mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 18:24:18 +00:00
[WIP] A lip reading recipe (GRID recipe) based on icefall
This commit is contained in:
parent
5d314b03c5
commit
c4c8d02934
0
egs/grid/AVSR/lipnet_ctc_vsr/__init__.py
Normal file
0
egs/grid/AVSR/lipnet_ctc_vsr/__init__.py
Normal file
497
egs/grid/AVSR/lipnet_ctc_vsr/decode.py
Normal file
497
egs/grid/AVSR/lipnet_ctc_vsr/decode.py
Normal file
@ -0,0 +1,497 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
|
||||
# Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
from utils import encode_supervisions
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from torch.utils.data import DataLoader
|
||||
from local.dataset import dataset_GRID
|
||||
from model import LipNet
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.decode import (
|
||||
get_lattice,
|
||||
nbest_decoding,
|
||||
one_best_decoding,
|
||||
rescore_with_n_best_list,
|
||||
rescore_with_whole_lattice,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
get_texts,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=19,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=5,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--method",
|
||||
type=str,
|
||||
default="whole-lattice-rescoring",
|
||||
help="""Decoding method.
|
||||
Supported values are:
|
||||
- (1) 1best. Extract the best path from the decoding lattice as the
|
||||
decoding result.
|
||||
- (2) nbest. Extract n paths from the decoding lattice; the path
|
||||
with the highest score is the decoding result.
|
||||
- (3) nbest-rescoring. Extract n paths from the decoding lattice,
|
||||
rescore them with an n-gram LM (e.g., a 4-gram LM), the path with
|
||||
the highest score is the decoding result.
|
||||
- (4) whole-lattice-rescoring. Rescore the decoding lattice with an
|
||||
n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice
|
||||
is the decoding result.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=100,
|
||||
help="""Number of paths for n-best based decoding method.
|
||||
Used only when "method" is one of the following values:
|
||||
nbest, nbest-rescoring
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nbest-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="""The scale to be applied to `lattice.scores`.
|
||||
It's needed if you use any kinds of n-best based rescoring.
|
||||
Used only when "method" is one of the following values:
|
||||
nbest, nbest-rescoring
|
||||
A smaller value results in more unique paths.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--export",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""When enabled, the averaged model is saved to
|
||||
tdnn/exp/pretrained.pt. Note: only model.state_dict() is saved.
|
||||
pretrained.pt contains a dict {"model": model.state_dict()},
|
||||
which can be loaded by `icefall.checkpoint.load_checkpoint()`.
|
||||
""",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"exp_dir": Path("lipnet_ctc_vsr/exp"),
|
||||
"lang_dir": Path("data/lang_character"),
|
||||
"lm_dir": Path("data/lm"),
|
||||
"search_beam": 20,
|
||||
"output_beam": 5,
|
||||
"min_active_states": 30,
|
||||
"max_active_states": 10000,
|
||||
"use_double_scores": True,
|
||||
# parameters for dataset
|
||||
"video_path": Path("download/GRID/lip/"),
|
||||
"anno_path": Path("download/GRID/GRID_align_txt"),
|
||||
"val_list": Path("download/GRID/unseen_val.txt"),
|
||||
"vid_padding": 75,
|
||||
"num_workers": 1,
|
||||
"batch_size": 120,
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
HLG: k2.Fsa,
|
||||
batch: dict,
|
||||
lexicon: Lexicon,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if no rescoring is used, the key is the string `no_rescore`.
|
||||
If LM rescoring is used, the key is the string `lm_scale_xxx`,
|
||||
where `xxx` is the value of `lm_scale`. An example key is
|
||||
`lm_scale_0.7`
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
|
||||
- params.method is "1best", it uses 1best decoding without LM rescoring.
|
||||
- params.method is "nbest", it uses nbest decoding without LM rescoring.
|
||||
- params.method is "nbest-rescoring", it uses nbest LM rescoring.
|
||||
- params.method is "whole-lattice-rescoring", it uses whole lattice LM
|
||||
rescoring.
|
||||
|
||||
model:
|
||||
The neural model.
|
||||
HLG:
|
||||
The decoding graph.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
lexicon:
|
||||
It contains word symbol table.
|
||||
G:
|
||||
An LM. It is not None when params.method is "nbest-rescoring"
|
||||
or "whole-lattice-rescoring". In general, the G in HLG
|
||||
is a 3-gram LM, while this G is a 4-gram LM.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = HLG.device
|
||||
feature = batch["vid"]
|
||||
assert feature.ndim == 5
|
||||
feature = feature.to(device)
|
||||
|
||||
nnet_output = model(feature)
|
||||
nnet_output_shape = nnet_output.size()
|
||||
supervision_segments, text = encode_supervisions(nnet_output_shape, batch)
|
||||
|
||||
lattice = get_lattice(
|
||||
nnet_output=nnet_output,
|
||||
decoding_graph=HLG,
|
||||
supervision_segments=supervision_segments,
|
||||
search_beam=params.search_beam,
|
||||
output_beam=params.output_beam,
|
||||
min_active_states=params.min_active_states,
|
||||
max_active_states=params.max_active_states,
|
||||
)
|
||||
|
||||
if params.method in ["1best", "nbest"]:
|
||||
if params.method == "1best":
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
key = "no_rescore"
|
||||
else:
|
||||
best_path = nbest_decoding(
|
||||
lattice=lattice,
|
||||
num_paths=params.num_paths,
|
||||
use_double_scores=params.use_double_scores,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
key = f"no_rescore-{params.num_paths}"
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
||||
|
||||
return {key: hyps}
|
||||
|
||||
assert params.method in ["nbest-rescoring", "whole-lattice-rescoring"]
|
||||
|
||||
lm_scale_list = [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09]
|
||||
lm_scale_list += [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
|
||||
lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
|
||||
lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
|
||||
|
||||
if params.method == "nbest-rescoring":
|
||||
best_path_dict = rescore_with_n_best_list(
|
||||
lattice=lattice,
|
||||
G=G,
|
||||
num_paths=params.num_paths,
|
||||
lm_scale_list=lm_scale_list,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
else:
|
||||
best_path_dict = rescore_with_whole_lattice(
|
||||
lattice=lattice,
|
||||
G_with_epsilon_loops=G,
|
||||
lm_scale_list=lm_scale_list,
|
||||
)
|
||||
|
||||
ans = dict()
|
||||
for lm_scale_str, best_path in best_path_dict.items():
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
||||
ans[lm_scale_str] = hyps
|
||||
return ans
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
HLG: k2.Fsa,
|
||||
lexicon: Lexicon,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
HLG:
|
||||
The decoding graph.
|
||||
lexicon:
|
||||
It contains word symbol table.
|
||||
G:
|
||||
An LM. It is not None when params.method is "nbest-rescoring"
|
||||
or "whole-lattice-rescoring". In general, the G in HLG
|
||||
is a 3-gram LM, while this G is a 4-gram LM.
|
||||
Returns:
|
||||
Return a dict, whose key may be "no-rescore" if no LM rescoring
|
||||
is used, or it may be "lm_scale_0.7" if LM rescoring is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
results = []
|
||||
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["txt"]
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
HLG=HLG,
|
||||
batch=batch,
|
||||
lexicon=lexicon,
|
||||
G=G,
|
||||
)
|
||||
|
||||
for lm_scale, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for hyp_words, ref_text in zip(hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((ref_words, hyp_words))
|
||||
results[lm_scale].extend(this_batch)
|
||||
|
||||
num_cuts += len(batch["txt"])
|
||||
|
||||
if batch_idx % 10 == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(
|
||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt"
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out PERs, per-phone error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(f, f"{test_set_name}-{key}", results)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = params.exp_dir / f"per-summary-{test_set_name}.txt"
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tPER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, PER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-decode")
|
||||
logging.info("Decoding started")
|
||||
logging.info(params)
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
HLG = k2.Fsa.from_dict(
|
||||
torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
|
||||
)
|
||||
|
||||
HLG = HLG.to(device)
|
||||
assert HLG.requires_grad is False
|
||||
|
||||
if not hasattr(HLG, "lm_scores"):
|
||||
HLG.lm_scores = HLG.scores.clone()
|
||||
|
||||
if params.method in ["nbest-rescoring", "whole-lattice-rescoring"]:
|
||||
if not (params.lm_dir / "G_4_gram.pt").is_file():
|
||||
logging.info("Loading G_4_gram.fst.txt")
|
||||
logging.warning("It may take 8 minutes.")
|
||||
with open(params.lm_dir / "G_4_gram.fst.txt") as f:
|
||||
first_word_disambig_id = lexicon.word_table["#0"]
|
||||
|
||||
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||
# G.aux_labels is not needed in later computations, so
|
||||
# remove it here.
|
||||
del G.aux_labels
|
||||
# CAUTION: The following line is crucial.
|
||||
# Arcs entering the back-off state have label equal to #0.
|
||||
# We have to change it to 0 here.
|
||||
G.labels[G.labels >= first_word_disambig_id] = 0
|
||||
G = k2.Fsa.from_fsas([G]).to(device)
|
||||
G = k2.arc_sort(G)
|
||||
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
|
||||
else:
|
||||
logging.info("Loading pre-compiled G_4_gram.pt")
|
||||
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location="cpu")
|
||||
G = k2.Fsa.from_dict(d).to(device)
|
||||
|
||||
if params.method == "whole-lattice-rescoring":
|
||||
# Add epsilon self-loops to G as we will compose
|
||||
# it with the whole lattice later
|
||||
G = k2.add_epsilon_self_loops(G)
|
||||
G = k2.arc_sort(G)
|
||||
G = G.to(device)
|
||||
|
||||
# G.lm_scores is used to replace HLG.lm_scores during
|
||||
# LM rescoring.
|
||||
G.lm_scores = G.scores.clone()
|
||||
else:
|
||||
G = None
|
||||
|
||||
model = LipNet()
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.load_state_dict(average_checkpoints(filenames))
|
||||
|
||||
if params.export:
|
||||
logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
|
||||
torch.save(
|
||||
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
|
||||
)
|
||||
return
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
grid = dataset_GRID(
|
||||
params.video_path,
|
||||
params.anno_path,
|
||||
params.val_list,
|
||||
params.vid_padding,
|
||||
"test",
|
||||
)
|
||||
test_dl = DataLoader(
|
||||
grid,
|
||||
batch_size=params.batch_size,
|
||||
shuffle=False,
|
||||
num_workers=params.num_workers,
|
||||
drop_last=False,
|
||||
)
|
||||
test_set = "test"
|
||||
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
HLG=HLG,
|
||||
lexicon=lexicon,
|
||||
G=G,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params, test_set_name=test_set, results_dict=results_dict
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
62
egs/grid/AVSR/lipnet_ctc_vsr/model.py
Normal file
62
egs/grid/AVSR/lipnet_ctc_vsr/model.py
Normal file
@ -0,0 +1,62 @@
|
||||
#!/usr/bin/env python3
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class LipNet(torch.nn.Module):
|
||||
def __init__(self, dropout_p=0.1):
|
||||
super(LipNet, self).__init__()
|
||||
self.conv1 = nn.Conv3d(3, 32, (3, 5, 5), (1, 2, 2), (1, 2, 2))
|
||||
self.pool1 = nn.MaxPool3d((1, 2, 2), (1, 2, 2))
|
||||
|
||||
self.conv2 = nn.Conv3d(32, 64, (3, 5, 5), (1, 1, 1), (1, 2, 2))
|
||||
self.pool2 = nn.MaxPool3d((1, 2, 2), (1, 2, 2))
|
||||
|
||||
self.conv3 = nn.Conv3d(64, 96, (3, 3, 3), (1, 1, 1), (1, 1, 1))
|
||||
self.pool3 = nn.MaxPool3d((1, 2, 2), (1, 2, 2))
|
||||
|
||||
self.gru1 = nn.GRU(96 * 4 * 8, 256, 1, bidirectional=True)
|
||||
self.gru2 = nn.GRU(512, 256, 1, bidirectional=True)
|
||||
|
||||
self.FC = nn.Linear(512, 28)
|
||||
self.dropout_p = dropout_p
|
||||
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.dropout = nn.Dropout(self.dropout_p)
|
||||
self.dropout3d = nn.Dropout3d(self.dropout_p)
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
x = self.conv1(x)
|
||||
x = self.relu(x)
|
||||
x = self.dropout3d(x)
|
||||
x = self.pool1(x)
|
||||
|
||||
x = self.conv2(x)
|
||||
x = self.relu(x)
|
||||
x = self.dropout3d(x)
|
||||
x = self.pool2(x)
|
||||
|
||||
x = self.conv3(x)
|
||||
x = self.relu(x)
|
||||
x = self.dropout3d(x)
|
||||
x = self.pool3(x)
|
||||
|
||||
# (B, C, T, H, W)->(T, B, C, H, W)
|
||||
x = x.permute(2, 0, 1, 3, 4).contiguous()
|
||||
# (B, C, T, H, W)->(T, B, C*H*W)
|
||||
x = x.view(x.size(0), x.size(1), -1)
|
||||
|
||||
self.gru1.flatten_parameters()
|
||||
self.gru2.flatten_parameters()
|
||||
|
||||
x, h = self.gru1(x)
|
||||
x = self.dropout(x)
|
||||
x, h = self.gru2(x)
|
||||
x = self.dropout(x)
|
||||
|
||||
x = x.permute(1, 0, 2).contiguous()
|
||||
x = self.FC(x)
|
||||
x = nn.functional.log_softmax(x, dim=-1)
|
||||
|
||||
return x
|
606
egs/grid/AVSR/lipnet_ctc_vsr/train.py
Normal file
606
egs/grid/AVSR/lipnet_ctc_vsr/train.py
Normal file
@ -0,0 +1,606 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
|
||||
# Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Optional, Tuple
|
||||
|
||||
from utils import encode_supervisions
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from local.dataset import dataset_GRID
|
||||
from lhotse.utils import fix_random_seed
|
||||
from model import LipNet
|
||||
from torch import Tensor
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
from torch.optim.lr_scheduler import StepLR
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.dist import cleanup_dist, setup_dist
|
||||
from icefall.graph_compiler import CtcTrainingGraphCompiler
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
MetricsTracker,
|
||||
get_env_info,
|
||||
setup_logger,
|
||||
str2bool,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--world-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of GPUs for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--master-port",
|
||||
type=int,
|
||||
default=12354,
|
||||
help="Master port to use for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=30,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""Resume training from from this epoch.
|
||||
If it is positive, it will load checkpoint from
|
||||
tdnn_lstm_ctc/exp/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters.
|
||||
|
||||
All training related parameters that are not passed from the commandline
|
||||
is saved in the variable `params`.
|
||||
|
||||
Commandline options are merged into `params` after they are parsed, so
|
||||
you can also access them via `params`.
|
||||
|
||||
Explanation of options saved in `params`:
|
||||
|
||||
- exp_dir: It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
|
||||
- lang_dir: It contains language related input files such as
|
||||
"lexicon.txt"
|
||||
|
||||
- lr: It specifies the initial learning rate
|
||||
|
||||
- feature_dim: The model input dim. It has to match the one used
|
||||
in computing features.
|
||||
|
||||
- weight_decay: The weight_decay for the optimizer.
|
||||
|
||||
- subsampling_factor: The subsampling factor for the model.
|
||||
|
||||
- best_train_loss: Best training loss so far. It is used to select
|
||||
the model that has the lowest training loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_valid_loss: Best validation loss so far. It is used to select
|
||||
the model that has the lowest validation loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_train_epoch: It is the epoch that has the best training loss.
|
||||
|
||||
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||
|
||||
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||
contains number of batches trained so far across
|
||||
epochs.
|
||||
|
||||
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||
|
||||
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||
|
||||
- valid_interval: Run validation if batch_idx % valid_interval` is 0
|
||||
|
||||
- beam_size: It is used in k2.ctc_loss
|
||||
|
||||
- reduction: It is used in k2.ctc_loss
|
||||
|
||||
- use_double_scores: It is used in k2.ctc_loss
|
||||
"""
|
||||
params = AttributeDict(
|
||||
{
|
||||
"exp_dir": Path("lipnet_ctc_vsr/exp"),
|
||||
"lang_dir": Path("data/lang_character"),
|
||||
"lr": 4e-4,
|
||||
"feature_dim": 80,
|
||||
"weight_decay": 5e-4,
|
||||
"subsampling_factor": 3,
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 1,
|
||||
"reset_interval": 200,
|
||||
"valid_interval": 1000,
|
||||
"beam_size": 10,
|
||||
"reduction": "sum",
|
||||
"use_double_scores": True,
|
||||
"env_info": get_env_info(),
|
||||
# parameters for dataset
|
||||
"video_path": Path("download/GRID/lip/"),
|
||||
"anno_path": Path("download/GRID/GRID_align_txt"),
|
||||
"train_list": Path("download/GRID/unseen_train.txt"),
|
||||
"vid_padding": 75,
|
||||
"aud_padding": 200,
|
||||
"num_workers": 1,
|
||||
"batch_size": 120,
|
||||
}
|
||||
)
|
||||
|
||||
return params
|
||||
|
||||
|
||||
def load_checkpoint_if_available(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
) -> None:
|
||||
"""Load checkpoint from file.
|
||||
|
||||
If params.start_epoch is positive, it will load the checkpoint from
|
||||
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||
|
||||
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||
and `best_valid_loss` in `params`.
|
||||
|
||||
Args:
|
||||
params:
|
||||
The return value of :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
optimizer:
|
||||
The optimizer that we are using.
|
||||
scheduler:
|
||||
The learning rate scheduler we are using.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if params.start_epoch <= 0:
|
||||
return
|
||||
|
||||
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||
saved_params = load_checkpoint(
|
||||
filename,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
keys = [
|
||||
"best_train_epoch",
|
||||
"best_valid_epoch",
|
||||
"batch_idx_train",
|
||||
"best_train_loss",
|
||||
"best_valid_loss",
|
||||
]
|
||||
for k in keys:
|
||||
params[k] = saved_params[k]
|
||||
|
||||
return saved_params
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
scheduler: torch.optim.lr_scheduler._LRScheduler,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save model, optimizer, scheduler and training stats to file.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||
save_checkpoint_impl(
|
||||
filename=filename,
|
||||
model=model,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.best_train_epoch == params.cur_epoch:
|
||||
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||
copyfile(src=filename, dst=best_train_filename)
|
||||
|
||||
if params.best_valid_epoch == params.cur_epoch:
|
||||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
|
||||
def compute_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
batch: dict,
|
||||
graph_compiler: CtcTrainingGraphCompiler,
|
||||
is_training: bool,
|
||||
) -> Tuple[Tensor, MetricsTracker]:
|
||||
"""
|
||||
Compute CTC loss given the model and its inputs.
|
||||
|
||||
Args:
|
||||
params:
|
||||
Parameters for training. See :func:`get_params`.
|
||||
model:
|
||||
The model for training. It is an instance of TdnnLstm in our case.
|
||||
batch:
|
||||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||
for the content in it.
|
||||
graph_compiler:
|
||||
It is used to build a decoding graph from a ctc topo and training
|
||||
transcript. The training transcript is contained in the given `batch`,
|
||||
while the ctc topo is built when this compiler is instantiated.
|
||||
is_training:
|
||||
True for training. False for validation. When it is True, this
|
||||
function enables autograd during computation; when it is False, it
|
||||
disables autograd.
|
||||
"""
|
||||
device = graph_compiler.device
|
||||
feature = batch["vid"]
|
||||
assert feature.ndim == 5
|
||||
feature = feature.to(device)
|
||||
|
||||
with torch.set_grad_enabled(is_training):
|
||||
nnet_output = model(feature)
|
||||
|
||||
# NOTE: We need `encode_supervisions` to sort sequences with
|
||||
# different duration in decreasing order, required by
|
||||
# `k2.intersect_dense` called in `k2.ctc_loss`
|
||||
supervision_segments, texts = encode_supervisions(nnet_output.size(), batch)
|
||||
decoding_graph = graph_compiler.compile(texts)
|
||||
dense_fsa_vec = k2.DenseFsaVec(
|
||||
nnet_output,
|
||||
supervision_segments,
|
||||
)
|
||||
|
||||
loss = k2.ctc_loss(
|
||||
decoding_graph=decoding_graph,
|
||||
dense_fsa_vec=dense_fsa_vec,
|
||||
output_beam=params.beam_size,
|
||||
reduction=params.reduction,
|
||||
use_double_scores=params.use_double_scores,
|
||||
)
|
||||
|
||||
assert loss.requires_grad == is_training
|
||||
|
||||
info = MetricsTracker()
|
||||
info["frames"] = supervision_segments[:, 2].sum().item()
|
||||
info["loss"] = loss.detach().cpu().item()
|
||||
|
||||
return loss, info
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
graph_compiler: CtcTrainingGraphCompiler,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> MetricsTracker:
|
||||
"""Run the validation process. The validation loss
|
||||
is saved in `params.valid_loss`.
|
||||
"""
|
||||
model.eval()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
graph_compiler=graph_compiler,
|
||||
is_training=False,
|
||||
)
|
||||
assert loss.requires_grad is False
|
||||
|
||||
tot_loss = tot_loss + loss_info
|
||||
|
||||
if world_size > 1:
|
||||
tot_loss.reduce(loss.device)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
|
||||
if loss_value < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = loss_value
|
||||
|
||||
return tot_loss
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
graph_compiler: CtcTrainingGraphCompiler,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
The training loss from the mean of all frames is saved in
|
||||
`params.train_loss`. It runs the validation process every
|
||||
`params.valid_interval` batches.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer we are using.
|
||||
graph_compiler:
|
||||
It is used to convert transcripts to FSAs.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
"""
|
||||
model.train()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["txt"])
|
||||
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
graph_compiler=graph_compiler,
|
||||
is_training=True,
|
||||
)
|
||||
# summary stats.
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}], "
|
||||
f"tot_loss[{tot_loss}], batch size: {batch_size}"
|
||||
)
|
||||
if batch_idx % params.log_interval == 0:
|
||||
|
||||
if tb_writer is not None:
|
||||
loss_info.write_summary(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
)
|
||||
tot_loss.write_summary(
|
||||
tb_writer, "train/tot_", params.batch_idx_train
|
||||
)
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||
valid_info = compute_validation_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
graph_compiler=graph_compiler,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
logging.info(f"Epoch {params.cur_epoch}, validation {valid_info}")
|
||||
if tb_writer is not None:
|
||||
valid_info.write_summary(
|
||||
tb_writer,
|
||||
"train/valid_",
|
||||
params.batch_idx_train,
|
||||
)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
params.train_loss = loss_value
|
||||
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
fix_random_seed(42)
|
||||
if world_size > 1:
|
||||
setup_dist(rank, world_size, params.master_port)
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info("Training started")
|
||||
logging.info(params)
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", rank)
|
||||
|
||||
graph_compiler = CtcTrainingGraphCompiler(lexicon=lexicon, device=device)
|
||||
model = LipNet()
|
||||
|
||||
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||
|
||||
model.to(device)
|
||||
if world_size > 1:
|
||||
model = DDP(model, device_ids=[rank])
|
||||
|
||||
optimizer = optim.AdamW(
|
||||
model.parameters(),
|
||||
lr=params.lr,
|
||||
weight_decay=params.weight_decay,
|
||||
)
|
||||
scheduler = StepLR(optimizer, step_size=10, gamma=0.8)
|
||||
|
||||
if checkpoints:
|
||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||
scheduler.load_state_dict(checkpoints["scheduler"])
|
||||
|
||||
grid = dataset_GRID(
|
||||
params.video_path,
|
||||
params.anno_path,
|
||||
params.train_list,
|
||||
params.vid_padding,
|
||||
params.txt_padding,
|
||||
"train",
|
||||
)
|
||||
|
||||
train_dl = DataLoader(
|
||||
grid,
|
||||
batch_size=params.batch_size,
|
||||
shuffle=True,
|
||||
num_workers=params.num_workers,
|
||||
drop_last=False,
|
||||
)
|
||||
# Here, we use train_dl as valid_dl because we don't have extra valid data.
|
||||
valid_dl = train_dl
|
||||
|
||||
for epoch in range(params.start_epoch, params.num_epochs):
|
||||
|
||||
if epoch > params.start_epoch:
|
||||
logging.info(f"epoch {epoch}, lr: {scheduler.get_last_lr()[0]}")
|
||||
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/lr",
|
||||
scheduler.get_last_lr()[0],
|
||||
params.batch_idx_train,
|
||||
)
|
||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||
|
||||
params.cur_epoch = epoch
|
||||
|
||||
train_one_epoch(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
graph_compiler=graph_compiler,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
)
|
||||
|
||||
scheduler.step()
|
||||
|
||||
if epoch % 1 == 0:
|
||||
save_checkpoint(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
if world_size > 1:
|
||||
torch.distributed.barrier()
|
||||
cleanup_dist()
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
if world_size > 1:
|
||||
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||
else:
|
||||
run(rank=0, world_size=1, args=args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
45
egs/grid/AVSR/lipnet_ctc_vsr/utils.py
Normal file
45
egs/grid/AVSR/lipnet_ctc_vsr/utils.py
Normal file
@ -0,0 +1,45 @@
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo)
|
||||
#
|
||||
# See ../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def encode_supervisions(nnet_output_shape, batch):
|
||||
"""
|
||||
In GRID, the lengths of all samples are same.
|
||||
And here, we don't deploy cut operation on it.
|
||||
So, the start frame is always 0 among all samples.
|
||||
"""
|
||||
N, T, D = nnet_output_shape
|
||||
|
||||
supervisions_idx = torch.arange(0, N).to(torch.int32)
|
||||
start_frames = [0 for _ in range(N)]
|
||||
supervisions_start_frame = torch.tensor(start_frames).to(torch.int32)
|
||||
num_frames = [T for _ in range(N)]
|
||||
supervisions_num_frames = torch.tensor(num_frames).to(torch.int32)
|
||||
|
||||
supervision_segments = torch.stack(
|
||||
(
|
||||
supervisions_idx,
|
||||
supervisions_start_frame,
|
||||
supervisions_num_frames,
|
||||
),
|
||||
1,
|
||||
).to(torch.int32)
|
||||
|
||||
texts = batch["txt"]
|
||||
|
||||
return supervision_segments, texts
|
166
egs/grid/AVSR/local/compile_hlg.py
Normal file
166
egs/grid/AVSR/local/compile_hlg.py
Normal file
@ -0,0 +1,166 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This script takes as input lang_dir and generates HLG from
|
||||
|
||||
- H, the ctc topology, built from tokens contained in lang_dir/lexicon.txt
|
||||
- L, the lexicon, built from lang_dir/L_disambig.pt
|
||||
|
||||
Caution: We use a lexicon that contains disambiguation symbols
|
||||
|
||||
- G, the LM, built from data/lm/G_3_gram.fst.txt
|
||||
|
||||
The generated HLG is saved in $lang_dir/HLG.pt
|
||||
"""
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import k2
|
||||
import torch
|
||||
|
||||
from icefall.lexicon import Lexicon
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
help="""Input and output directory.
|
||||
""",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def compile_HLG(lang_dir: str) -> k2.Fsa:
|
||||
"""
|
||||
Args:
|
||||
lang_dir:
|
||||
The language directory, e.g., data/lang_phone or data/lang_bpe_5000.
|
||||
|
||||
Return:
|
||||
An FSA representing HLG.
|
||||
"""
|
||||
lexicon = Lexicon(lang_dir)
|
||||
max_token_id = max(lexicon.tokens)
|
||||
logging.info(f"Building ctc_topo. max_token_id: {max_token_id}")
|
||||
H = k2.ctc_topo(max_token_id)
|
||||
|
||||
if Path(lang_dir / "L_disambig.pt").is_file():
|
||||
logging.info("Loading L_disambig.pt")
|
||||
d = torch.load(Path(lang_dir / "L_disambig.pt"))
|
||||
L = k2.Fsa.from_dict(d)
|
||||
else:
|
||||
logging.info("Loading L_disambig.fst.txt")
|
||||
with open(Path(lang_dir / "L_disambig.fst.txt")) as f:
|
||||
L = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||
torch.save(L.as_dict(), Path(lang_dir / "L_disambig.pt"))
|
||||
|
||||
# L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))
|
||||
|
||||
if Path("data/lm/G.pt").is_file():
|
||||
logging.info("Loading pre-compiled G")
|
||||
d = torch.load("data/lm/G.pt")
|
||||
G = k2.Fsa.from_dict(d)
|
||||
else:
|
||||
logging.info("Loading G_3_gram.fst.txt")
|
||||
with open("data/lm/G_3_gram.fst.txt") as f:
|
||||
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||
torch.save(G.as_dict(), "data/lm/G.pt")
|
||||
|
||||
first_token_disambig_id = lexicon.token_table["#0"]
|
||||
first_word_disambig_id = lexicon.word_table["#0"]
|
||||
|
||||
L = k2.arc_sort(L)
|
||||
G = k2.arc_sort(G)
|
||||
|
||||
logging.info("Intersecting L and G")
|
||||
LG = k2.compose(L, G)
|
||||
logging.info(f"LG shape: {LG.shape}")
|
||||
|
||||
logging.info("Connecting LG")
|
||||
LG = k2.connect(LG)
|
||||
logging.info(f"LG shape after k2.connect: {LG.shape}")
|
||||
|
||||
logging.info(type(LG.aux_labels))
|
||||
logging.info("Determinizing LG")
|
||||
|
||||
LG = k2.determinize(LG)
|
||||
logging.info(type(LG.aux_labels))
|
||||
|
||||
logging.info("Connecting LG after k2.determinize")
|
||||
LG = k2.connect(LG)
|
||||
|
||||
logging.info("Removing disambiguation symbols on LG")
|
||||
|
||||
LG.labels[LG.labels >= first_token_disambig_id] = 0
|
||||
|
||||
LG.aux_labels.values[LG.aux_labels.values >= first_word_disambig_id] = 0
|
||||
|
||||
LG = k2.remove_epsilon(LG)
|
||||
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
|
||||
|
||||
LG = k2.connect(LG)
|
||||
LG.aux_labels = LG.aux_labels.remove_values_eq(0)
|
||||
|
||||
logging.info("Arc sorting LG")
|
||||
LG = k2.arc_sort(LG)
|
||||
|
||||
logging.info("Composing H and LG")
|
||||
# CAUTION: The name of the inner_labels is fixed
|
||||
# to `tokens`. If you want to change it, please
|
||||
# also change other places in icefall that are using
|
||||
# it.
|
||||
HLG = k2.compose(H, LG, inner_labels="tokens")
|
||||
|
||||
logging.info("Connecting LG")
|
||||
HLG = k2.connect(HLG)
|
||||
|
||||
logging.info("Arc sorting LG")
|
||||
HLG = k2.arc_sort(HLG)
|
||||
logging.info(f"HLG.shape: {HLG.shape}")
|
||||
|
||||
return HLG
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
lang_dir = Path(args.lang_dir)
|
||||
|
||||
if (lang_dir / "HLG.pt").is_file():
|
||||
logging.info(f"{lang_dir}/HLG.pt already exists - skipping")
|
||||
return
|
||||
|
||||
logging.info(f"Processing {lang_dir}")
|
||||
|
||||
HLG = compile_HLG(lang_dir)
|
||||
logging.info(f"Saving HLG.pt to {lang_dir}")
|
||||
torch.save(HLG.as_dict(), f"{lang_dir}/HLG.pt")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
main()
|
14
egs/grid/AVSR/local/cvtransforms.py
Normal file
14
egs/grid/AVSR/local/cvtransforms.py
Normal file
@ -0,0 +1,14 @@
|
||||
# coding: utf-8
|
||||
import random
|
||||
|
||||
|
||||
def HorizontalFlip(batch_img, p=0.5):
|
||||
# (T, H, W, C)
|
||||
if random.random() > p:
|
||||
batch_img = batch_img[:, :, ::-1, ...]
|
||||
return batch_img
|
||||
|
||||
|
||||
def ColorNormalize(batch_img):
|
||||
batch_img = batch_img / 255.0
|
||||
return batch_img
|
83
egs/grid/AVSR/local/dataset.py
Normal file
83
egs/grid/AVSR/local/dataset.py
Normal file
@ -0,0 +1,83 @@
|
||||
# encoding: utf-8
|
||||
import cv2
|
||||
import os
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
from cvtransforms import HorizontalFlip, ColorNormalize
|
||||
|
||||
|
||||
class dataset_GRID(Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
video_path,
|
||||
anno_path,
|
||||
file_list,
|
||||
vid_pad,
|
||||
phase,
|
||||
):
|
||||
self.anno_path = anno_path
|
||||
self.vid_pad = vid_pad
|
||||
self.phase = phase
|
||||
with open(file_list, "r") as f:
|
||||
self.videos = [
|
||||
os.path.join(video_path, line.strip()) for line in f.readlines()
|
||||
]
|
||||
|
||||
self.data = []
|
||||
for vid in self.videos:
|
||||
items = vid.split(os.path.sep)
|
||||
aud = (
|
||||
vid.replace("lip", "audio_25k").replace("/video/mpg_6000", "")
|
||||
+ ".wav"
|
||||
)
|
||||
self.data.append((vid, aud, items[-4], items[-1]))
|
||||
|
||||
def __getitem__(self, idx):
|
||||
(vid, aud, spk, name) = self.data[idx]
|
||||
vid = self._load_vid(vid)
|
||||
anno = self._load_anno(
|
||||
os.path.join(self.anno_path, spk, "align", name + ".align")
|
||||
)
|
||||
|
||||
if self.phase == "train":
|
||||
vid = HorizontalFlip(vid)
|
||||
vid = ColorNormalize(vid)
|
||||
|
||||
vid = self._padding(vid, self.vid_pad)
|
||||
|
||||
return {
|
||||
"vid": torch.FloatTensor(vid.transpose(3, 0, 1, 2)),
|
||||
"txt": anno.upper(),
|
||||
}
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def _load_vid(self, p):
|
||||
files = os.listdir(p)
|
||||
files = list(filter(lambda file: file.find(".jpg") != -1, files))
|
||||
files = sorted(files, key=lambda file: int(os.path.splitext(file)[0]))
|
||||
array = [cv2.imread(os.path.join(p, file)) for file in files]
|
||||
array = list(filter(lambda im: im is not None, array))
|
||||
array = [
|
||||
cv2.resize(im, (128, 64), interpolation=cv2.INTER_LANCZOS4)
|
||||
for im in array
|
||||
]
|
||||
array = np.stack(array, axis=0).astype(np.float32)
|
||||
return array
|
||||
|
||||
def _load_anno(self, name):
|
||||
with open(name, "r") as f:
|
||||
lines = [line.strip().split(" ") for line in f.readlines()]
|
||||
txt = [line[2] for line in lines]
|
||||
txt = list(filter(lambda s: not s.upper() in ["SIL", "SP"], txt))
|
||||
txt = " ".join(txt)
|
||||
return txt
|
||||
|
||||
def _padding(self, array, length):
|
||||
array = [array[_] for _ in range(array.shape[0])]
|
||||
size = array[0].shape
|
||||
for i in range(length - len(array)):
|
||||
array.append(np.zeros(size))
|
||||
return np.stack(array, axis=0)
|
370
egs/grid/AVSR/local/prepare_lang.py
Normal file
370
egs/grid/AVSR/local/prepare_lang.py
Normal file
@ -0,0 +1,370 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This script takes as input a lexicon file "data/lang_phone/lexicon.txt"
|
||||
consisting of words and tokens (i.e., phones) and does the following:
|
||||
1. Add disambiguation symbols to the lexicon and generate lexicon_disambig.txt
|
||||
2. Generate tokens.txt, the token table mapping a token to a unique integer.
|
||||
3. Generate words.txt, the word table mapping a word to a unique integer.
|
||||
4. Generate L.pt, in k2 format. It can be loaded by
|
||||
d = torch.load("L.pt")
|
||||
lexicon = k2.Fsa.from_dict(d)
|
||||
5. Generate L_disambig.pt, in k2 format.
|
||||
"""
|
||||
import argparse
|
||||
import math
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
|
||||
from icefall.lexicon import read_lexicon, write_lexicon
|
||||
from icefall.utils import str2bool
|
||||
|
||||
Lexicon = List[Tuple[str, List[str]]]
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
help="""Input and output directory.
|
||||
It should contain a file lexicon.txt.
|
||||
Generated files by this script are saved into this directory.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--debug",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True for debugging, which will generate
|
||||
a visualization of the lexicon FST.
|
||||
Caution: If your lexicon contains hundreds of thousands
|
||||
of lines, please set it to False!
|
||||
""",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def write_mapping(filename: str, sym2id: Dict[str, int]) -> None:
|
||||
"""Write a symbol to ID mapping to a file.
|
||||
Note:
|
||||
No need to implement `read_mapping` as it can be done
|
||||
through :func:`k2.SymbolTable.from_file`.
|
||||
Args:
|
||||
filename:
|
||||
Filename to save the mapping.
|
||||
sym2id:
|
||||
A dict mapping symbols to IDs.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
with open(filename, "w", encoding="utf-8") as f:
|
||||
for sym, i in sym2id.items():
|
||||
f.write(f"{sym} {i}\n")
|
||||
|
||||
|
||||
def get_tokens(lexicon: Lexicon) -> List[str]:
|
||||
"""Get tokens from a lexicon.
|
||||
Args:
|
||||
lexicon:
|
||||
It is the return value of :func:`read_lexicon`.
|
||||
Returns:
|
||||
Return a list of unique tokens.
|
||||
"""
|
||||
ans = set()
|
||||
for _, tokens in lexicon:
|
||||
ans.update(tokens)
|
||||
|
||||
sorted_ans = list(ans)
|
||||
return sorted_ans
|
||||
|
||||
|
||||
def get_words(lexicon: Lexicon) -> List[str]:
|
||||
"""Get words from a lexicon.
|
||||
Args:
|
||||
lexicon:
|
||||
It is the return value of :func:`read_lexicon`.
|
||||
Returns:
|
||||
Return a list of unique words.
|
||||
"""
|
||||
ans = set()
|
||||
for word, _ in lexicon:
|
||||
ans.add(word)
|
||||
sorted_ans = sorted(list(ans))
|
||||
return sorted_ans
|
||||
|
||||
|
||||
def add_disambig_symbols(lexicon: Lexicon) -> Tuple[Lexicon, int]:
|
||||
"""It adds pseudo-token disambiguation symbols #1, #2 and so on
|
||||
at the ends of tokens to ensure that all pronunciations are different,
|
||||
and that none is a prefix of another.
|
||||
See also add_lex_disambig.pl from kaldi.
|
||||
Args:
|
||||
lexicon:
|
||||
It is returned by :func:`read_lexicon`.
|
||||
Returns:
|
||||
Return a tuple with two elements:
|
||||
- The output lexicon with disambiguation symbols
|
||||
- The ID of the max disambiguation symbol that appears
|
||||
in the lexicon
|
||||
"""
|
||||
|
||||
# (1) Work out the count of each token-sequence in the
|
||||
# lexicon.
|
||||
count = defaultdict(int)
|
||||
for _, tokens in lexicon:
|
||||
count[" ".join(tokens)] += 1
|
||||
|
||||
# (2) For each left sub-sequence of each token-sequence, note down
|
||||
# that it exists (for identifying prefixes of longer strings).
|
||||
issubseq = defaultdict(int)
|
||||
for _, tokens in lexicon:
|
||||
tokens = tokens.copy()
|
||||
tokens.pop()
|
||||
while tokens:
|
||||
issubseq[" ".join(tokens)] = 1
|
||||
tokens.pop()
|
||||
|
||||
# (3) For each entry in the lexicon:
|
||||
# if the token sequence is unique and is not a
|
||||
# prefix of another word, no disambig symbol.
|
||||
# Else output #1, or #2, #3, ... if the same token-seq
|
||||
# has already been assigned a disambig symbol.
|
||||
ans = []
|
||||
|
||||
# We start with #1 since #0 has its own purpose
|
||||
first_allowed_disambig = 1
|
||||
max_disambig = first_allowed_disambig - 1
|
||||
last_used_disambig_symbol_of = defaultdict(int)
|
||||
|
||||
for word, tokens in lexicon:
|
||||
tokenseq = " ".join(tokens)
|
||||
assert tokenseq != ""
|
||||
if issubseq[tokenseq] == 0 and count[tokenseq] == 1:
|
||||
ans.append((word, tokens))
|
||||
continue
|
||||
|
||||
cur_disambig = last_used_disambig_symbol_of[tokenseq]
|
||||
if cur_disambig == 0:
|
||||
cur_disambig = first_allowed_disambig
|
||||
else:
|
||||
cur_disambig += 1
|
||||
|
||||
if cur_disambig > max_disambig:
|
||||
max_disambig = cur_disambig
|
||||
last_used_disambig_symbol_of[tokenseq] = cur_disambig
|
||||
tokenseq += f" #{cur_disambig}"
|
||||
ans.append((word, tokenseq.split()))
|
||||
return ans, max_disambig
|
||||
|
||||
|
||||
def generate_id_map(symbols: List[str]) -> Dict[str, int]:
|
||||
"""Generate ID maps, i.e., map a symbol to a unique ID.
|
||||
Args:
|
||||
symbols:
|
||||
A list of unique symbols.
|
||||
Returns:
|
||||
A dict containing the mapping between symbols and IDs.
|
||||
"""
|
||||
return {sym: i for i, sym in enumerate(symbols)}
|
||||
|
||||
|
||||
def add_self_loops(
|
||||
arcs: List[List[Any]], disambig_token: int, disambig_word: int
|
||||
) -> List[List[Any]]:
|
||||
"""Adds self-loops to states of an FST to propagate disambiguation symbols
|
||||
through it. They are added on each state with non-epsilon output symbols
|
||||
on at least one arc out of the state.
|
||||
See also fstaddselfloops.pl from Kaldi. One difference is that
|
||||
Kaldi uses OpenFst style FSTs and it has multiple final states.
|
||||
This function uses k2 style FSTs and it does not need to add self-loops
|
||||
to the final state.
|
||||
The input label of a self-loop is `disambig_token`, while the output
|
||||
label is `disambig_word`.
|
||||
Args:
|
||||
arcs:
|
||||
A list-of-list. The sublist contains
|
||||
`[src_state, dest_state, label, aux_label, score]`
|
||||
disambig_token:
|
||||
It is the token ID of the symbol `#0`.
|
||||
disambig_word:
|
||||
It is the word ID of the symbol `#0`.
|
||||
Return:
|
||||
Return new `arcs` containing self-loops.
|
||||
"""
|
||||
states_needs_self_loops = set()
|
||||
for arc in arcs:
|
||||
src, dst, ilabel, olabel, score = arc
|
||||
if olabel != 0:
|
||||
states_needs_self_loops.add(src)
|
||||
|
||||
ans = []
|
||||
for s in states_needs_self_loops:
|
||||
ans.append([s, s, disambig_token, disambig_word, 0])
|
||||
|
||||
return arcs + ans
|
||||
|
||||
|
||||
def lexicon_to_fst(
|
||||
lexicon: Lexicon,
|
||||
token2id: Dict[str, int],
|
||||
word2id: Dict[str, int],
|
||||
need_self_loops: bool = False,
|
||||
) -> k2.Fsa:
|
||||
"""Convert a lexicon to an FST (in k2 format) with optional silence at
|
||||
the beginning and end of each word.
|
||||
Args:
|
||||
lexicon:
|
||||
The input lexicon. See also :func:`read_lexicon`
|
||||
token2id:
|
||||
A dict mapping tokens to IDs.
|
||||
word2id:
|
||||
A dict mapping words to IDs.
|
||||
need_self_loops:
|
||||
If True, add self-loop to states with non-epsilon output symbols
|
||||
on at least one arc out of the state. The input label for this
|
||||
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
|
||||
Returns:
|
||||
Return an instance of `k2.Fsa` representing the given lexicon.
|
||||
"""
|
||||
pronprob = 1.0
|
||||
score = -math.log(pronprob)
|
||||
|
||||
loop_state = 0 # words enter and leave from here
|
||||
next_state = 1 # the next un-allocated state, will be incremented as we go.
|
||||
arcs = []
|
||||
|
||||
assert token2id["<eps>"] == 0
|
||||
assert word2id["<eps>"] == 0
|
||||
|
||||
eps = 0
|
||||
print("token2id: ", token2id)
|
||||
print("word2id: ", word2id)
|
||||
for word, tokens in lexicon:
|
||||
print(word, tokens)
|
||||
assert len(tokens) > 0, f"{word} has no pronunciations"
|
||||
cur_state = loop_state
|
||||
|
||||
word = word2id[word]
|
||||
tokens = [token2id[i] for i in tokens]
|
||||
|
||||
for i in range(len(tokens) - 1):
|
||||
w = word if i == 0 else eps
|
||||
arcs.append([cur_state, next_state, tokens[i], w, score])
|
||||
|
||||
cur_state = next_state
|
||||
next_state += 1
|
||||
|
||||
# now for the last token of this word
|
||||
# It has two out-going arcs, one to the loop state,
|
||||
# the other one to the sil_state.
|
||||
i = len(tokens) - 1
|
||||
w = word if i == 0 else eps
|
||||
tokens[i] = tokens[i] if i >= 0 else eps
|
||||
arcs.append([cur_state, loop_state, tokens[i], w, score])
|
||||
|
||||
if need_self_loops:
|
||||
disambig_token = token2id["#0"]
|
||||
disambig_word = word2id["#0"]
|
||||
arcs = add_self_loops(
|
||||
arcs,
|
||||
disambig_token=disambig_token,
|
||||
disambig_word=disambig_word,
|
||||
)
|
||||
|
||||
final_state = next_state
|
||||
arcs.append([loop_state, final_state, -1, -1, 0])
|
||||
arcs.append([final_state])
|
||||
|
||||
arcs = sorted(arcs, key=lambda arc: arc[0])
|
||||
arcs = [[str(i) for i in arc] for arc in arcs]
|
||||
arcs = [" ".join(arc) for arc in arcs]
|
||||
arcs = "\n".join(arcs)
|
||||
print(arcs)
|
||||
fsa = k2.Fsa.from_str(arcs, acceptor=False)
|
||||
return fsa
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
lang_dir = Path(args.lang_dir)
|
||||
lexicon_filename = lang_dir / "lexicon.txt"
|
||||
|
||||
lexicon = read_lexicon(lexicon_filename)
|
||||
print("lexicon: ", lexicon)
|
||||
tokens = get_tokens(lexicon)
|
||||
|
||||
words = get_words(lexicon)
|
||||
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
||||
|
||||
for i in range(max_disambig + 1):
|
||||
disambig = f"#{i}"
|
||||
assert disambig not in tokens
|
||||
tokens.append(f"#{i}")
|
||||
|
||||
assert "<eps>" not in tokens
|
||||
tokens = ["<eps>"] + tokens
|
||||
|
||||
assert "<eps>" not in words
|
||||
assert "#0" not in words
|
||||
assert "<s>" not in words
|
||||
assert "</s>" not in words
|
||||
|
||||
words = ["<eps>"] + words + ["#0", "<s>", "</s>"]
|
||||
|
||||
token2id = generate_id_map(tokens)
|
||||
word2id = generate_id_map(words)
|
||||
|
||||
write_mapping(lang_dir / "tokens.txt", token2id)
|
||||
write_mapping(lang_dir / "words.txt", word2id)
|
||||
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
|
||||
|
||||
L = lexicon_to_fst(
|
||||
lexicon,
|
||||
token2id=token2id,
|
||||
word2id=word2id,
|
||||
)
|
||||
|
||||
L_disambig = lexicon_to_fst(
|
||||
lexicon_disambig,
|
||||
token2id=token2id,
|
||||
word2id=word2id,
|
||||
need_self_loops=True,
|
||||
)
|
||||
torch.save(L.as_dict(), lang_dir / "L.pt")
|
||||
torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt")
|
||||
|
||||
if False:
|
||||
# Just for debugging, will remove it
|
||||
L.labels_sym = k2.SymbolTable.from_file(lang_dir / "tokens.txt")
|
||||
L.aux_labels_sym = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
||||
L_disambig.labels_sym = L.labels_sym
|
||||
L_disambig.aux_labels_sym = L.aux_labels_sym
|
||||
L.draw(lang_dir / "L.png", title="L")
|
||||
L_disambig.draw(lang_dir / "L_disambig.png", title="L_disambig")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
136
egs/grid/AVSR/local/prepare_lexicon.py
Normal file
136
egs/grid/AVSR/local/prepare_lexicon.py
Normal file
@ -0,0 +1,136 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This script takes as input dir "download/GRID/GRID_align_txt"
|
||||
consisting of all samples' text files and does the following:
|
||||
|
||||
1. Generate lexicon.txt.
|
||||
|
||||
2. Generate train.text.
|
||||
"""
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--samples-txt",
|
||||
type=str,
|
||||
help="""The file listing training samples.
|
||||
""",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--align-dir",
|
||||
type=str,
|
||||
help="""The directory including training samples'
|
||||
text files.
|
||||
""",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
help="""Output directory.
|
||||
""",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def prepare_lexicon(
|
||||
train_samples_txt: str, train_align_dir: str, lang_dir: str
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
train_samples_txt:
|
||||
The file listing training samples, e.g., download/GRID/unseen_train.txt.
|
||||
train_align_dir:
|
||||
The directory including training samples' text files,
|
||||
e.g., download/GRID/GRID_align_txt.
|
||||
lang_dir:
|
||||
Output directory, e.g., data/lang_character
|
||||
Return:
|
||||
The lexicon.txt file and the train.text in lang_dir.
|
||||
"""
|
||||
words = set()
|
||||
|
||||
train_text = Path(lang_dir) / "train.text"
|
||||
lexicon = Path(lang_dir) / "lexicon.txt"
|
||||
|
||||
if train_text.exists() is False:
|
||||
texts = []
|
||||
train_samples_txts = []
|
||||
with open(train_samples_txt, "r") as f:
|
||||
train_samples_txts = [line.strip() for line in f.readlines()]
|
||||
|
||||
for sample_txt in train_samples_txts:
|
||||
anno = sample_txt.replace("video/mpg_6000", "align") + ".align"
|
||||
anno = Path(train_align_dir) / anno
|
||||
with open(anno, "r") as f:
|
||||
lines = [line.strip().split(" ") for line in f.readlines()]
|
||||
txt = [line[2] for line in lines]
|
||||
txt = list(
|
||||
filter(lambda s: not s.upper() in ["SIL", "SP"], txt)
|
||||
)
|
||||
txt = " ".join(txt)
|
||||
texts.append(txt.upper())
|
||||
|
||||
with open(train_text, "w") as f:
|
||||
for txt in texts:
|
||||
f.write(txt)
|
||||
f.write("\n")
|
||||
|
||||
with open(train_text, "r") as load_f:
|
||||
lines = load_f.readlines()
|
||||
for line in lines:
|
||||
words_list = list(filter(None, line.rstrip("\n").split(" ")))
|
||||
for word in words_list:
|
||||
if word not in words:
|
||||
words.add(word)
|
||||
|
||||
with open(lexicon, "w") as f:
|
||||
for word in words:
|
||||
chars = list(word)
|
||||
char_str = " ".join(chars)
|
||||
f.write((word + " " + char_str).upper())
|
||||
f.write("\n")
|
||||
f.write("<UNK> <UNK>")
|
||||
f.write("\n")
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
train_samples_txt = Path(args.samples_txt)
|
||||
train_align_dir = Path(args.align_dir)
|
||||
lang_dir = Path(args.lang_dir)
|
||||
|
||||
logging.info("Generating lexicon.txt and train.text")
|
||||
|
||||
prepare_lexicon(train_samples_txt, train_align_dir, lang_dir)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
main()
|
135
egs/grid/AVSR/prepare.sh
Normal file
135
egs/grid/AVSR/prepare.sh
Normal file
@ -0,0 +1,135 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -eou pipefail
|
||||
|
||||
stage=-1
|
||||
stop_stage=100
|
||||
|
||||
# We assume dl_dir (download dir) contains the following
|
||||
# directories and files. If not, they will be downloaded
|
||||
# by this script automatically.
|
||||
#
|
||||
# - $dl_dir/GRID
|
||||
# You can find lip, audio, align_text inside it.
|
||||
#
|
||||
# - $dl_dir/lm
|
||||
# This directory contains the language model(LM) downloaded from
|
||||
# https://huggingface.co/luomingshuang/grid_lm.
|
||||
# About how to get these LM files, you can know it
|
||||
# from https://github.com/luomingshuang/Train_LM_with_kaldilm.
|
||||
#
|
||||
# - lm_3_gram.arpa
|
||||
# - lm_4_gram.arpa
|
||||
#
|
||||
|
||||
dl_dir=$PWD/download
|
||||
|
||||
. shared/parse_options.sh || exit 1
|
||||
|
||||
# All files generated by this script are saved in "data".
|
||||
# You can safely remove "data" and rerun this script to regenerate it.
|
||||
mkdir -p data
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
log "dl_dir: $dl_dir"
|
||||
|
||||
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
|
||||
log "Stage -1: Download LM"
|
||||
# We assume that you have installed the git-lfs, if not, you could install it
|
||||
# using: `sudo apt-get install git-lfs && git-lfs install`
|
||||
#[ ! -e $dl_dir/lm ] && mkdir -p $dl_dir/lm
|
||||
#git clone https://huggingface.co/luomingshuang/grid_lm $dl_dir/lm
|
||||
#cd $dl_dir/lm && git lfs pull
|
||||
|
||||
# You can also use the following commands to download the lm files
|
||||
wget -P $dl_dir/lm https://huggingface.co/luomingshuang/grid_lm/resolve/main/lm_3_gram.arpa
|
||||
wget -P $dl_dir/lm https://huggingface.co/luomingshuang/grid_lm/resolve/main/lm_4_gram.arpa
|
||||
|
||||
# Because the texts among the samples in GRID are very similar,
|
||||
# the lm_4_gram.arpa is nearly no use for decoding when use LM.
|
||||
fi
|
||||
|
||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||
log "Stage 0: Download data"
|
||||
# The process of extracting lip region takes much time.
|
||||
# Here, we provide the processed data (lip region) for using.
|
||||
# So you can run this recipe quickly and easily.
|
||||
#
|
||||
# If you want to know more details about getting lip region,
|
||||
# You can have a look at https://github.com/Fengdalu/LipNet-PyTorch/tree/master/scripts
|
||||
|
||||
[ ! -e $dl_dir/GRID ] && mkdir -p $dl_dir/GRID
|
||||
|
||||
# Download the GRID lip region data and text
|
||||
# You can use the following commands to download the processed lip region data and text
|
||||
wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/grid_lip_160_80/resolve/main/GRID_LIP_160x80_TXT.zip.00
|
||||
wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/grid_lip_160_80/resolve/main/GRID_LIP_160x80_TXT.zip.01
|
||||
wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/grid_lip_160_80/resolve/main/GRID_LIP_160x80_TXT.zip.02
|
||||
wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/grid_lip_160_80/resolve/main/GRID_LIP_160x80_TXT.zip.03
|
||||
wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/grid_lip_160_80/resolve/main/GRID_LIP_160x80_TXT.zip.04
|
||||
|
||||
cat $dl_dir/GRID/GRID_LIP_160x80_TXT.zip.* > $dl_dir/GRID/GRID_LIP_160x80_TXT.zip
|
||||
unzip $dl_dir/GRID/GRID_LIP_160x80_TXT.zip -d $dl_dir/GRID/
|
||||
rm -rf $dl_dir/GRID/GRID_LIP_160x80_TXT.zip
|
||||
|
||||
# Download the GRID audio data
|
||||
wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/GRID_audio/resolve/main/audio_25k.zip
|
||||
unzip $dl_dir/GRID/audio_25k.zip -d $dl_dir/GRID/
|
||||
rm -rf $dl_dir/GRID/audio_25k.zip
|
||||
|
||||
# Download the spliting files for train and val
|
||||
# Here, we just consider the unseen case, which means
|
||||
# that there is no common speakers among train and val.
|
||||
wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/GRID_text/resolve/main/unseen_train.txt
|
||||
wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/GRID_text/resolve/main/unseen_val.txt
|
||||
fi
|
||||
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
log "Stage 2: Prepare character-based lang"
|
||||
lang_dir=data/lang_character
|
||||
mkdir -p $lang_dir
|
||||
|
||||
./local/prepare_lexicon.py \
|
||||
--samples-txt $dl_dir/GRID/unseen_train.txt \
|
||||
--align-dir $dl_dir/GRID/GRID_align_txt \
|
||||
--lang-dir $lang_dir
|
||||
|
||||
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
||||
./local/prepare_lang.py --lang-dir $lang_dir
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
log "Stage 3: Prepare G"
|
||||
# We assume you have installed kaldilm, if not, please install
|
||||
# it using: pip install kaldilm
|
||||
|
||||
mkdir -p data/lm
|
||||
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
|
||||
# It is used in building HLG
|
||||
python3 -m kaldilm \
|
||||
--read-symbol-table="data/lang_character/words.txt" \
|
||||
--disambig-symbol='#0' \
|
||||
--max-order=3 \
|
||||
$dl_dir/lm/lm_3_gram.arpa > data/lm/G_3_gram.fst.txt
|
||||
fi
|
||||
|
||||
if [ ! -f data/lm/G_4_gram.fst.txt ]; then
|
||||
# It is used for LM rescoring
|
||||
python3 -m kaldilm \
|
||||
--read-symbol-table="data/lang_character/words.txt" \
|
||||
--disambig-symbol='#0' \
|
||||
--max-order=4 \
|
||||
$dl_dir/lm/lm_4_gram.arpa > data/lm/G_4_gram.fst.txt
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
log "Stage 4: Compile HLG"
|
||||
./local/compile_hlg.py --lang-dir data/lang_character
|
||||
fi
|
1
egs/grid/AVSR/shared
Normal file
1
egs/grid/AVSR/shared
Normal file
@ -0,0 +1 @@
|
||||
../../../icefall/shared/
|
Loading…
x
Reference in New Issue
Block a user