Parametrize dev and test split sizes.

This commit is contained in:
Kinan Martin 2025-06-10 10:11:33 +09:00
parent a6f60de9dd
commit c8d932b0c2

View File

@ -10,12 +10,14 @@ def create_subset_by_hours(
full_dataset_path,
output_base_dir,
target_train_hours,
target_dev_hours, # New parameter
target_test_hours, # New parameter
random_seed=42,
duration_column_name='audio_duration'
):
random.seed(random_seed)
output_subset_dir = os.path.join(output_base_dir, f'mls_english_subset_{int(target_train_hours)}h')
output_subset_dir = os.path.join(output_base_dir, f'mls_english_subset_train{int(target_train_hours)}h_dev{int(target_dev_hours)}h_test{int(target_test_hours)}h')
os.makedirs(output_subset_dir, exist_ok=True)
output_subset_data_dir = os.path.join(output_subset_dir, 'data')
os.makedirs(output_subset_data_dir, exist_ok=True)
@ -35,7 +37,8 @@ def create_subset_by_hours(
sys.exit(1)
data_files = {}
split_pattern = re.compile(r'^(train|dev|test)-\d{5}-of-\d{5}\.parquet$')
# Expanded pattern to also detect 'validation' if it's in filenames
split_pattern = re.compile(r'^(train|dev|test|validation)-\d{5}-of-\d{5}\.parquet$')
print(f" Discovering splits from filenames in '{full_data_dir}'...")
for fpath in all_parquet_files:
@ -50,7 +53,7 @@ def create_subset_by_hours(
print(f"Warning: Skipping unrecognized parquet file: {fname}", file=sys.stderr)
if not data_files:
print("Error: No recognized train, dev, or test parquet files found.", file=sys.stderr)
print("Error: No recognized train, dev, test, or validation parquet files found.", file=sys.stderr)
sys.exit(1)
print(f"Found splits and their parquet files: {list(data_files.keys())}")
@ -65,93 +68,107 @@ def create_subset_by_hours(
print("Error: The loaded dataset is not a DatasetDict. Expected a DatasetDict structure.", file=sys.stderr)
sys.exit(1)
# --- Renaming 'validation' split to 'dev' if necessary ---
if 'validation' in full_dataset:
if 'dev' in full_dataset:
print("Warning: Both 'dev' and 'validation' splits found in the original dataset. Keeping 'dev' and skipping rename of 'validation'.", file=sys.stderr)
else:
print("Renaming 'validation' split to 'dev' for consistent keying.")
full_dataset['dev'] = full_dataset.pop('validation')
# --- End Renaming ---
subset_dataset = DatasetDict()
total_final_duration_ms = 0
def get_duration_from_column(example):
"""Helper to safely get duration from the specified column, in milliseconds."""
if duration_column_name in example:
return float(example[duration_column_name]) * 1000
else:
print(f"Warning: Duration column '{duration_column_name}' not found in example. Returning 0.", file=sys.stderr)
return 0
# --- Handle 'dev' split: Copy directly ---
if 'dev' in full_dataset:
dev_split = full_dataset['dev']
subset_dataset['dev'] = dev_split
dev_duration_ms = sum(get_duration_from_column(ex) for ex in dev_split)
total_final_duration_ms += dev_duration_ms
print(f"Copied 'dev' split directly: {len(dev_split)} samples ({dev_duration_ms / (3600*1000):.2f} hours)")
else:
print("Warning: 'dev' split not found in original dataset. Skipping copy.")
# --- NEW: Generalized sampling function ---
def sample_split_by_hours(split_name, original_split, target_hours):
"""
Samples a dataset split to reach a target number of hours.
Returns the sampled Dataset object and its actual duration in milliseconds.
"""
target_duration_ms = target_hours * 3600 * 1000
current_duration_ms = 0
indices_to_include = []
# --- Handle 'test' split: Copy directly ---
if 'test' in full_dataset:
test_split = full_dataset['test']
subset_dataset['test'] = test_split
test_duration_ms = sum(get_duration_from_column(ex) for ex in test_split)
total_final_duration_ms += test_duration_ms
print(f"Copied 'test' split directly: {len(test_split)} samples ({test_duration_ms / (3600*1000):.2f} hours)")
else:
print("Warning: 'test' split not found in original dataset. Skipping copy.")
if original_split is None or len(original_split) == 0:
print(f" Warning: Original '{split_name}' split is empty or not found. Cannot sample.", file=sys.stderr)
return None, 0
# --- Handle 'train' split: Sample by target hours (stream processing) ---
target_train_duration_ms = target_train_hours * 3600 * 1000
current_train_duration_ms = 0
train_indices_to_include = [] # Store indices of selected samples
print(f"\n Processing '{split_name}' split to reach approximately {target_hours} hours...")
print(f" Total samples in original '{split_name}' split: {len(original_split)}")
if 'train' in full_dataset:
train_split = full_dataset['train']
print(f"\n Processing 'train' split to reach approximately {target_train_hours} hours...")
# Get total number of samples in the train split
total_train_samples = len(train_split)
print(f" Total samples in original train split: {total_train_samples}")
# Create a list of all indices in the train split
all_train_indices = list(range(total_train_samples))
random.shuffle(all_train_indices) # Shuffle the indices
all_original_indices = list(range(len(original_split)))
random.shuffle(all_original_indices) # Shuffle indices for random sampling
num_samples_processed = 0
for original_idx in all_train_indices:
if current_train_duration_ms >= target_train_duration_ms:
print(f" Target train hours reached. Stopping processing.")
break # Target train hours reached, stop adding samples
for original_idx in all_original_indices:
if current_duration_ms >= target_duration_ms and target_hours > 0:
print(f" Target {split_name} hours reached ({target_hours}h). Stopping processing.")
break
example = train_split[original_idx] # Access sample by original index
example = original_split[original_idx]
duration_ms = get_duration_from_column(example)
if duration_ms > 0:
train_indices_to_include.append(original_idx)
current_train_duration_ms += duration_ms
indices_to_include.append(original_idx)
current_duration_ms += duration_ms
num_samples_processed += 1
if num_samples_processed % 10000 == 0:
print(f" Processed {num_samples_processed} samples. Current train duration: {current_train_duration_ms / (3600*1000):.2f} hours")
if num_samples_processed % 10000 == 0: # Print progress periodically
print(f" Processed {num_samples_processed} samples for '{split_name}'. Current duration: {current_duration_ms / (3600*1000):.2f} hours")
# Select the subset from the original split based on chosen indices
# Sorting is important here to ensure the resulting subset maintains the original order,
# which can be useful for debugging or consistent processing down the line.
selected_indices = sorted(train_indices_to_include)
subset_train_split = train_split.select(selected_indices)
# If target_hours was 0, but there were samples, we should include none.
# Otherwise, select the chosen indices.
if target_hours == 0:
sampled_split = original_split.select([]) # Select an empty dataset
else:
sampled_split = original_split.select(sorted(indices_to_include)) # Sort to preserve order
# Ensure the 'audio' column is correctly typed as Audio feature before saving
if "audio" in subset_train_split.features and not isinstance(subset_train_split.features["audio"], Audio):
sampling_rate = subset_train_split.features["audio"].sampling_rate if isinstance(subset_train_split.features["audio"], Audio) else 16000
new_features = subset_train_split.features
if "audio" in sampled_split.features and not isinstance(sampled_split.features["audio"], Audio):
sampling_rate = sampled_split.features["audio"].sampling_rate if isinstance(sampled_split.features["audio"], Audio) else 16000
new_features = sampled_split.features
new_features["audio"] = Audio(sampling_rate=sampling_rate)
subset_train_split = subset_train_split.cast(new_features)
sampled_split = sampled_split.cast(new_features)
print(f" Final '{split_name}' split duration: {current_duration_ms / (3600*1000):.2f} hours ({len(sampled_split)} samples)")
return sampled_split, current_duration_ms
# --- END NEW: Generalized sampling function ---
# --- Apply sampling for train, dev, and test splits ---
splits_to_process = {
'train': target_train_hours,
'dev': target_dev_hours,
'test': target_test_hours
}
for split_name, target_hours in splits_to_process.items():
if split_name in full_dataset:
original_split = full_dataset[split_name]
sampled_split, actual_duration_ms = sample_split_by_hours(
split_name,
original_split,
target_hours
)
if sampled_split is not None:
subset_dataset[split_name] = sampled_split
total_final_duration_ms += actual_duration_ms
else:
print(f"Warning: '{split_name}' split not found in original dataset. Skipping sampling.", file=sys.stderr)
subset_dataset['train'] = subset_train_split
total_final_duration_ms += current_train_duration_ms
print(f" Final 'train' split duration: {current_train_duration_ms / (3600*1000):.2f} hours ({len(subset_train_split)} samples)")
else:
print("Warning: 'train' split not found in original dataset. No training data will be created.")
# --- Handle other splits if any, just copy them ---
# This loop now excludes 'validation' since it's handled by renaming to 'dev'
for split_name in full_dataset.keys():
if split_name not in ['train', 'dev', 'test']:
if split_name not in ['train', 'dev', 'test', 'validation']: # Ensure 'validation' is not re-copied if not renamed
print(f"Copying unrecognized split '{split_name}' directly.")
other_split = full_dataset[split_name]
subset_dataset[split_name] = other_split
@ -177,8 +194,8 @@ def create_subset_by_hours(
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Create a smaller subset of a downloaded Hugging Face audio dataset. "
"Copies 'dev' and 'test' splits, and samples 'train' split to a target duration, "
"using pre-existing duration column."
"Samples train, dev, and test splits to target durations using pre-existing duration column. "
"Ensures 'validation' split is renamed to 'dev'."
)
parser.add_argument(
"--full-dataset-path",
@ -193,7 +210,7 @@ if __name__ == "__main__":
type=str,
required=True,
help="The base directory where the new subset dataset(s) will be saved. "
"A subdirectory 'mls_english_subset_Xh' will be created within it."
"A subdirectory 'mls_english_subset_trainXh_devYh_testZh' will be created within it."
)
parser.add_argument(
"--target-train-hours",
@ -201,6 +218,18 @@ if __name__ == "__main__":
required=True,
help="The approximate total duration of the 'train' split in hours (e.g., 1000 for 1000 hours)."
)
parser.add_argument(
"--target-dev-hours",
type=float,
default=0.0,
help="The approximate total duration of the 'dev' split in hours (e.g., 10 for 10 hours). Set to 0 to exclude this split."
)
parser.add_argument(
"--target-test-hours",
type=float,
default=0.0,
help="The approximate total duration of the 'test' split in hours (e.g., 10 for 10 hours). Set to 0 to exclude this split."
)
parser.add_argument(
"--random-seed",
type=int,
@ -219,9 +248,23 @@ if __name__ == "__main__":
args.full_dataset_path,
args.output_base_dir,
args.target_train_hours,
args.target_dev_hours,
args.target_test_hours,
args.random_seed,
args.duration_column_name
)
output_subset_full_path = os.path.join(args.output_base_dir, f'mls_english_subset_{int(args.target_train_hours)}h')
output_subset_data_path = os.path.join(output_subset_full_path, 'data')
# Simplified load path message for clarity
output_subset_full_path_name = f'mls_english_subset_train{int(args.target_train_hours)}h_dev{int(args.target_dev_hours)}h_test{int(args.target_test_hours)}h'
output_subset_data_path = os.path.join(args.output_base_dir, output_subset_full_path_name, 'data')
print(f"\nTo use your new subset dataset, you can load it like this:")
print(f"from datasets import load_dataset")
print(f"import os, glob")
print(f"data_files = {{}}")
print(f"for split_name in ['train', 'dev', 'test']: # Or iterate through actual splits created")
print(f" split_path = os.path.join('{output_subset_data_path}', f'{{split_name}}*.parquet')")
print(f" files = glob.glob(split_path)")
print(f" if files: data_files[split_name] = files")
print(f"subset = load_dataset('parquet', data_files=data_files)")
print(f"print(subset)")