From c6b71fc222069bfeed609492755c29ca3e074bc6 Mon Sep 17 00:00:00 2001 From: dohe0342 Date: Mon, 9 Jan 2023 19:31:07 +0900 Subject: [PATCH] from local --- .../ASR/incremental_transf/.model.py.swp | Bin 24576 -> 24576 bytes .../ASR/incremental_transf/model.py | 26 ------------------ 2 files changed, 26 deletions(-) diff --git a/egs/librispeech/ASR/incremental_transf/.model.py.swp b/egs/librispeech/ASR/incremental_transf/.model.py.swp index b0d71b1df1e880f20d493652d01267b95ff3d208..508ef2ac884cdebb996ec171eb1bd9085236591e 100644 GIT binary patch delta 508 zcmYk%ODIHP6u|Lwz0Ebu&}`V;nG$81xrDMAcQla&CFNZhDMfiq6c$8LHq;ke3s%aM zW`{DFBs(jtyjB*ZWY1r&$ydL=(|OfdPHM|Z%@Z}dTHB0J3* z2D=zT9ljhQSBPUDdzf;_l1vg9xXTyW!Y2Aqg)BVhiKMWD7@FZl35xM^&I9hTiWNlB zgm=zO;T-E2M;I20@R(h}aJI-chB1U%=y2dJOJo7_iH>k(re>(KYLD7z461=hsU7=N zPo&(A4Ru-Vr0!GQk(P9~kM5xA{q4#f9h{hq#r*#^`R%EYozwsR^ad{*0@{q7pG!PM OtQ>V*<4h#mE%!HMtS(m zZOX11YUpUFf1s@>njCU!3JU5Cec%Nj_zqwAls&ENX|bj3T;A>;?#l`>MUI-c%k_F} z-qecjhN&{)FQ3Sa|NmH2Q7h%_cZlpEk1jOBA|JTN368Od1mbA4i(KOh2Ux=(2B728 z;4QYWi5wD$<2@u&#SRuQ5)wxultxhG4pnSp8fhfaiO)8XN1UO8RoIxoI1D`LA~mdF z2uYZT;H6dM8Hbp}Pe9}w4}o5hQ_4CD$iRm;Ho8Cs4tCwrSh_`JbAEL`l~TX6y7ERX WW!R>&>>l^ER12z`{;=y6tmq#}Xhin_ diff --git a/egs/librispeech/ASR/incremental_transf/model.py b/egs/librispeech/ASR/incremental_transf/model.py index 7c0138405..cc5fac241 100644 --- a/egs/librispeech/ASR/incremental_transf/model.py +++ b/egs/librispeech/ASR/incremental_transf/model.py @@ -248,32 +248,6 @@ class Interformer(nn.Module): warmup=warmup, get_layer_output=True ) - assert torch.all(x_lens > 0) - - # Now for the decoder, i.e., the prediction network - row_splits = y.shape.row_splits(1) - y_lens = row_splits[1:] - row_splits[:-1] - - blank_id = self.decoder.blank_id - sos_y = add_sos(y, sos_id=blank_id) - - # sos_y_padded: [B, S + 1], start with SOS. - sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id) - - # decoder_out: [B, S + 1, decoder_dim] - decoder_out = self.decoder(sos_y_padded) - - # Note: y does not start with SOS - # y_padded : [B, S] - y_padded = y.pad(mode="constant", padding_value=0) - - y_padded = y_padded.to(torch.int64) - boundary = torch.zeros((x.size(0), 4), dtype=torch.int64, device=x.device) - boundary[:, 2] = y_lens - boundary[:, 3] = x_lens - - lm = self.simple_lm_proj(decoder_out) - am = self.simple_am_proj(encoder_out) with torch.cuda.amp.autocast(enabled=False): simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(