
max_sym_per_frame=params.max_sym_per_frame,
)
elif params.method == "beam_search":
hyp = beam_search(
model=model,
encoder_out=encoder_out_i,
beam=params.beam_size,
)
else:
raise ValueError(f"Unsupported method: {params.method}")
hyps.append(sp.decode(hyp).split())
s = "\n"
for filename, hyp in zip(params.sound_files, hyps):
words = " ".join(hyp)
s += f"{filename}:\n{words}\n\n"
logging.info(s)
logging.info("Decoding Done")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1,444 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang,
# Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script loads torchscript models, exported by `torch.jit.script()`
and uses them to decode waves.
You can use the following command to get the exported models:
./tiny_transducer_ctc/export.py \
--exp-dir ./tiny_transducer_ctc/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 20 \
--avg 10
Usage of this script:
(1) ctc-decoding
./tiny_transducer_ctc/jit_pretrained_ctc.py \
--checkpoint ./tiny_transducer_ctc/exp/pretrained.pt \
--lang-dir data/lang_bpe_500 \
--method ctc-decoding \
--sample-rate 16000 \
/path/to/foo.wav \
/path/to/bar.wav
(2) 1best
./tiny_transducer_ctc/jit_pretrained_ctc.py \
--checkpoint ./tiny_transducer_ctc/exp/pretrained.pt \
--HLG data/lang_bpe_500/HLG.pt \
--words-file data/lang_bpe_500/words.txt \
--method 1best \
--sample-rate 16000 \
/path/to/foo.wav \
/path/to/bar.wav
(3) nbest-rescoring
./tiny_transducer_ctc/jit_pretrained_ctc.py \
--checkpoint ./tiny_transducer_ctc/exp/pretrained.pt \
--HLG data/lang_bpe_500/HLG.pt \
--words-file data/lang_bpe_500/words.txt \
--G data/lm/G_4_gram.pt \
--method nbest-rescoring \
--sample-rate 16000 \
/path/to/foo.wav \
/path/to/bar.wav
(4) whole-lattice-rescoring
./tiny_transducer_ctc/jit_pretrained_ctc.py \
--checkpoint ./tiny_transducer_ctc/exp/pretrained.pt \
--HLG data/lang_bpe_500/HLG.pt \
--words-file data/lang_bpe_500/words.txt \
--G data/lm/G_4_gram.pt \
--method whole-lattice-rescoring \
--sample-rate 16000 \
/path/to/foo.wav \
/path/to/bar.wav
"""
import argparse
import logging
import math
from typing import List
import k2
import kaldifeat
import sentencepiece as spm
import torch
import torchaudio
from ctc_decode import get_decoding_params
from torch.nn.utils.rnn import pad_sequence
from train import add_model_arguments, get_params, get_transducer_model
from icefall.decode import (
get_lattice,
one_best_decoding,
rescore_with_n_best_list,
rescore_with_whole_lattice,
)
from icefall.utils import get_texts
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--checkpoint",
type=str,
required=True,
help="Path to the checkpoint. "
"The checkpoint is assumed to be saved by "
"icefall.checkpoint.save_checkpoint().",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; " "2 means tri-gram",
)
parser.add_argument(
"--words-file",
type=str,
help="""Path to words.txt.
Used only when method is not ctc-decoding.
""",
)
parser.add_argument(
"--HLG",
type=str,
help="""Path to HLG.pt.
Used only when method is not ctc-decoding.
""",
)
parser.add_argument(
"--bpe-model",
type=str,
help="""Path to bpe.model.
Used only when method is ctc-decoding.
""",
)
parser.add_argument(
"--method",
type=str,
default="1best",
help="""Decoding method.
Possible values are:
(0) ctc-decoding - Use CTC decoding. It uses a sentence
piece model, i.e., lang_dir/bpe.model, to convert
word pieces to words. It needs neither a lexicon
nor an n-gram LM.
(1) 1best - Use the best path as decoding output. Only
the transformer encoder output is used for decoding.
We call it HLG decoding.
(2) nbest-rescoring. Extract n paths from the decoding lattice,
rescore them with an LM, the path with
the highest score is the decoding result.
We call it HLG decoding + n-gram LM rescoring.
(3) whole-lattice-rescoring - Use an LM to rescore the
decoding lattice and then use 1best to decode the
rescored lattice.
We call it HLG decoding + n-gram LM rescoring.
""",
)
parser.add_argument(
"--G",
type=str,
help="""An LM for rescoring.
Used only when method is
whole-lattice-rescoring or nbest-rescoring.
It's usually a 4-gram LM.
""",
)
parser.add_argument(
"--num-paths",
type=int,
default=100,
help="""
Used only when method is attention-decoder.
It specifies the size of n-best list.""",
)
parser.add_argument(
"--ngram-lm-scale",
type=float,
default=1.3,
help="""
Used only when method is whole-lattice-rescoring and nbest-rescoring.
It specifies the scale for n-gram LM scores.
(Note: You need to tune it on a dataset.)
""",
)
parser.add_argument(
"--nbest-scale",
type=float,
default=0.5,
help="""
Used only when method is nbest-rescoring.
It specifies the scale for lattice.scores when
extracting n-best lists. A smaller value results in
more unique number of paths with the risk of missing
the best path.
""",
)
parser.add_argument(
"--num-classes",
type=int,
default=500,
help="""
Vocab size in the BPE model.
""",
)
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="The sample rate of the input sound file",
)
parser.add_argument(
"sound_files",
type=str,
nargs="+",
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
add_model_arguments(parser)
return parser
def read_sound_files(
filenames: List[str], expected_sample_rate: float = 16000
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert sample_rate == expected_sample_rate, (
f"expected sample rate: {expected_sample_rate}. " f"Given: {sample_rate}"
)
# We use only the first channel
ans.append(wave[0])
return ans
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
params = get_params()
# add decoding params
params.update(get_decoding_params())
params.update(vars(args))
params.vocab_size = params.num_classes
params.blank_id = 0
logging.info(f"{params}")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
logging.info("Creating model")
model = get_transducer_model(params)
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
checkpoint = torch.load(args.checkpoint, map_location="cpu")
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()
logging.info("Constructing Fbank computer")
opts = kaldifeat.FbankOptions()
opts.device = device
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = params.sample_rate
opts.mel_opts.num_bins = params.feature_dim
fbank = kaldifeat.Fbank(opts)
logging.info(f"Reading sound files: {params.sound_files}")
waves = read_sound_files(
filenames=params.sound_files, expected_sample_rate=params.sample_rate
)
waves = [w.to(device) for w in waves]
logging.info("Decoding started")
features = fbank(waves)
feature_lengths = [f.size(0) for f in features]
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
feature_lengths = torch.tensor(feature_lengths, device=device)
encoder_out, encoder_out_lens = model.encoder(
x=features,
x_lens=feature_lengths,
)
nnet_output = model.ctc_output(encoder_out)
batch_size = nnet_output.shape[0]
supervision_segments = torch.tensor(
[
[i, 0, feature_lengths[i] // params.subsampling_factor]
for i in range(batch_size)
],
dtype=torch.int32,
)
if params.method == "ctc-decoding":
logging.info("Use CTC decoding")
bpe_model = spm.SentencePieceProcessor()
bpe_model.load(params.bpe_model)
max_token_id = params.num_classes - 1
H = k2.ctc_topo(
max_token=max_token_id,
modified=False,
device=device,
)
lattice = get_lattice(
nnet_output=nnet_output,
decoding_graph=H,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,
min_active_states=params.min_active_states,
max_active_states=params.max_active_states,
subsampling_factor=params.subsampling_factor,
)
best_path = one_best_decoding(
lattice=lattice, use_double_scores=params.use_double_scores
)
token_ids = get_texts(best_path)
hyps = bpe_model.decode(token_ids)
hyps = [s.split() for s in hyps]
elif params.method in [
"1best",
"nbest-rescoring",
"whole-lattice-rescoring",
]:
logging.info(f"Loading HLG from {params.HLG}")
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
HLG = HLG.to(device)
if not hasattr(HLG, "lm_scores"):
# For whole-lattice-rescoring and attention-decoder
HLG.lm_scores = HLG.scores.clone()
if params.method in [
"nbest-rescoring",
"whole-lattice-rescoring",
]:
logging.info(f"Loading G from {params.G}")
G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu"))
G = G.to(device)
if params.method == "whole-lattice-rescoring":
# Add epsilon self-loops to G as we will compose
# it with the whole lattice later
G = k2.add_epsilon_self_loops(G)
G = k2.arc_sort(G)
# G.lm_scores is used to replace HLG.lm_scores during
# LM rescoring.
G.lm_scores = G.scores.clone()
lattice = get_lattice(
nnet_output=nnet_output,
decoding_graph=HLG,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,
min_active_states=params.min_active_states,
max_active_states=params.max_active_states,
subsampling_factor=params.subsampling_factor,
)
if params.method == "1best":
logging.info("Use HLG decoding")
best_path = one_best_decoding(
lattice=lattice, use_double_scores=params.use_double_scores
)
if params.method == "nbest-rescoring":
logging.info("Use HLG decoding + LM rescoring")
best_path_dict = rescore_with_n_best_list(
lattice=lattice,
G=G,
num_paths=params.num_paths,
lm_scale_list=[params.ngram_lm_scale],
nbest_scale=params.nbest_scale,
)
best_path = next(iter(best_path_dict.values()))
elif params.method == "whole-lattice-rescoring":
logging.info("Use HLG decoding + LM rescoring")
best_path_dict = rescore_with_whole_lattice(
lattice=lattice,
G_with_epsilon_loops=G,
lm_scale_list=[params.ngram_lm_scale],
)
best_path = next(iter(best_path_dict.values()))
hyps = get_texts(best_path)
word_sym_table = k2.SymbolTable.from_file(params.words_file)
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
else:
raise ValueError(f"Unsupported decoding method: {params.method}")
s = "\n"
for filename, hyp in zip(params.sound_files, hyps):
words = " ".join(hyp)
s += f"{filename}:\n{words}\n\n"
logging.info(s)
logging.info("Decoding Done")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1 @@
../pruned_transducer_stateless7/scaling.py

File diff suppressed because it is too large Load Diff