Update RESULTS.md.

This commit is contained in:
Fangjun Kuang 2022-03-12 15:23:12 +08:00
parent d9beb73869
commit c5291c828c
6 changed files with 130 additions and 231 deletions

View File

@ -84,7 +84,7 @@ The best WER using modified beam search with beam size 4 is:
| | test-clean | test-other | | | test-clean | test-other |
|-----|------------|------------| |-----|------------|------------|
| WER | 2.61 | 6.46 | | WER | 2.56 | 6.27 |
Note: No auxiliary losses are used in the training and no LMs are used Note: No auxiliary losses are used in the training and no LMs are used
in the decoding. in the decoding.

View File

@ -15,6 +15,7 @@ The following table lists the differences among them.
| `transducer_stateless` | Conformer | Embedding + Conv1d | | | `transducer_stateless` | Conformer | Embedding + Conv1d | |
| `transducer_lstm` | LSTM | LSTM | | | `transducer_lstm` | LSTM | LSTM | |
| `transducer_stateless_multi_datasets` | Conformer | Embedding + Conv1d | Using data from GigaSpeech as extra training data | | `transducer_stateless_multi_datasets` | Conformer | Embedding + Conv1d | Using data from GigaSpeech as extra training data |
| `pruned_transducer_stateless` | Conformer | Embedding + Conv1d | Using k2 pruned RNN-T loss |
The decoder in `transducer_stateless` is modified from the paper The decoder in `transducer_stateless` is modified from the paper
[Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419/). [Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419/).

View File

@ -2,12 +2,111 @@
### LibriSpeech BPE training results (Pruned Transducer) ### LibriSpeech BPE training results (Pruned Transducer)
#### Conformer encoder + embedding decoder
Conformer encoder + non-current decoder. The decoder Conformer encoder + non-current decoder. The decoder
contains only an embedding layer, a Conv1d (with kernel size 2) and a linear contains only an embedding layer, a Conv1d (with kernel size 2) and a linear
layer (to transform tensor dim). layer (to transform tensor dim).
#### 2022-03-12
[pruned_transducer_stateless](./pruned_transducer_stateless)
Using commit `1603744469d167d848e074f2ea98c587153205fa`.
See <https://github.com/k2-fsa/icefall/pull/248>
The WERs are:
| | test-clean | test-other | comment |
|-------------------------------------|------------|------------|------------------------------------------|
| greedy search (max sym per frame 1) | 2.62 | 6.37 | --epoch 42, --avg 11, --max-duration 100 |
| greedy search (max sym per frame 2) | 2.62 | 6.37 | --epoch 42, --avg 11, --max-duration 100 |
| greedy search (max sym per frame 3) | 2.62 | 6.37 | --epoch 42, --avg 11, --max-duration 100 |
| modified beam search (beam size 4) | 2.56 | 6.27 | --epoch 39, --avg 15, --max-duration 100 |
| beam search (beam size 4) | 2.57 | 6.27 | --epoch 39, --avg 15, --max-duration 100 |
The decoding time for `test-clean` and `test-other` is given below:
(A V100 GPU with 32 GB RAM is used for decoding. Note: Not all GPU RAM is used during decoding.)
| decoding method | test-clean (seconds) | test-other (seconds)|
|---|---:|---:|
| greedy search (--max-sym-per-frame=1) | 160 | 159 |
| greedy search (--max-sym-per-frame=2) | 184 | 177 |
| greedy search (--max-sym-per-frame=3) | 210 | 213 |
| modified beam search (--beam-size 4)| 273 | 269 |
|beam search (--beam-size 4) | 2741 | 2221 |
We recommend you to use `modified_beam_search`.
Training command:
```bash
cd egs/librispeech/ASR/
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
. path.sh
./pruned_transducer_stateless/train.py \
--world-size 8 \
--num-epochs 60 \
--start-epoch 0 \
--exp-dir pruned_transducer_stateless/exp \
--full-libri 1 \
--max-duration 300 \
--prune-range 5 \
--lr-factor 5 \
--lm-scale 0.25
```
The tensorboard training log can be found at
<https://tensorboard.dev/experiment/WKRFY5fYSzaVBHahenpNlA/>
The command for decoding is:
```bash
epoch=42
avg=11
sym=1
# greedy search
./pruned_transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless/exp \
--max-duration 100 \
--decoding-method greedy_search \
--beam-size 4 \
--max-sym-per-frame $sym
# modified beam search
./pruned_transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless/exp \
--max-duration 100 \
--decoding-method modified_beam_search \
--beam-size 4
# beam search
# (not recommended)
./pruned_transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless/exp \
--max-duration 100 \
--decoding-method beam_search \
--beam-size 4
```
You can find a pre-trained model, decoding logs, and decoding results at
<https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12>
#### 2022-02-18
[pruned_transducer_stateless](./pruned_transducer_stateless)
The WERs are The WERs are
| | test-clean | test-other | comment | | | test-clean | test-other | comment |
@ -62,7 +161,7 @@ See
##### 2022-03-01 ##### 2022-03-01
Using commit `fill in it after merging`. Using commit `2332ba312d7ce72f08c7bac1e3312f7e3dd722dc`.
It uses [GigaSpeech](https://github.com/SpeechColab/GigaSpeech) It uses [GigaSpeech](https://github.com/SpeechColab/GigaSpeech)
as extra training data. 20% of the time it selects a batch from L subset of as extra training data. 20% of the time it selects a batch from L subset of
@ -129,6 +228,9 @@ sym=1
--beam-size 4 --beam-size 4
``` ```
You can find a pretrained model by visiting
<https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01>
##### 2022-02-07 ##### 2022-02-07

View File

@ -56,13 +56,9 @@ import torch
import torch.nn as nn import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule from asr_datamodule import LibriSpeechAsrDataModule
from beam_search import beam_search, greedy_search, modified_beam_search from beam_search import beam_search, greedy_search, modified_beam_search
from conformer import Conformer from train import get_params, get_transducer_model
from decoder import Decoder
from joiner import Joiner
from model import Transducer
from icefall.checkpoint import average_checkpoints, load_checkpoint from icefall.checkpoint import average_checkpoints, load_checkpoint
from icefall.env import get_env_info
from icefall.utils import ( from icefall.utils import (
AttributeDict, AttributeDict,
setup_logger, setup_logger,
@ -143,72 +139,6 @@ def get_parser():
return parser return parser
def get_params() -> AttributeDict:
params = AttributeDict(
{
# parameters for conformer
"feature_dim": 80,
"subsampling_factor": 4,
"attention_dim": 512,
"nhead": 8,
"dim_feedforward": 2048,
"num_encoder_layers": 12,
"vgg_frontend": False,
# parameters for decoder
"embedding_dim": 512,
"env_info": get_env_info(),
}
)
return params
def get_encoder_model(params: AttributeDict) -> nn.Module:
# TODO: We can add an option to switch between Conformer and Transformer
encoder = Conformer(
num_features=params.feature_dim,
output_dim=params.vocab_size,
subsampling_factor=params.subsampling_factor,
d_model=params.attention_dim,
nhead=params.nhead,
dim_feedforward=params.dim_feedforward,
num_encoder_layers=params.num_encoder_layers,
vgg_frontend=params.vgg_frontend,
)
return encoder
def get_decoder_model(params: AttributeDict) -> nn.Module:
decoder = Decoder(
vocab_size=params.vocab_size,
embedding_dim=params.embedding_dim,
blank_id=params.blank_id,
context_size=params.context_size,
)
return decoder
def get_joiner_model(params: AttributeDict) -> nn.Module:
joiner = Joiner(
input_dim=params.vocab_size,
inner_dim=params.embedding_dim,
output_dim=params.vocab_size,
)
return joiner
def get_transducer_model(params: AttributeDict) -> nn.Module:
encoder = get_encoder_model(params)
decoder = get_decoder_model(params)
joiner = get_joiner_model(params)
model = Transducer(
encoder=encoder,
decoder=decoder,
joiner=joiner,
)
return model
def decode_one_batch( def decode_one_batch(
params: AttributeDict, params: AttributeDict,
model: nn.Module, model: nn.Module,
@ -489,8 +419,5 @@ def main():
logging.info("Done!") logging.info("Done!")
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
if __name__ == "__main__": if __name__ == "__main__":
main() main()

View File

@ -39,7 +39,7 @@ you can do:
--exp-dir ./pruned_transducer_stateless/exp \ --exp-dir ./pruned_transducer_stateless/exp \
--epoch 9999 \ --epoch 9999 \
--avg 1 \ --avg 1 \
--max-duration 1 \ --max-duration 100 \
--bpe-model data/lang_bpe_500/bpe.model --bpe-model data/lang_bpe_500/bpe.model
""" """
@ -49,15 +49,10 @@ from pathlib import Path
import sentencepiece as spm import sentencepiece as spm
import torch import torch
import torch.nn as nn from train import get_params, get_transducer_model
from conformer import Conformer
from decoder import Decoder
from joiner import Joiner
from model import Transducer
from icefall.checkpoint import average_checkpoints, load_checkpoint from icefall.checkpoint import average_checkpoints, load_checkpoint
from icefall.env import get_env_info from icefall.utils import str2bool
from icefall.utils import AttributeDict, str2bool
def get_parser(): def get_parser():
@ -117,71 +112,6 @@ def get_parser():
return parser return parser
def get_params() -> AttributeDict:
params = AttributeDict(
{
# parameters for conformer
"feature_dim": 80,
"subsampling_factor": 4,
"attention_dim": 512,
"nhead": 8,
"dim_feedforward": 2048,
"num_encoder_layers": 12,
"vgg_frontend": False,
# parameters for decoder
"embedding_dim": 512,
"env_info": get_env_info(),
}
)
return params
def get_encoder_model(params: AttributeDict) -> nn.Module:
encoder = Conformer(
num_features=params.feature_dim,
output_dim=params.vocab_size,
subsampling_factor=params.subsampling_factor,
d_model=params.attention_dim,
nhead=params.nhead,
dim_feedforward=params.dim_feedforward,
num_encoder_layers=params.num_encoder_layers,
vgg_frontend=params.vgg_frontend,
)
return encoder
def get_decoder_model(params: AttributeDict) -> nn.Module:
decoder = Decoder(
vocab_size=params.vocab_size,
embedding_dim=params.embedding_dim,
blank_id=params.blank_id,
context_size=params.context_size,
)
return decoder
def get_joiner_model(params: AttributeDict) -> nn.Module:
joiner = Joiner(
input_dim=params.vocab_size,
inner_dim=params.embedding_dim,
output_dim=params.vocab_size,
)
return joiner
def get_transducer_model(params: AttributeDict) -> nn.Module:
encoder = get_encoder_model(params)
decoder = get_decoder_model(params)
joiner = get_joiner_model(params)
model = Transducer(
encoder=encoder,
decoder=decoder,
joiner=joiner,
)
return model
def main(): def main():
args = get_parser().parse_args() args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir) args.exp_dir = Path(args.exp_dir)

View File

@ -49,17 +49,10 @@ from typing import List
import kaldifeat import kaldifeat
import sentencepiece as spm import sentencepiece as spm
import torch import torch
import torch.nn as nn
import torchaudio import torchaudio
from beam_search import beam_search, greedy_search from beam_search import beam_search, greedy_search, modified_beam_search
from conformer import Conformer
from decoder import Decoder
from joiner import Joiner
from model import Transducer
from torch.nn.utils.rnn import pad_sequence from torch.nn.utils.rnn import pad_sequence
from train import get_params, get_transducer_model
from icefall.env import get_env_info
from icefall.utils import AttributeDict
def get_parser(): def get_parser():
@ -91,6 +84,7 @@ def get_parser():
help="""Possible values are: help="""Possible values are:
- greedy_search - greedy_search
- beam_search - beam_search
- modified_beam_search
""", """,
) )
@ -104,11 +98,18 @@ def get_parser():
"The sample rate has to be 16kHz.", "The sample rate has to be 16kHz.",
) )
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="The sample rate of the input sound file",
)
parser.add_argument( parser.add_argument(
"--beam-size", "--beam-size",
type=int, type=int,
default=4, default=4,
help="Used only when --method is beam_search", help="Used only when --method is beam_search and modified_beam_search",
) )
parser.add_argument( parser.add_argument(
@ -130,72 +131,6 @@ def get_parser():
return parser return parser
def get_params() -> AttributeDict:
params = AttributeDict(
{
"sample_rate": 16000,
# parameters for conformer
"feature_dim": 80,
"subsampling_factor": 4,
"attention_dim": 512,
"nhead": 8,
"dim_feedforward": 2048,
"num_encoder_layers": 12,
"vgg_frontend": False,
# parameters for decoder
"embedding_dim": 512,
"env_info": get_env_info(),
}
)
return params
def get_encoder_model(params: AttributeDict) -> nn.Module:
encoder = Conformer(
num_features=params.feature_dim,
output_dim=params.vocab_size,
subsampling_factor=params.subsampling_factor,
d_model=params.attention_dim,
nhead=params.nhead,
dim_feedforward=params.dim_feedforward,
num_encoder_layers=params.num_encoder_layers,
vgg_frontend=params.vgg_frontend,
)
return encoder
def get_decoder_model(params: AttributeDict) -> nn.Module:
decoder = Decoder(
vocab_size=params.vocab_size,
embedding_dim=params.embedding_dim,
blank_id=params.blank_id,
context_size=params.context_size,
)
return decoder
def get_joiner_model(params: AttributeDict) -> nn.Module:
joiner = Joiner(
input_dim=params.vocab_size,
inner_dim=params.embedding_dim,
output_dim=params.vocab_size,
)
return joiner
def get_transducer_model(params: AttributeDict) -> nn.Module:
encoder = get_encoder_model(params)
decoder = get_decoder_model(params)
joiner = get_joiner_model(params)
model = Transducer(
encoder=encoder,
decoder=decoder,
joiner=joiner,
)
return model
def read_sound_files( def read_sound_files(
filenames: List[str], expected_sample_rate: float filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]: ) -> List[torch.Tensor]:
@ -220,6 +155,7 @@ def read_sound_files(
return ans return ans
@torch.no_grad()
def main(): def main():
parser = get_parser() parser = get_parser()
args = parser.parse_args() args = parser.parse_args()
@ -278,10 +214,9 @@ def main():
feature_lengths = torch.tensor(feature_lengths, device=device) feature_lengths = torch.tensor(feature_lengths, device=device)
with torch.no_grad(): encoder_out, encoder_out_lens = model.encoder(
encoder_out, encoder_out_lens = model.encoder( x=features, x_lens=feature_lengths
x=features, x_lens=feature_lengths )
)
num_waves = encoder_out.size(0) num_waves = encoder_out.size(0)
hyps = [] hyps = []
@ -303,6 +238,10 @@ def main():
hyp = beam_search( hyp = beam_search(
model=model, encoder_out=encoder_out_i, beam=params.beam_size model=model, encoder_out=encoder_out_i, beam=params.beam_size
) )
elif params.method == "modified_beam_search":
hyp = modified_beam_search(
model=model, encoder_out=encoder_out_i, beam=params.beam_size
)
else: else:
raise ValueError(f"Unsupported method: {params.method}") raise ValueError(f"Unsupported method: {params.method}")