mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-11 06:55:27 +00:00
Update decode.py by copying from pruned_transducer_stateless5 and changing directory name
This commit is contained in:
parent
5dfa141ca5
commit
c8abba75a9
@ -44,21 +44,59 @@ Usage:
|
|||||||
--decoding-method modified_beam_search \
|
--decoding-method modified_beam_search \
|
||||||
--beam-size 4
|
--beam-size 4
|
||||||
|
|
||||||
(4) fast beam search
|
(4) fast beam search (one best)
|
||||||
./pruned_transducer_stateless7/decode.py \
|
./pruned_transducer_stateless7/decode.py \
|
||||||
--epoch 28 \
|
--epoch 28 \
|
||||||
--avg 15 \
|
--avg 15 \
|
||||||
--exp-dir ./pruned_transducer_stateless7/exp \
|
--exp-dir ./pruned_transducer_stateless7/exp \
|
||||||
--max-duration 600 \
|
--max-duration 600 \
|
||||||
--decoding-method fast_beam_search \
|
--decoding-method fast_beam_search \
|
||||||
--beam 4 \
|
--beam 20.0 \
|
||||||
--max-contexts 4 \
|
--max-contexts 8 \
|
||||||
--max-states 8
|
--max-states 64
|
||||||
|
|
||||||
|
(5) fast beam search (nbest)
|
||||||
|
./pruned_transducer_stateless7/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search_nbest \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64 \
|
||||||
|
--num-paths 200 \
|
||||||
|
--nbest-scale 0.5
|
||||||
|
|
||||||
|
(6) fast beam search (nbest oracle WER)
|
||||||
|
./pruned_transducer_stateless7/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search_nbest_oracle \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64 \
|
||||||
|
--num-paths 200 \
|
||||||
|
--nbest-scale 0.5
|
||||||
|
|
||||||
|
(7) fast beam search (with LG)
|
||||||
|
./pruned_transducer_stateless7/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search_nbest_LG \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
|
import math
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Dict, List, Optional, Tuple
|
from typing import Dict, List, Optional, Tuple
|
||||||
@ -70,6 +108,9 @@ import torch.nn as nn
|
|||||||
from asr_datamodule import LibriSpeechAsrDataModule
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
from beam_search import (
|
from beam_search import (
|
||||||
beam_search,
|
beam_search,
|
||||||
|
fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_LG,
|
||||||
|
fast_beam_search_nbest_oracle,
|
||||||
fast_beam_search_one_best,
|
fast_beam_search_one_best,
|
||||||
greedy_search,
|
greedy_search,
|
||||||
greedy_search_batch,
|
greedy_search_batch,
|
||||||
@ -83,6 +124,7 @@ from icefall.checkpoint import (
|
|||||||
find_checkpoints,
|
find_checkpoints,
|
||||||
load_checkpoint,
|
load_checkpoint,
|
||||||
)
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
from icefall.utils import (
|
from icefall.utils import (
|
||||||
AttributeDict,
|
AttributeDict,
|
||||||
setup_logger,
|
setup_logger,
|
||||||
@ -91,6 +133,8 @@ from icefall.utils import (
|
|||||||
write_error_stats,
|
write_error_stats,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
LOG_EPS = math.log(1e-10)
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
def get_parser():
|
||||||
parser = argparse.ArgumentParser(
|
parser = argparse.ArgumentParser(
|
||||||
@ -128,7 +172,7 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--use-averaged-model",
|
"--use-averaged-model",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=False,
|
default=True,
|
||||||
help="Whether to load averaged model. Currently it only supports "
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
"using --epoch. If True, it would decode with the averaged model "
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
@ -150,6 +194,13 @@ def get_parser():
|
|||||||
help="Path to the BPE model",
|
help="Path to the BPE model",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=Path,
|
||||||
|
default="data/lang_bpe_500",
|
||||||
|
help="The lang dir containing word table and LG graph",
|
||||||
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--decoding-method",
|
"--decoding-method",
|
||||||
type=str,
|
type=str,
|
||||||
@ -159,6 +210,11 @@ def get_parser():
|
|||||||
- beam_search
|
- beam_search
|
||||||
- modified_beam_search
|
- modified_beam_search
|
||||||
- fast_beam_search
|
- fast_beam_search
|
||||||
|
- fast_beam_search_nbest
|
||||||
|
- fast_beam_search_nbest_oracle
|
||||||
|
- fast_beam_search_nbest_LG
|
||||||
|
If you use fast_beam_search_nbest_LG, you have to specify
|
||||||
|
`--lang-dir`, which should contain `LG.pt`.
|
||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -174,27 +230,42 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--beam",
|
"--beam",
|
||||||
type=float,
|
type=float,
|
||||||
default=4,
|
default=20.0,
|
||||||
help="""A floating point value to calculate the cutoff score during beam
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
`beam` in Kaldi.
|
`beam` in Kaldi.
|
||||||
Used only when --decoding-method is fast_beam_search""",
|
Used only when --decoding-method is fast_beam_search,
|
||||||
|
fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||||
|
and fast_beam_search_nbest_oracle
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--ngram-lm-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.01,
|
||||||
|
help="""
|
||||||
|
Used only when --decoding_method is fast_beam_search_nbest_LG.
|
||||||
|
It specifies the scale for n-gram LM scores.
|
||||||
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-contexts",
|
"--max-contexts",
|
||||||
type=int,
|
type=int,
|
||||||
default=4,
|
default=8,
|
||||||
help="""Used only when --decoding-method is
|
help="""Used only when --decoding-method is
|
||||||
fast_beam_search""",
|
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||||
|
and fast_beam_search_nbest_oracle""",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-states",
|
"--max-states",
|
||||||
type=int,
|
type=int,
|
||||||
default=8,
|
default=64,
|
||||||
help="""Used only when --decoding-method is
|
help="""Used only when --decoding-method is
|
||||||
fast_beam_search""",
|
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||||
|
and fast_beam_search_nbest_oracle""",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -212,6 +283,47 @@ def get_parser():
|
|||||||
Used only when --decoding_method is greedy_search""",
|
Used only when --decoding_method is greedy_search""",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-paths",
|
||||||
|
type=int,
|
||||||
|
default=200,
|
||||||
|
help="""Number of paths for nbest decoding.
|
||||||
|
Used only when the decoding method is fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--nbest-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.5,
|
||||||
|
help="""Scale applied to lattice scores when computing nbest paths.
|
||||||
|
Used only when the decoding method is fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--simulate-streaming",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""Whether to simulate streaming in decoding, this is a good way to
|
||||||
|
test a streaming model.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decode-chunk-size",
|
||||||
|
type=int,
|
||||||
|
default=16,
|
||||||
|
help="The chunk size for decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--left-context",
|
||||||
|
type=int,
|
||||||
|
default=64,
|
||||||
|
help="left context can be seen during decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
|
||||||
add_model_arguments(parser)
|
add_model_arguments(parser)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
@ -222,6 +334,7 @@ def decode_one_batch(
|
|||||||
model: nn.Module,
|
model: nn.Module,
|
||||||
sp: spm.SentencePieceProcessor,
|
sp: spm.SentencePieceProcessor,
|
||||||
batch: dict,
|
batch: dict,
|
||||||
|
word_table: Optional[k2.SymbolTable] = None,
|
||||||
decoding_graph: Optional[k2.Fsa] = None,
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
) -> Dict[str, List[List[str]]]:
|
) -> Dict[str, List[List[str]]]:
|
||||||
"""Decode one batch and return the result in a dict. The dict has the
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
@ -245,9 +358,12 @@ def decode_one_batch(
|
|||||||
It is the return value from iterating
|
It is the return value from iterating
|
||||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
for the format of the `batch`.
|
for the format of the `batch`.
|
||||||
|
word_table:
|
||||||
|
The word symbol table.
|
||||||
decoding_graph:
|
decoding_graph:
|
||||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
only when --decoding_method is fast_beam_search.
|
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||||
Returns:
|
Returns:
|
||||||
Return the decoding result. See above description for the format of
|
Return the decoding result. See above description for the format of
|
||||||
the returned dict.
|
the returned dict.
|
||||||
@ -262,9 +378,26 @@ def decode_one_batch(
|
|||||||
supervisions = batch["supervisions"]
|
supervisions = batch["supervisions"]
|
||||||
feature_lens = supervisions["num_frames"].to(device)
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
|
feature_lens += params.left_context
|
||||||
|
feature = torch.nn.functional.pad(
|
||||||
|
feature,
|
||||||
|
pad=(0, 0, 0, params.left_context),
|
||||||
|
value=LOG_EPS,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.simulate_streaming:
|
||||||
|
encoder_out, encoder_out_lens, _ = model.encoder.streaming_forward(
|
||||||
|
x=feature,
|
||||||
|
x_lens=feature_lens,
|
||||||
|
chunk_size=params.decode_chunk_size,
|
||||||
|
left_context=params.left_context,
|
||||||
|
simulate_streaming=True,
|
||||||
|
)
|
||||||
|
else:
|
||||||
encoder_out, encoder_out_lens = model.encoder(
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
x=feature, x_lens=feature_lens
|
x=feature, x_lens=feature_lens
|
||||||
)
|
)
|
||||||
|
|
||||||
hyps = []
|
hyps = []
|
||||||
|
|
||||||
if params.decoding_method == "fast_beam_search":
|
if params.decoding_method == "fast_beam_search":
|
||||||
@ -279,6 +412,49 @@ def decode_one_batch(
|
|||||||
)
|
)
|
||||||
for hyp in sp.decode(hyp_tokens):
|
for hyp in sp.decode(hyp_tokens):
|
||||||
hyps.append(hyp.split())
|
hyps.append(hyp.split())
|
||||||
|
elif params.decoding_method == "fast_beam_search_nbest_LG":
|
||||||
|
hyp_tokens = fast_beam_search_nbest_LG(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
for hyp in hyp_tokens:
|
||||||
|
hyps.append([word_table[i] for i in hyp])
|
||||||
|
elif params.decoding_method == "fast_beam_search_nbest":
|
||||||
|
hyp_tokens = fast_beam_search_nbest(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||||
|
hyp_tokens = fast_beam_search_nbest_oracle(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
ref_texts=sp.encode(supervisions["text"]),
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
elif (
|
elif (
|
||||||
params.decoding_method == "greedy_search"
|
params.decoding_method == "greedy_search"
|
||||||
and params.max_sym_per_frame == 1
|
and params.max_sym_per_frame == 1
|
||||||
@ -326,14 +502,17 @@ def decode_one_batch(
|
|||||||
|
|
||||||
if params.decoding_method == "greedy_search":
|
if params.decoding_method == "greedy_search":
|
||||||
return {"greedy_search": hyps}
|
return {"greedy_search": hyps}
|
||||||
elif params.decoding_method == "fast_beam_search":
|
elif "fast_beam_search" in params.decoding_method:
|
||||||
return {
|
key = f"beam_{params.beam}_"
|
||||||
(
|
key += f"max_contexts_{params.max_contexts}_"
|
||||||
f"beam_{params.beam}_"
|
key += f"max_states_{params.max_states}"
|
||||||
f"max_contexts_{params.max_contexts}_"
|
if "nbest" in params.decoding_method:
|
||||||
f"max_states_{params.max_states}"
|
key += f"_num_paths_{params.num_paths}_"
|
||||||
): hyps
|
key += f"nbest_scale_{params.nbest_scale}"
|
||||||
}
|
if "LG" in params.decoding_method:
|
||||||
|
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
|
||||||
|
|
||||||
|
return {key: hyps}
|
||||||
else:
|
else:
|
||||||
return {f"beam_size_{params.beam_size}": hyps}
|
return {f"beam_size_{params.beam_size}": hyps}
|
||||||
|
|
||||||
@ -343,8 +522,9 @@ def decode_dataset(
|
|||||||
params: AttributeDict,
|
params: AttributeDict,
|
||||||
model: nn.Module,
|
model: nn.Module,
|
||||||
sp: spm.SentencePieceProcessor,
|
sp: spm.SentencePieceProcessor,
|
||||||
|
word_table: Optional[k2.SymbolTable] = None,
|
||||||
decoding_graph: Optional[k2.Fsa] = None,
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||||
"""Decode dataset.
|
"""Decode dataset.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@ -356,9 +536,12 @@ def decode_dataset(
|
|||||||
The neural model.
|
The neural model.
|
||||||
sp:
|
sp:
|
||||||
The BPE model.
|
The BPE model.
|
||||||
|
word_table:
|
||||||
|
The word symbol table.
|
||||||
decoding_graph:
|
decoding_graph:
|
||||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
only when --decoding_method is fast_beam_search.
|
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||||
Returns:
|
Returns:
|
||||||
Return a dict, whose key may be "greedy_search" if greedy search
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
@ -381,21 +564,23 @@ def decode_dataset(
|
|||||||
results = defaultdict(list)
|
results = defaultdict(list)
|
||||||
for batch_idx, batch in enumerate(dl):
|
for batch_idx, batch in enumerate(dl):
|
||||||
texts = batch["supervisions"]["text"]
|
texts = batch["supervisions"]["text"]
|
||||||
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||||
|
|
||||||
hyps_dict = decode_one_batch(
|
hyps_dict = decode_one_batch(
|
||||||
params=params,
|
params=params,
|
||||||
model=model,
|
model=model,
|
||||||
sp=sp,
|
sp=sp,
|
||||||
decoding_graph=decoding_graph,
|
decoding_graph=decoding_graph,
|
||||||
|
word_table=word_table,
|
||||||
batch=batch,
|
batch=batch,
|
||||||
)
|
)
|
||||||
|
|
||||||
for name, hyps in hyps_dict.items():
|
for name, hyps in hyps_dict.items():
|
||||||
this_batch = []
|
this_batch = []
|
||||||
assert len(hyps) == len(texts)
|
assert len(hyps) == len(texts)
|
||||||
for hyp_words, ref_text in zip(hyps, texts):
|
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||||
ref_words = ref_text.split()
|
ref_words = ref_text.split()
|
||||||
this_batch.append((ref_words, hyp_words))
|
this_batch.append((cut_id, ref_words, hyp_words))
|
||||||
|
|
||||||
results[name].extend(this_batch)
|
results[name].extend(this_batch)
|
||||||
|
|
||||||
@ -413,13 +598,14 @@ def decode_dataset(
|
|||||||
def save_results(
|
def save_results(
|
||||||
params: AttributeDict,
|
params: AttributeDict,
|
||||||
test_set_name: str,
|
test_set_name: str,
|
||||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||||
):
|
):
|
||||||
test_set_wers = dict()
|
test_set_wers = dict()
|
||||||
for key, results in results_dict.items():
|
for key, results in results_dict.items():
|
||||||
recog_path = (
|
recog_path = (
|
||||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
)
|
)
|
||||||
|
results = sorted(results)
|
||||||
store_transcripts(filename=recog_path, texts=results)
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
logging.info(f"The transcripts are stored in {recog_path}")
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
@ -468,6 +654,9 @@ def main():
|
|||||||
"greedy_search",
|
"greedy_search",
|
||||||
"beam_search",
|
"beam_search",
|
||||||
"fast_beam_search",
|
"fast_beam_search",
|
||||||
|
"fast_beam_search_nbest",
|
||||||
|
"fast_beam_search_nbest_LG",
|
||||||
|
"fast_beam_search_nbest_oracle",
|
||||||
"modified_beam_search",
|
"modified_beam_search",
|
||||||
)
|
)
|
||||||
params.res_dir = params.exp_dir / params.decoding_method
|
params.res_dir = params.exp_dir / params.decoding_method
|
||||||
@ -477,10 +666,19 @@ def main():
|
|||||||
else:
|
else:
|
||||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
if params.simulate_streaming:
|
||||||
|
params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}"
|
||||||
|
params.suffix += f"-left-context-{params.left_context}"
|
||||||
|
|
||||||
if "fast_beam_search" in params.decoding_method:
|
if "fast_beam_search" in params.decoding_method:
|
||||||
params.suffix += f"-beam-{params.beam}"
|
params.suffix += f"-beam-{params.beam}"
|
||||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
params.suffix += f"-max-states-{params.max_states}"
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
if "nbest" in params.decoding_method:
|
||||||
|
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
||||||
|
params.suffix += f"-num-paths-{params.num_paths}"
|
||||||
|
if "LG" in params.decoding_method:
|
||||||
|
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
||||||
elif "beam_search" in params.decoding_method:
|
elif "beam_search" in params.decoding_method:
|
||||||
params.suffix += (
|
params.suffix += (
|
||||||
f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||||
@ -509,6 +707,11 @@ def main():
|
|||||||
params.unk_id = sp.piece_to_id("<unk>")
|
params.unk_id = sp.piece_to_id("<unk>")
|
||||||
params.vocab_size = sp.get_piece_size()
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
if params.simulate_streaming:
|
||||||
|
assert (
|
||||||
|
params.causal_convolution
|
||||||
|
), "Decoding in streaming requires causal convolution"
|
||||||
|
|
||||||
logging.info(params)
|
logging.info(params)
|
||||||
|
|
||||||
logging.info("About to create model")
|
logging.info("About to create model")
|
||||||
@ -594,14 +797,30 @@ def main():
|
|||||||
model.to(device)
|
model.to(device)
|
||||||
model.eval()
|
model.eval()
|
||||||
|
|
||||||
if params.decoding_method == "fast_beam_search":
|
if "fast_beam_search" in params.decoding_method:
|
||||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
if params.decoding_method == "fast_beam_search_nbest_LG":
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
word_table = lexicon.word_table
|
||||||
|
lg_filename = params.lang_dir / "LG.pt"
|
||||||
|
logging.info(f"Loading {lg_filename}")
|
||||||
|
decoding_graph = k2.Fsa.from_dict(
|
||||||
|
torch.load(lg_filename, map_location=device)
|
||||||
|
)
|
||||||
|
decoding_graph.scores *= params.ngram_lm_scale
|
||||||
|
else:
|
||||||
|
word_table = None
|
||||||
|
decoding_graph = k2.trivial_graph(
|
||||||
|
params.vocab_size - 1, device=device
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
decoding_graph = None
|
decoding_graph = None
|
||||||
|
word_table = None
|
||||||
|
|
||||||
num_param = sum([p.numel() for p in model.parameters()])
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
logging.info(f"Number of model parameters: {num_param}")
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
# we need cut ids to display recognition results.
|
||||||
|
args.return_cuts = True
|
||||||
librispeech = LibriSpeechAsrDataModule(args)
|
librispeech = LibriSpeechAsrDataModule(args)
|
||||||
|
|
||||||
test_clean_cuts = librispeech.test_clean_cuts()
|
test_clean_cuts = librispeech.test_clean_cuts()
|
||||||
@ -619,6 +838,7 @@ def main():
|
|||||||
params=params,
|
params=params,
|
||||||
model=model,
|
model=model,
|
||||||
sp=sp,
|
sp=sp,
|
||||||
|
word_table=word_table,
|
||||||
decoding_graph=decoding_graph,
|
decoding_graph=decoding_graph,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user