[WIP] A lip reading recipe (GRID recipe) based on icefall

This commit is contained in:
Mingshuang Luo 2021-12-15 22:11:57 +08:00
parent 5d314b03c5
commit c4c8d02934
12 changed files with 2115 additions and 0 deletions

View File

View File

@ -0,0 +1,497 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
# Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Optional, Tuple
from utils import encode_supervisions
import k2
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from local.dataset import dataset_GRID
from model import LipNet
from icefall.checkpoint import average_checkpoints, load_checkpoint
from icefall.decode import (
get_lattice,
nbest_decoding,
one_best_decoding,
rescore_with_n_best_list,
rescore_with_whole_lattice,
)
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
get_texts,
setup_logger,
store_transcripts,
str2bool,
write_error_stats,
)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=19,
help="It specifies the checkpoint to use for decoding."
"Note: Epoch counts from 0.",
)
parser.add_argument(
"--avg",
type=int,
default=5,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch'. ",
)
parser.add_argument(
"--method",
type=str,
default="whole-lattice-rescoring",
help="""Decoding method.
Supported values are:
- (1) 1best. Extract the best path from the decoding lattice as the
decoding result.
- (2) nbest. Extract n paths from the decoding lattice; the path
with the highest score is the decoding result.
- (3) nbest-rescoring. Extract n paths from the decoding lattice,
rescore them with an n-gram LM (e.g., a 4-gram LM), the path with
the highest score is the decoding result.
- (4) whole-lattice-rescoring. Rescore the decoding lattice with an
n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice
is the decoding result.
""",
)
parser.add_argument(
"--num-paths",
type=int,
default=100,
help="""Number of paths for n-best based decoding method.
Used only when "method" is one of the following values:
nbest, nbest-rescoring
""",
)
parser.add_argument(
"--nbest-scale",
type=float,
default=0.5,
help="""The scale to be applied to `lattice.scores`.
It's needed if you use any kinds of n-best based rescoring.
Used only when "method" is one of the following values:
nbest, nbest-rescoring
A smaller value results in more unique paths.
""",
)
parser.add_argument(
"--export",
type=str2bool,
default=False,
help="""When enabled, the averaged model is saved to
tdnn/exp/pretrained.pt. Note: only model.state_dict() is saved.
pretrained.pt contains a dict {"model": model.state_dict()},
which can be loaded by `icefall.checkpoint.load_checkpoint()`.
""",
)
return parser
def get_params() -> AttributeDict:
params = AttributeDict(
{
"exp_dir": Path("lipnet_ctc_vsr/exp"),
"lang_dir": Path("data/lang_character"),
"lm_dir": Path("data/lm"),
"search_beam": 20,
"output_beam": 5,
"min_active_states": 30,
"max_active_states": 10000,
"use_double_scores": True,
# parameters for dataset
"video_path": Path("download/GRID/lip/"),
"anno_path": Path("download/GRID/GRID_align_txt"),
"val_list": Path("download/GRID/unseen_val.txt"),
"vid_padding": 75,
"num_workers": 1,
"batch_size": 120,
}
)
return params
def decode_one_batch(
params: AttributeDict,
model: nn.Module,
HLG: k2.Fsa,
batch: dict,
lexicon: Lexicon,
G: Optional[k2.Fsa] = None,
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
- key: It indicates the setting used for decoding. For example,
if no rescoring is used, the key is the string `no_rescore`.
If LM rescoring is used, the key is the string `lm_scale_xxx`,
where `xxx` is the value of `lm_scale`. An example key is
`lm_scale_0.7`
- value: It contains the decoding result. `len(value)` equals to
batch size. `value[i]` is the decoding result for the i-th
utterance in the given batch.
Args:
params:
It's the return value of :func:`get_params`.
- params.method is "1best", it uses 1best decoding without LM rescoring.
- params.method is "nbest", it uses nbest decoding without LM rescoring.
- params.method is "nbest-rescoring", it uses nbest LM rescoring.
- params.method is "whole-lattice-rescoring", it uses whole lattice LM
rescoring.
model:
The neural model.
HLG:
The decoding graph.
batch:
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
for the format of the `batch`.
lexicon:
It contains word symbol table.
G:
An LM. It is not None when params.method is "nbest-rescoring"
or "whole-lattice-rescoring". In general, the G in HLG
is a 3-gram LM, while this G is a 4-gram LM.
Returns:
Return the decoding result. See above description for the format of
the returned dict.
"""
device = HLG.device
feature = batch["vid"]
assert feature.ndim == 5
feature = feature.to(device)
nnet_output = model(feature)
nnet_output_shape = nnet_output.size()
supervision_segments, text = encode_supervisions(nnet_output_shape, batch)
lattice = get_lattice(
nnet_output=nnet_output,
decoding_graph=HLG,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,
min_active_states=params.min_active_states,
max_active_states=params.max_active_states,
)
if params.method in ["1best", "nbest"]:
if params.method == "1best":
best_path = one_best_decoding(
lattice=lattice, use_double_scores=params.use_double_scores
)
key = "no_rescore"
else:
best_path = nbest_decoding(
lattice=lattice,
num_paths=params.num_paths,
use_double_scores=params.use_double_scores,
nbest_scale=params.nbest_scale,
)
key = f"no_rescore-{params.num_paths}"
hyps = get_texts(best_path)
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
return {key: hyps}
assert params.method in ["nbest-rescoring", "whole-lattice-rescoring"]
lm_scale_list = [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09]
lm_scale_list += [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
if params.method == "nbest-rescoring":
best_path_dict = rescore_with_n_best_list(
lattice=lattice,
G=G,
num_paths=params.num_paths,
lm_scale_list=lm_scale_list,
nbest_scale=params.nbest_scale,
)
else:
best_path_dict = rescore_with_whole_lattice(
lattice=lattice,
G_with_epsilon_loops=G,
lm_scale_list=lm_scale_list,
)
ans = dict()
for lm_scale_str, best_path in best_path_dict.items():
hyps = get_texts(best_path)
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
ans[lm_scale_str] = hyps
return ans
def decode_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
HLG: k2.Fsa,
lexicon: Lexicon,
G: Optional[k2.Fsa] = None,
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
"""Decode dataset.
Args:
dl:
PyTorch's dataloader containing the dataset to decode.
params:
It is returned by :func:`get_params`.
model:
The neural model.
HLG:
The decoding graph.
lexicon:
It contains word symbol table.
G:
An LM. It is not None when params.method is "nbest-rescoring"
or "whole-lattice-rescoring". In general, the G in HLG
is a 3-gram LM, while this G is a 4-gram LM.
Returns:
Return a dict, whose key may be "no-rescore" if no LM rescoring
is used, or it may be "lm_scale_0.7" if LM rescoring is used.
Its value is a list of tuples. Each tuple contains two elements:
The first is the reference transcript, and the second is the
predicted result.
"""
results = []
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):
texts = batch["txt"]
hyps_dict = decode_one_batch(
params=params,
model=model,
HLG=HLG,
batch=batch,
lexicon=lexicon,
G=G,
)
for lm_scale, hyps in hyps_dict.items():
this_batch = []
assert len(hyps) == len(texts)
for hyp_words, ref_text in zip(hyps, texts):
ref_words = ref_text.split()
this_batch.append((ref_words, hyp_words))
results[lm_scale].extend(this_batch)
num_cuts += len(batch["txt"])
if batch_idx % 10 == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(
f"batch {batch_str}, cuts processed until now is {num_cuts}"
)
return results
def save_results(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
):
test_set_wers = dict()
for key, results in results_dict.items():
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt"
store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out PERs, per-phone error statistics and aligned
# ref/hyp pairs.
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
with open(errs_filename, "w") as f:
wer = write_error_stats(f, f"{test_set_name}-{key}", results)
test_set_wers[key] = wer
logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = params.exp_dir / f"per-summary-{test_set_name}.txt"
with open(errs_info, "w") as f:
print("settings\tPER", file=f)
for key, val in test_set_wers:
print("{}\t{}".format(key, val), file=f)
s = "\nFor {}, PER of different settings are:\n".format(test_set_name)
note = "\tbest for {}".format(test_set_name)
for key, val in test_set_wers:
s += "{}\t{}{}\n".format(key, val, note)
note = ""
logging.info(s)
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
params = get_params()
params.update(vars(args))
setup_logger(f"{params.exp_dir}/log/log-decode")
logging.info("Decoding started")
logging.info(params)
lexicon = Lexicon(params.lang_dir)
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
HLG = k2.Fsa.from_dict(
torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
)
HLG = HLG.to(device)
assert HLG.requires_grad is False
if not hasattr(HLG, "lm_scores"):
HLG.lm_scores = HLG.scores.clone()
if params.method in ["nbest-rescoring", "whole-lattice-rescoring"]:
if not (params.lm_dir / "G_4_gram.pt").is_file():
logging.info("Loading G_4_gram.fst.txt")
logging.warning("It may take 8 minutes.")
with open(params.lm_dir / "G_4_gram.fst.txt") as f:
first_word_disambig_id = lexicon.word_table["#0"]
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
# G.aux_labels is not needed in later computations, so
# remove it here.
del G.aux_labels
# CAUTION: The following line is crucial.
# Arcs entering the back-off state have label equal to #0.
# We have to change it to 0 here.
G.labels[G.labels >= first_word_disambig_id] = 0
G = k2.Fsa.from_fsas([G]).to(device)
G = k2.arc_sort(G)
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
else:
logging.info("Loading pre-compiled G_4_gram.pt")
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location="cpu")
G = k2.Fsa.from_dict(d).to(device)
if params.method == "whole-lattice-rescoring":
# Add epsilon self-loops to G as we will compose
# it with the whole lattice later
G = k2.add_epsilon_self_loops(G)
G = k2.arc_sort(G)
G = G.to(device)
# G.lm_scores is used to replace HLG.lm_scores during
# LM rescoring.
G.lm_scores = G.scores.clone()
else:
G = None
model = LipNet()
if params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if start >= 0:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.load_state_dict(average_checkpoints(filenames))
if params.export:
logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
torch.save(
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
)
return
model.to(device)
model.eval()
grid = dataset_GRID(
params.video_path,
params.anno_path,
params.val_list,
params.vid_padding,
"test",
)
test_dl = DataLoader(
grid,
batch_size=params.batch_size,
shuffle=False,
num_workers=params.num_workers,
drop_last=False,
)
test_set = "test"
results_dict = decode_dataset(
dl=test_dl,
params=params,
model=model,
HLG=HLG,
lexicon=lexicon,
G=G,
)
save_results(
params=params, test_set_name=test_set, results_dict=results_dict
)
logging.info("Done!")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,62 @@
#!/usr/bin/env python3
import torch
import torch.nn as nn
class LipNet(torch.nn.Module):
def __init__(self, dropout_p=0.1):
super(LipNet, self).__init__()
self.conv1 = nn.Conv3d(3, 32, (3, 5, 5), (1, 2, 2), (1, 2, 2))
self.pool1 = nn.MaxPool3d((1, 2, 2), (1, 2, 2))
self.conv2 = nn.Conv3d(32, 64, (3, 5, 5), (1, 1, 1), (1, 2, 2))
self.pool2 = nn.MaxPool3d((1, 2, 2), (1, 2, 2))
self.conv3 = nn.Conv3d(64, 96, (3, 3, 3), (1, 1, 1), (1, 1, 1))
self.pool3 = nn.MaxPool3d((1, 2, 2), (1, 2, 2))
self.gru1 = nn.GRU(96 * 4 * 8, 256, 1, bidirectional=True)
self.gru2 = nn.GRU(512, 256, 1, bidirectional=True)
self.FC = nn.Linear(512, 28)
self.dropout_p = dropout_p
self.relu = nn.ReLU(inplace=True)
self.dropout = nn.Dropout(self.dropout_p)
self.dropout3d = nn.Dropout3d(self.dropout_p)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.dropout3d(x)
x = self.pool1(x)
x = self.conv2(x)
x = self.relu(x)
x = self.dropout3d(x)
x = self.pool2(x)
x = self.conv3(x)
x = self.relu(x)
x = self.dropout3d(x)
x = self.pool3(x)
# (B, C, T, H, W)->(T, B, C, H, W)
x = x.permute(2, 0, 1, 3, 4).contiguous()
# (B, C, T, H, W)->(T, B, C*H*W)
x = x.view(x.size(0), x.size(1), -1)
self.gru1.flatten_parameters()
self.gru2.flatten_parameters()
x, h = self.gru1(x)
x = self.dropout(x)
x, h = self.gru2(x)
x = self.dropout(x)
x = x.permute(1, 0, 2).contiguous()
x = self.FC(x)
x = nn.functional.log_softmax(x, dim=-1)
return x

View File

@ -0,0 +1,606 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
# Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
from pathlib import Path
from shutil import copyfile
from typing import Optional, Tuple
from utils import encode_supervisions
import k2
import torch
import torch.multiprocessing as mp
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from local.dataset import dataset_GRID
from lhotse.utils import fix_random_seed
from model import LipNet
from torch import Tensor
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.utils import clip_grad_norm_
from torch.optim.lr_scheduler import StepLR
from torch.utils.tensorboard import SummaryWriter
from icefall.checkpoint import load_checkpoint
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
from icefall.dist import cleanup_dist, setup_dist
from icefall.graph_compiler import CtcTrainingGraphCompiler
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
MetricsTracker,
get_env_info,
setup_logger,
str2bool,
)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--world-size",
type=int,
default=1,
help="Number of GPUs for DDP training.",
)
parser.add_argument(
"--master-port",
type=int,
default=12354,
help="Master port to use for DDP training.",
)
parser.add_argument(
"--tensorboard",
type=str2bool,
default=True,
help="Should various information be logged in tensorboard.",
)
parser.add_argument(
"--num-epochs",
type=int,
default=30,
help="Number of epochs to train.",
)
parser.add_argument(
"--start-epoch",
type=int,
default=0,
help="""Resume training from from this epoch.
If it is positive, it will load checkpoint from
tdnn_lstm_ctc/exp/epoch-{start_epoch-1}.pt
""",
)
return parser
def get_params() -> AttributeDict:
"""Return a dict containing training parameters.
All training related parameters that are not passed from the commandline
is saved in the variable `params`.
Commandline options are merged into `params` after they are parsed, so
you can also access them via `params`.
Explanation of options saved in `params`:
- exp_dir: It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
- lang_dir: It contains language related input files such as
"lexicon.txt"
- lr: It specifies the initial learning rate
- feature_dim: The model input dim. It has to match the one used
in computing features.
- weight_decay: The weight_decay for the optimizer.
- subsampling_factor: The subsampling factor for the model.
- best_train_loss: Best training loss so far. It is used to select
the model that has the lowest training loss. It is
updated during the training.
- best_valid_loss: Best validation loss so far. It is used to select
the model that has the lowest validation loss. It is
updated during the training.
- best_train_epoch: It is the epoch that has the best training loss.
- best_valid_epoch: It is the epoch that has the best validation loss.
- batch_idx_train: Used to writing statistics to tensorboard. It
contains number of batches trained so far across
epochs.
- log_interval: Print training loss if batch_idx % log_interval` is 0
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
- valid_interval: Run validation if batch_idx % valid_interval` is 0
- beam_size: It is used in k2.ctc_loss
- reduction: It is used in k2.ctc_loss
- use_double_scores: It is used in k2.ctc_loss
"""
params = AttributeDict(
{
"exp_dir": Path("lipnet_ctc_vsr/exp"),
"lang_dir": Path("data/lang_character"),
"lr": 4e-4,
"feature_dim": 80,
"weight_decay": 5e-4,
"subsampling_factor": 3,
"best_train_loss": float("inf"),
"best_valid_loss": float("inf"),
"best_train_epoch": -1,
"best_valid_epoch": -1,
"batch_idx_train": 0,
"log_interval": 1,
"reset_interval": 200,
"valid_interval": 1000,
"beam_size": 10,
"reduction": "sum",
"use_double_scores": True,
"env_info": get_env_info(),
# parameters for dataset
"video_path": Path("download/GRID/lip/"),
"anno_path": Path("download/GRID/GRID_align_txt"),
"train_list": Path("download/GRID/unseen_train.txt"),
"vid_padding": 75,
"aud_padding": 200,
"num_workers": 1,
"batch_size": 120,
}
)
return params
def load_checkpoint_if_available(
params: AttributeDict,
model: nn.Module,
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
) -> None:
"""Load checkpoint from file.
If params.start_epoch is positive, it will load the checkpoint from
`params.start_epoch - 1`. Otherwise, this function does nothing.
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
and `best_valid_loss` in `params`.
Args:
params:
The return value of :func:`get_params`.
model:
The training model.
optimizer:
The optimizer that we are using.
scheduler:
The learning rate scheduler we are using.
Returns:
Return None.
"""
if params.start_epoch <= 0:
return
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
saved_params = load_checkpoint(
filename,
model=model,
optimizer=optimizer,
scheduler=scheduler,
)
keys = [
"best_train_epoch",
"best_valid_epoch",
"batch_idx_train",
"best_train_loss",
"best_valid_loss",
]
for k in keys:
params[k] = saved_params[k]
return saved_params
def save_checkpoint(
params: AttributeDict,
model: nn.Module,
optimizer: torch.optim.Optimizer,
scheduler: torch.optim.lr_scheduler._LRScheduler,
rank: int = 0,
) -> None:
"""Save model, optimizer, scheduler and training stats to file.
Args:
params:
It is returned by :func:`get_params`.
model:
The training model.
"""
if rank != 0:
return
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
save_checkpoint_impl(
filename=filename,
model=model,
params=params,
optimizer=optimizer,
scheduler=scheduler,
rank=rank,
)
if params.best_train_epoch == params.cur_epoch:
best_train_filename = params.exp_dir / "best-train-loss.pt"
copyfile(src=filename, dst=best_train_filename)
if params.best_valid_epoch == params.cur_epoch:
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
copyfile(src=filename, dst=best_valid_filename)
def compute_loss(
params: AttributeDict,
model: nn.Module,
batch: dict,
graph_compiler: CtcTrainingGraphCompiler,
is_training: bool,
) -> Tuple[Tensor, MetricsTracker]:
"""
Compute CTC loss given the model and its inputs.
Args:
params:
Parameters for training. See :func:`get_params`.
model:
The model for training. It is an instance of TdnnLstm in our case.
batch:
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
for the content in it.
graph_compiler:
It is used to build a decoding graph from a ctc topo and training
transcript. The training transcript is contained in the given `batch`,
while the ctc topo is built when this compiler is instantiated.
is_training:
True for training. False for validation. When it is True, this
function enables autograd during computation; when it is False, it
disables autograd.
"""
device = graph_compiler.device
feature = batch["vid"]
assert feature.ndim == 5
feature = feature.to(device)
with torch.set_grad_enabled(is_training):
nnet_output = model(feature)
# NOTE: We need `encode_supervisions` to sort sequences with
# different duration in decreasing order, required by
# `k2.intersect_dense` called in `k2.ctc_loss`
supervision_segments, texts = encode_supervisions(nnet_output.size(), batch)
decoding_graph = graph_compiler.compile(texts)
dense_fsa_vec = k2.DenseFsaVec(
nnet_output,
supervision_segments,
)
loss = k2.ctc_loss(
decoding_graph=decoding_graph,
dense_fsa_vec=dense_fsa_vec,
output_beam=params.beam_size,
reduction=params.reduction,
use_double_scores=params.use_double_scores,
)
assert loss.requires_grad == is_training
info = MetricsTracker()
info["frames"] = supervision_segments[:, 2].sum().item()
info["loss"] = loss.detach().cpu().item()
return loss, info
def compute_validation_loss(
params: AttributeDict,
model: nn.Module,
graph_compiler: CtcTrainingGraphCompiler,
valid_dl: torch.utils.data.DataLoader,
world_size: int = 1,
) -> MetricsTracker:
"""Run the validation process. The validation loss
is saved in `params.valid_loss`.
"""
model.eval()
tot_loss = MetricsTracker()
for batch_idx, batch in enumerate(valid_dl):
loss, loss_info = compute_loss(
params=params,
model=model,
batch=batch,
graph_compiler=graph_compiler,
is_training=False,
)
assert loss.requires_grad is False
tot_loss = tot_loss + loss_info
if world_size > 1:
tot_loss.reduce(loss.device)
loss_value = tot_loss["loss"] / tot_loss["frames"]
if loss_value < params.best_valid_loss:
params.best_valid_epoch = params.cur_epoch
params.best_valid_loss = loss_value
return tot_loss
def train_one_epoch(
params: AttributeDict,
model: nn.Module,
optimizer: torch.optim.Optimizer,
graph_compiler: CtcTrainingGraphCompiler,
train_dl: torch.utils.data.DataLoader,
valid_dl: torch.utils.data.DataLoader,
tb_writer: Optional[SummaryWriter] = None,
world_size: int = 1,
) -> None:
"""Train the model for one epoch.
The training loss from the mean of all frames is saved in
`params.train_loss`. It runs the validation process every
`params.valid_interval` batches.
Args:
params:
It is returned by :func:`get_params`.
model:
The model for training.
optimizer:
The optimizer we are using.
graph_compiler:
It is used to convert transcripts to FSAs.
train_dl:
Dataloader for the training dataset.
valid_dl:
Dataloader for the validation dataset.
tb_writer:
Writer to write log messages to tensorboard.
world_size:
Number of nodes in DDP training. If it is 1, DDP is disabled.
"""
model.train()
tot_loss = MetricsTracker()
for batch_idx, batch in enumerate(train_dl):
params.batch_idx_train += 1
batch_size = len(batch["txt"])
loss, loss_info = compute_loss(
params=params,
model=model,
batch=batch,
graph_compiler=graph_compiler,
is_training=True,
)
# summary stats.
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
optimizer.zero_grad()
loss.backward()
clip_grad_norm_(model.parameters(), 5.0, 2.0)
optimizer.step()
if batch_idx % params.log_interval == 0:
logging.info(
f"Epoch {params.cur_epoch}, "
f"batch {batch_idx}, loss[{loss_info}], "
f"tot_loss[{tot_loss}], batch size: {batch_size}"
)
if batch_idx % params.log_interval == 0:
if tb_writer is not None:
loss_info.write_summary(
tb_writer, "train/current_", params.batch_idx_train
)
tot_loss.write_summary(
tb_writer, "train/tot_", params.batch_idx_train
)
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
valid_info = compute_validation_loss(
params=params,
model=model,
graph_compiler=graph_compiler,
valid_dl=valid_dl,
world_size=world_size,
)
model.train()
logging.info(f"Epoch {params.cur_epoch}, validation {valid_info}")
if tb_writer is not None:
valid_info.write_summary(
tb_writer,
"train/valid_",
params.batch_idx_train,
)
loss_value = tot_loss["loss"] / tot_loss["frames"]
params.train_loss = loss_value
if params.train_loss < params.best_train_loss:
params.best_train_epoch = params.cur_epoch
params.best_train_loss = params.train_loss
def run(rank, world_size, args):
"""
Args:
rank:
It is a value between 0 and `world_size-1`, which is
passed automatically by `mp.spawn()` in :func:`main`.
The node with rank 0 is responsible for saving checkpoint.
world_size:
Number of GPUs for DDP training.
args:
The return value of get_parser().parse_args()
"""
params = get_params()
params.update(vars(args))
fix_random_seed(42)
if world_size > 1:
setup_dist(rank, world_size, params.master_port)
setup_logger(f"{params.exp_dir}/log/log-train")
logging.info("Training started")
logging.info(params)
if args.tensorboard and rank == 0:
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
else:
tb_writer = None
lexicon = Lexicon(params.lang_dir)
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", rank)
graph_compiler = CtcTrainingGraphCompiler(lexicon=lexicon, device=device)
model = LipNet()
checkpoints = load_checkpoint_if_available(params=params, model=model)
model.to(device)
if world_size > 1:
model = DDP(model, device_ids=[rank])
optimizer = optim.AdamW(
model.parameters(),
lr=params.lr,
weight_decay=params.weight_decay,
)
scheduler = StepLR(optimizer, step_size=10, gamma=0.8)
if checkpoints:
optimizer.load_state_dict(checkpoints["optimizer"])
scheduler.load_state_dict(checkpoints["scheduler"])
grid = dataset_GRID(
params.video_path,
params.anno_path,
params.train_list,
params.vid_padding,
params.txt_padding,
"train",
)
train_dl = DataLoader(
grid,
batch_size=params.batch_size,
shuffle=True,
num_workers=params.num_workers,
drop_last=False,
)
# Here, we use train_dl as valid_dl because we don't have extra valid data.
valid_dl = train_dl
for epoch in range(params.start_epoch, params.num_epochs):
if epoch > params.start_epoch:
logging.info(f"epoch {epoch}, lr: {scheduler.get_last_lr()[0]}")
if tb_writer is not None:
tb_writer.add_scalar(
"train/lr",
scheduler.get_last_lr()[0],
params.batch_idx_train,
)
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
params.cur_epoch = epoch
train_one_epoch(
params=params,
model=model,
optimizer=optimizer,
graph_compiler=graph_compiler,
train_dl=train_dl,
valid_dl=valid_dl,
tb_writer=tb_writer,
world_size=world_size,
)
scheduler.step()
if epoch % 1 == 0:
save_checkpoint(
params=params,
model=model,
optimizer=optimizer,
scheduler=scheduler,
rank=rank,
)
logging.info("Done!")
if world_size > 1:
torch.distributed.barrier()
cleanup_dist()
def main():
parser = get_parser()
args = parser.parse_args()
world_size = args.world_size
assert world_size >= 1
if world_size > 1:
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
else:
run(rank=0, world_size=1, args=args)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,45 @@
# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo)
#
# See ../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
def encode_supervisions(nnet_output_shape, batch):
"""
In GRID, the lengths of all samples are same.
And here, we don't deploy cut operation on it.
So, the start frame is always 0 among all samples.
"""
N, T, D = nnet_output_shape
supervisions_idx = torch.arange(0, N).to(torch.int32)
start_frames = [0 for _ in range(N)]
supervisions_start_frame = torch.tensor(start_frames).to(torch.int32)
num_frames = [T for _ in range(N)]
supervisions_num_frames = torch.tensor(num_frames).to(torch.int32)
supervision_segments = torch.stack(
(
supervisions_idx,
supervisions_start_frame,
supervisions_num_frames,
),
1,
).to(torch.int32)
texts = batch["txt"]
return supervision_segments, texts

View File

@ -0,0 +1,166 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script takes as input lang_dir and generates HLG from
- H, the ctc topology, built from tokens contained in lang_dir/lexicon.txt
- L, the lexicon, built from lang_dir/L_disambig.pt
Caution: We use a lexicon that contains disambiguation symbols
- G, the LM, built from data/lm/G_3_gram.fst.txt
The generated HLG is saved in $lang_dir/HLG.pt
"""
import argparse
import logging
from pathlib import Path
import k2
import torch
from icefall.lexicon import Lexicon
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--lang-dir",
type=str,
help="""Input and output directory.
""",
)
return parser.parse_args()
def compile_HLG(lang_dir: str) -> k2.Fsa:
"""
Args:
lang_dir:
The language directory, e.g., data/lang_phone or data/lang_bpe_5000.
Return:
An FSA representing HLG.
"""
lexicon = Lexicon(lang_dir)
max_token_id = max(lexicon.tokens)
logging.info(f"Building ctc_topo. max_token_id: {max_token_id}")
H = k2.ctc_topo(max_token_id)
if Path(lang_dir / "L_disambig.pt").is_file():
logging.info("Loading L_disambig.pt")
d = torch.load(Path(lang_dir / "L_disambig.pt"))
L = k2.Fsa.from_dict(d)
else:
logging.info("Loading L_disambig.fst.txt")
with open(Path(lang_dir / "L_disambig.fst.txt")) as f:
L = k2.Fsa.from_openfst(f.read(), acceptor=False)
torch.save(L.as_dict(), Path(lang_dir / "L_disambig.pt"))
# L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))
if Path("data/lm/G.pt").is_file():
logging.info("Loading pre-compiled G")
d = torch.load("data/lm/G.pt")
G = k2.Fsa.from_dict(d)
else:
logging.info("Loading G_3_gram.fst.txt")
with open("data/lm/G_3_gram.fst.txt") as f:
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
torch.save(G.as_dict(), "data/lm/G.pt")
first_token_disambig_id = lexicon.token_table["#0"]
first_word_disambig_id = lexicon.word_table["#0"]
L = k2.arc_sort(L)
G = k2.arc_sort(G)
logging.info("Intersecting L and G")
LG = k2.compose(L, G)
logging.info(f"LG shape: {LG.shape}")
logging.info("Connecting LG")
LG = k2.connect(LG)
logging.info(f"LG shape after k2.connect: {LG.shape}")
logging.info(type(LG.aux_labels))
logging.info("Determinizing LG")
LG = k2.determinize(LG)
logging.info(type(LG.aux_labels))
logging.info("Connecting LG after k2.determinize")
LG = k2.connect(LG)
logging.info("Removing disambiguation symbols on LG")
LG.labels[LG.labels >= first_token_disambig_id] = 0
LG.aux_labels.values[LG.aux_labels.values >= first_word_disambig_id] = 0
LG = k2.remove_epsilon(LG)
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
LG = k2.connect(LG)
LG.aux_labels = LG.aux_labels.remove_values_eq(0)
logging.info("Arc sorting LG")
LG = k2.arc_sort(LG)
logging.info("Composing H and LG")
# CAUTION: The name of the inner_labels is fixed
# to `tokens`. If you want to change it, please
# also change other places in icefall that are using
# it.
HLG = k2.compose(H, LG, inner_labels="tokens")
logging.info("Connecting LG")
HLG = k2.connect(HLG)
logging.info("Arc sorting LG")
HLG = k2.arc_sort(HLG)
logging.info(f"HLG.shape: {HLG.shape}")
return HLG
def main():
args = get_args()
lang_dir = Path(args.lang_dir)
if (lang_dir / "HLG.pt").is_file():
logging.info(f"{lang_dir}/HLG.pt already exists - skipping")
return
logging.info(f"Processing {lang_dir}")
HLG = compile_HLG(lang_dir)
logging.info(f"Saving HLG.pt to {lang_dir}")
torch.save(HLG.as_dict(), f"{lang_dir}/HLG.pt")
if __name__ == "__main__":
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1,14 @@
# coding: utf-8
import random
def HorizontalFlip(batch_img, p=0.5):
# (T, H, W, C)
if random.random() > p:
batch_img = batch_img[:, :, ::-1, ...]
return batch_img
def ColorNormalize(batch_img):
batch_img = batch_img / 255.0
return batch_img

View File

@ -0,0 +1,83 @@
# encoding: utf-8
import cv2
import os
import numpy as np
import torch
from torch.utils.data import Dataset
from cvtransforms import HorizontalFlip, ColorNormalize
class dataset_GRID(Dataset):
def __init__(
self,
video_path,
anno_path,
file_list,
vid_pad,
phase,
):
self.anno_path = anno_path
self.vid_pad = vid_pad
self.phase = phase
with open(file_list, "r") as f:
self.videos = [
os.path.join(video_path, line.strip()) for line in f.readlines()
]
self.data = []
for vid in self.videos:
items = vid.split(os.path.sep)
aud = (
vid.replace("lip", "audio_25k").replace("/video/mpg_6000", "")
+ ".wav"
)
self.data.append((vid, aud, items[-4], items[-1]))
def __getitem__(self, idx):
(vid, aud, spk, name) = self.data[idx]
vid = self._load_vid(vid)
anno = self._load_anno(
os.path.join(self.anno_path, spk, "align", name + ".align")
)
if self.phase == "train":
vid = HorizontalFlip(vid)
vid = ColorNormalize(vid)
vid = self._padding(vid, self.vid_pad)
return {
"vid": torch.FloatTensor(vid.transpose(3, 0, 1, 2)),
"txt": anno.upper(),
}
def __len__(self):
return len(self.data)
def _load_vid(self, p):
files = os.listdir(p)
files = list(filter(lambda file: file.find(".jpg") != -1, files))
files = sorted(files, key=lambda file: int(os.path.splitext(file)[0]))
array = [cv2.imread(os.path.join(p, file)) for file in files]
array = list(filter(lambda im: im is not None, array))
array = [
cv2.resize(im, (128, 64), interpolation=cv2.INTER_LANCZOS4)
for im in array
]
array = np.stack(array, axis=0).astype(np.float32)
return array
def _load_anno(self, name):
with open(name, "r") as f:
lines = [line.strip().split(" ") for line in f.readlines()]
txt = [line[2] for line in lines]
txt = list(filter(lambda s: not s.upper() in ["SIL", "SP"], txt))
txt = " ".join(txt)
return txt
def _padding(self, array, length):
array = [array[_] for _ in range(array.shape[0])]
size = array[0].shape
for i in range(length - len(array)):
array.append(np.zeros(size))
return np.stack(array, axis=0)

View File

@ -0,0 +1,370 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script takes as input a lexicon file "data/lang_phone/lexicon.txt"
consisting of words and tokens (i.e., phones) and does the following:
1. Add disambiguation symbols to the lexicon and generate lexicon_disambig.txt
2. Generate tokens.txt, the token table mapping a token to a unique integer.
3. Generate words.txt, the word table mapping a word to a unique integer.
4. Generate L.pt, in k2 format. It can be loaded by
d = torch.load("L.pt")
lexicon = k2.Fsa.from_dict(d)
5. Generate L_disambig.pt, in k2 format.
"""
import argparse
import math
from collections import defaultdict
from pathlib import Path
from typing import Any, Dict, List, Tuple
import k2
import torch
from icefall.lexicon import read_lexicon, write_lexicon
from icefall.utils import str2bool
Lexicon = List[Tuple[str, List[str]]]
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--lang-dir",
type=str,
help="""Input and output directory.
It should contain a file lexicon.txt.
Generated files by this script are saved into this directory.
""",
)
parser.add_argument(
"--debug",
type=str2bool,
default=False,
help="""True for debugging, which will generate
a visualization of the lexicon FST.
Caution: If your lexicon contains hundreds of thousands
of lines, please set it to False!
""",
)
return parser.parse_args()
def write_mapping(filename: str, sym2id: Dict[str, int]) -> None:
"""Write a symbol to ID mapping to a file.
Note:
No need to implement `read_mapping` as it can be done
through :func:`k2.SymbolTable.from_file`.
Args:
filename:
Filename to save the mapping.
sym2id:
A dict mapping symbols to IDs.
Returns:
Return None.
"""
with open(filename, "w", encoding="utf-8") as f:
for sym, i in sym2id.items():
f.write(f"{sym} {i}\n")
def get_tokens(lexicon: Lexicon) -> List[str]:
"""Get tokens from a lexicon.
Args:
lexicon:
It is the return value of :func:`read_lexicon`.
Returns:
Return a list of unique tokens.
"""
ans = set()
for _, tokens in lexicon:
ans.update(tokens)
sorted_ans = list(ans)
return sorted_ans
def get_words(lexicon: Lexicon) -> List[str]:
"""Get words from a lexicon.
Args:
lexicon:
It is the return value of :func:`read_lexicon`.
Returns:
Return a list of unique words.
"""
ans = set()
for word, _ in lexicon:
ans.add(word)
sorted_ans = sorted(list(ans))
return sorted_ans
def add_disambig_symbols(lexicon: Lexicon) -> Tuple[Lexicon, int]:
"""It adds pseudo-token disambiguation symbols #1, #2 and so on
at the ends of tokens to ensure that all pronunciations are different,
and that none is a prefix of another.
See also add_lex_disambig.pl from kaldi.
Args:
lexicon:
It is returned by :func:`read_lexicon`.
Returns:
Return a tuple with two elements:
- The output lexicon with disambiguation symbols
- The ID of the max disambiguation symbol that appears
in the lexicon
"""
# (1) Work out the count of each token-sequence in the
# lexicon.
count = defaultdict(int)
for _, tokens in lexicon:
count[" ".join(tokens)] += 1
# (2) For each left sub-sequence of each token-sequence, note down
# that it exists (for identifying prefixes of longer strings).
issubseq = defaultdict(int)
for _, tokens in lexicon:
tokens = tokens.copy()
tokens.pop()
while tokens:
issubseq[" ".join(tokens)] = 1
tokens.pop()
# (3) For each entry in the lexicon:
# if the token sequence is unique and is not a
# prefix of another word, no disambig symbol.
# Else output #1, or #2, #3, ... if the same token-seq
# has already been assigned a disambig symbol.
ans = []
# We start with #1 since #0 has its own purpose
first_allowed_disambig = 1
max_disambig = first_allowed_disambig - 1
last_used_disambig_symbol_of = defaultdict(int)
for word, tokens in lexicon:
tokenseq = " ".join(tokens)
assert tokenseq != ""
if issubseq[tokenseq] == 0 and count[tokenseq] == 1:
ans.append((word, tokens))
continue
cur_disambig = last_used_disambig_symbol_of[tokenseq]
if cur_disambig == 0:
cur_disambig = first_allowed_disambig
else:
cur_disambig += 1
if cur_disambig > max_disambig:
max_disambig = cur_disambig
last_used_disambig_symbol_of[tokenseq] = cur_disambig
tokenseq += f" #{cur_disambig}"
ans.append((word, tokenseq.split()))
return ans, max_disambig
def generate_id_map(symbols: List[str]) -> Dict[str, int]:
"""Generate ID maps, i.e., map a symbol to a unique ID.
Args:
symbols:
A list of unique symbols.
Returns:
A dict containing the mapping between symbols and IDs.
"""
return {sym: i for i, sym in enumerate(symbols)}
def add_self_loops(
arcs: List[List[Any]], disambig_token: int, disambig_word: int
) -> List[List[Any]]:
"""Adds self-loops to states of an FST to propagate disambiguation symbols
through it. They are added on each state with non-epsilon output symbols
on at least one arc out of the state.
See also fstaddselfloops.pl from Kaldi. One difference is that
Kaldi uses OpenFst style FSTs and it has multiple final states.
This function uses k2 style FSTs and it does not need to add self-loops
to the final state.
The input label of a self-loop is `disambig_token`, while the output
label is `disambig_word`.
Args:
arcs:
A list-of-list. The sublist contains
`[src_state, dest_state, label, aux_label, score]`
disambig_token:
It is the token ID of the symbol `#0`.
disambig_word:
It is the word ID of the symbol `#0`.
Return:
Return new `arcs` containing self-loops.
"""
states_needs_self_loops = set()
for arc in arcs:
src, dst, ilabel, olabel, score = arc
if olabel != 0:
states_needs_self_loops.add(src)
ans = []
for s in states_needs_self_loops:
ans.append([s, s, disambig_token, disambig_word, 0])
return arcs + ans
def lexicon_to_fst(
lexicon: Lexicon,
token2id: Dict[str, int],
word2id: Dict[str, int],
need_self_loops: bool = False,
) -> k2.Fsa:
"""Convert a lexicon to an FST (in k2 format) with optional silence at
the beginning and end of each word.
Args:
lexicon:
The input lexicon. See also :func:`read_lexicon`
token2id:
A dict mapping tokens to IDs.
word2id:
A dict mapping words to IDs.
need_self_loops:
If True, add self-loop to states with non-epsilon output symbols
on at least one arc out of the state. The input label for this
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
Returns:
Return an instance of `k2.Fsa` representing the given lexicon.
"""
pronprob = 1.0
score = -math.log(pronprob)
loop_state = 0 # words enter and leave from here
next_state = 1 # the next un-allocated state, will be incremented as we go.
arcs = []
assert token2id["<eps>"] == 0
assert word2id["<eps>"] == 0
eps = 0
print("token2id: ", token2id)
print("word2id: ", word2id)
for word, tokens in lexicon:
print(word, tokens)
assert len(tokens) > 0, f"{word} has no pronunciations"
cur_state = loop_state
word = word2id[word]
tokens = [token2id[i] for i in tokens]
for i in range(len(tokens) - 1):
w = word if i == 0 else eps
arcs.append([cur_state, next_state, tokens[i], w, score])
cur_state = next_state
next_state += 1
# now for the last token of this word
# It has two out-going arcs, one to the loop state,
# the other one to the sil_state.
i = len(tokens) - 1
w = word if i == 0 else eps
tokens[i] = tokens[i] if i >= 0 else eps
arcs.append([cur_state, loop_state, tokens[i], w, score])
if need_self_loops:
disambig_token = token2id["#0"]
disambig_word = word2id["#0"]
arcs = add_self_loops(
arcs,
disambig_token=disambig_token,
disambig_word=disambig_word,
)
final_state = next_state
arcs.append([loop_state, final_state, -1, -1, 0])
arcs.append([final_state])
arcs = sorted(arcs, key=lambda arc: arc[0])
arcs = [[str(i) for i in arc] for arc in arcs]
arcs = [" ".join(arc) for arc in arcs]
arcs = "\n".join(arcs)
print(arcs)
fsa = k2.Fsa.from_str(arcs, acceptor=False)
return fsa
def main():
args = get_args()
lang_dir = Path(args.lang_dir)
lexicon_filename = lang_dir / "lexicon.txt"
lexicon = read_lexicon(lexicon_filename)
print("lexicon: ", lexicon)
tokens = get_tokens(lexicon)
words = get_words(lexicon)
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
for i in range(max_disambig + 1):
disambig = f"#{i}"
assert disambig not in tokens
tokens.append(f"#{i}")
assert "<eps>" not in tokens
tokens = ["<eps>"] + tokens
assert "<eps>" not in words
assert "#0" not in words
assert "<s>" not in words
assert "</s>" not in words
words = ["<eps>"] + words + ["#0", "<s>", "</s>"]
token2id = generate_id_map(tokens)
word2id = generate_id_map(words)
write_mapping(lang_dir / "tokens.txt", token2id)
write_mapping(lang_dir / "words.txt", word2id)
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
L = lexicon_to_fst(
lexicon,
token2id=token2id,
word2id=word2id,
)
L_disambig = lexicon_to_fst(
lexicon_disambig,
token2id=token2id,
word2id=word2id,
need_self_loops=True,
)
torch.save(L.as_dict(), lang_dir / "L.pt")
torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt")
if False:
# Just for debugging, will remove it
L.labels_sym = k2.SymbolTable.from_file(lang_dir / "tokens.txt")
L.aux_labels_sym = k2.SymbolTable.from_file(lang_dir / "words.txt")
L_disambig.labels_sym = L.labels_sym
L_disambig.aux_labels_sym = L.aux_labels_sym
L.draw(lang_dir / "L.png", title="L")
L_disambig.draw(lang_dir / "L_disambig.png", title="L_disambig")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,136 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script takes as input dir "download/GRID/GRID_align_txt"
consisting of all samples' text files and does the following:
1. Generate lexicon.txt.
2. Generate train.text.
"""
import argparse
import logging
from pathlib import Path
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--samples-txt",
type=str,
help="""The file listing training samples.
""",
)
parser.add_argument(
"--align-dir",
type=str,
help="""The directory including training samples'
text files.
""",
)
parser.add_argument(
"--lang-dir",
type=str,
help="""Output directory.
""",
)
return parser.parse_args()
def prepare_lexicon(
train_samples_txt: str, train_align_dir: str, lang_dir: str
):
"""
Args:
train_samples_txt:
The file listing training samples, e.g., download/GRID/unseen_train.txt.
train_align_dir:
The directory including training samples' text files,
e.g., download/GRID/GRID_align_txt.
lang_dir:
Output directory, e.g., data/lang_character
Return:
The lexicon.txt file and the train.text in lang_dir.
"""
words = set()
train_text = Path(lang_dir) / "train.text"
lexicon = Path(lang_dir) / "lexicon.txt"
if train_text.exists() is False:
texts = []
train_samples_txts = []
with open(train_samples_txt, "r") as f:
train_samples_txts = [line.strip() for line in f.readlines()]
for sample_txt in train_samples_txts:
anno = sample_txt.replace("video/mpg_6000", "align") + ".align"
anno = Path(train_align_dir) / anno
with open(anno, "r") as f:
lines = [line.strip().split(" ") for line in f.readlines()]
txt = [line[2] for line in lines]
txt = list(
filter(lambda s: not s.upper() in ["SIL", "SP"], txt)
)
txt = " ".join(txt)
texts.append(txt.upper())
with open(train_text, "w") as f:
for txt in texts:
f.write(txt)
f.write("\n")
with open(train_text, "r") as load_f:
lines = load_f.readlines()
for line in lines:
words_list = list(filter(None, line.rstrip("\n").split(" ")))
for word in words_list:
if word not in words:
words.add(word)
with open(lexicon, "w") as f:
for word in words:
chars = list(word)
char_str = " ".join(chars)
f.write((word + " " + char_str).upper())
f.write("\n")
f.write("<UNK> <UNK>")
f.write("\n")
def main():
args = get_args()
train_samples_txt = Path(args.samples_txt)
train_align_dir = Path(args.align_dir)
lang_dir = Path(args.lang_dir)
logging.info("Generating lexicon.txt and train.text")
prepare_lexicon(train_samples_txt, train_align_dir, lang_dir)
if __name__ == "__main__":
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
main()

135
egs/grid/AVSR/prepare.sh Normal file
View File

@ -0,0 +1,135 @@
#!/usr/bin/env bash
set -eou pipefail
stage=-1
stop_stage=100
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/GRID
# You can find lip, audio, align_text inside it.
#
# - $dl_dir/lm
# This directory contains the language model(LM) downloaded from
# https://huggingface.co/luomingshuang/grid_lm.
# About how to get these LM files, you can know it
# from https://github.com/luomingshuang/Train_LM_with_kaldilm.
#
# - lm_3_gram.arpa
# - lm_4_gram.arpa
#
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "Stage -1: Download LM"
# We assume that you have installed the git-lfs, if not, you could install it
# using: `sudo apt-get install git-lfs && git-lfs install`
#[ ! -e $dl_dir/lm ] && mkdir -p $dl_dir/lm
#git clone https://huggingface.co/luomingshuang/grid_lm $dl_dir/lm
#cd $dl_dir/lm && git lfs pull
# You can also use the following commands to download the lm files
wget -P $dl_dir/lm https://huggingface.co/luomingshuang/grid_lm/resolve/main/lm_3_gram.arpa
wget -P $dl_dir/lm https://huggingface.co/luomingshuang/grid_lm/resolve/main/lm_4_gram.arpa
# Because the texts among the samples in GRID are very similar,
# the lm_4_gram.arpa is nearly no use for decoding when use LM.
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# The process of extracting lip region takes much time.
# Here, we provide the processed data (lip region) for using.
# So you can run this recipe quickly and easily.
#
# If you want to know more details about getting lip region,
# You can have a look at https://github.com/Fengdalu/LipNet-PyTorch/tree/master/scripts
[ ! -e $dl_dir/GRID ] && mkdir -p $dl_dir/GRID
# Download the GRID lip region data and text
# You can use the following commands to download the processed lip region data and text
wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/grid_lip_160_80/resolve/main/GRID_LIP_160x80_TXT.zip.00
wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/grid_lip_160_80/resolve/main/GRID_LIP_160x80_TXT.zip.01
wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/grid_lip_160_80/resolve/main/GRID_LIP_160x80_TXT.zip.02
wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/grid_lip_160_80/resolve/main/GRID_LIP_160x80_TXT.zip.03
wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/grid_lip_160_80/resolve/main/GRID_LIP_160x80_TXT.zip.04
cat $dl_dir/GRID/GRID_LIP_160x80_TXT.zip.* > $dl_dir/GRID/GRID_LIP_160x80_TXT.zip
unzip $dl_dir/GRID/GRID_LIP_160x80_TXT.zip -d $dl_dir/GRID/
rm -rf $dl_dir/GRID/GRID_LIP_160x80_TXT.zip
# Download the GRID audio data
wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/GRID_audio/resolve/main/audio_25k.zip
unzip $dl_dir/GRID/audio_25k.zip -d $dl_dir/GRID/
rm -rf $dl_dir/GRID/audio_25k.zip
# Download the spliting files for train and val
# Here, we just consider the unseen case, which means
# that there is no common speakers among train and val.
wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/GRID_text/resolve/main/unseen_train.txt
wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/GRID_text/resolve/main/unseen_val.txt
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare character-based lang"
lang_dir=data/lang_character
mkdir -p $lang_dir
./local/prepare_lexicon.py \
--samples-txt $dl_dir/GRID/unseen_train.txt \
--align-dir $dl_dir/GRID/GRID_align_txt \
--lang-dir $lang_dir
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang.py --lang-dir $lang_dir
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Prepare G"
# We assume you have installed kaldilm, if not, please install
# it using: pip install kaldilm
mkdir -p data/lm
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
# It is used in building HLG
python3 -m kaldilm \
--read-symbol-table="data/lang_character/words.txt" \
--disambig-symbol='#0' \
--max-order=3 \
$dl_dir/lm/lm_3_gram.arpa > data/lm/G_3_gram.fst.txt
fi
if [ ! -f data/lm/G_4_gram.fst.txt ]; then
# It is used for LM rescoring
python3 -m kaldilm \
--read-symbol-table="data/lang_character/words.txt" \
--disambig-symbol='#0' \
--max-order=4 \
$dl_dir/lm/lm_4_gram.arpa > data/lm/G_4_gram.fst.txt
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compile HLG"
./local/compile_hlg.py --lang-dir data/lang_character
fi

1
egs/grid/AVSR/shared Normal file
View File

@ -0,0 +1 @@
../../../icefall/shared/