From c27bb1c554cf174e37ebffb069b329d63a9da98f Mon Sep 17 00:00:00 2001 From: yaozengwei Date: Fri, 17 Jun 2022 19:16:22 +0800 Subject: [PATCH] correct the files, ln -> cp --- .../.emformer.py.swp | Bin 90112 -> 0 bytes .../beam_search.py | 2 +- .../decode.py | 658 +++++++++- .../export.py | 288 ++++- .../streaming_decode.py | 979 +++++++++++++- .../test_emformer.py | 195 ++- .../train.py | 1137 ++++++++++++++++- 7 files changed, 3253 insertions(+), 6 deletions(-) delete mode 100644 egs/librispeech/ASR/conv_emformer_transducer_stateless2/.emformer.py.swp mode change 120000 => 100755 egs/librispeech/ASR/conv_emformer_transducer_stateless2/decode.py mode change 120000 => 100755 egs/librispeech/ASR/conv_emformer_transducer_stateless2/export.py mode change 120000 => 100755 egs/librispeech/ASR/conv_emformer_transducer_stateless2/streaming_decode.py mode change 120000 => 100644 egs/librispeech/ASR/conv_emformer_transducer_stateless2/test_emformer.py mode change 120000 => 100755 egs/librispeech/ASR/conv_emformer_transducer_stateless2/train.py diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/.emformer.py.swp b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/.emformer.py.swp deleted file mode 100644 index 8da5e4929e5bfee7cb7c05804c8356b0dd018c37..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 90112 zcmeI537lM2mH*2@0Y%gi7)PAZHwj3!^iIOk&`3xEL_z{t*xFdBu72HJq`Io9s?LJ@ zzTpBmI^)8Oira{z<2EWTpreeasDDQP?%UrT_Z=Pa|2=oVuU=Jm!lKTkKKZ4(-n;9$ z>pAzFb0>$-Uw2M&;^1h3&jSjDTUNhr@(BlA{J`Hl;qbzqa^teJKC>&W%FFJbsdV6k z6{9DdG_YfIpxrE2>jNhY3?Dx{I&$K1qr=AyR93DyX=P<)r7%=U=Vu2l+cmVS(cICR zFIUo`bZ)xQoJ*TS)k->DuGLERL8;QH?<}>dbMv+8^q!$~rZrTnPByEp`82J}4z1d} zX-I`|;mNq(np&u&%~GpfZl|@h)f#o_56v0UPch^L)m9f7E>2_XnHb)8>2Fys+=@ZJyW6_lq;{?`58!Z@&M+ z6xhbUk9oeqd{1WHA7Y-LYre0~yuYt`ZtL~11M~x%{yok6i_G`4GVc#H&n+FlnR$PN zc|U2sug|={pLt$3-{+bPZT|N+&r3Fb<~^bt^|ACh$`H)P|4Z|J!hAnD^ZtS6`6lyy zYv%o7=D98ZYSSTX`iGnMwtTP4yf@V?q$b>fro-6y=JEco{S??wf&CQNPl5du*iV7| z6xdIJ{S??wf&CQNPl3CL0_CYfLC*evB#anLq~-tL3&Z&y&;pl&A@Bp3)DME|!3)6i zz?t9x@GcnOCO8jl1S`Q;VX7|!d%zr616G6MK>~gXQ~pKpA@FwaYH$U3BA5d^z$M^x zunL?8mVv(m3Aiu#IE?@0U^Vy+LWD1YFM>~l4}ojIHgGt24?>7{gKNQyz!va8a5KE< zJeUPDU=?^U_%%H2ufWH^8^Ihn4HUrv;1lr3*ML`p-QYs-aBv&E`G0{|fv19}fGMyB z91IQuzkwnCHTV?}S;0%ec5pcOI6{OMf){|NgH7N(a3)v@q^*9qPmFV7K5NUB*#s4d zxwPI+s`W%^Oq6QXRy(OQn$5H|->6Sj>oZBak+f%1g0$0Sy!dZm(3XT%ah5Gxwpj|9D56mII4P+b33*}(rCRBHxrypYP}o9WGH`0LWnsRS zPOOK#`oDIgNqM)V^;V;~ZCih$-oy_zNdpq=K>Lu=w!&08Ee+==USz0CBQ?|ZLbFcY zTej5_`7u%5mW(G8Qt?u`-L97^^p;c}_bX~>)g1S5n@S71B~|H4G}263R4sz~&Shzz zt_kT%q8l3ZbX)QW-D2v!&svH!Nw$)EMRmrB$*N9WUP%s<)&68sa!Kn8XbnN@qAI3R z1=1xl`AH0&2&vV|d(!6MLVdDYpDIpO=f;Qo3KBq)tdXR8A19liVm32FDqAZGRZ?lS zT=KnWl1*(X1d?JaA`O=3=ToZFa+K0_k^u7QMXsP#19C|$of-vch2$FXNlUUVA(g79 zZrdJY%+D#OYf0TFwy9E=d^hq0?OR$m%ck6mq&{&%)zW$~ENnrj;d?P5f*vt3ylqhW zcG2{sAYy+Qj#z30oAJe*qLNLL?b{_k{f<6FdVSlsGxnxB-i)X>lZ`g>^`+&7n#?m4 zd@^mygsMB+V3I6P>WxdwE_I*s$Tku-GqKd5QCnzN8+GPC8Pk$Rb%3ZOOooxmL=Uk%H?K`eoH+g;mSGbPbxjxyN=P z6(*T(Hs)La)#>QkTlK20p2v%2uuPggMP5BydaYb9tK_~cbHR$)8rzp8SFMxr-b7Z) z^&8JDtvz@1y7e13FrMei?b*RvW2QKg4vaAT3k5|CqrN)G;Hoh_&doQPZNlzIOY`Na z(pZfVF(wIV1R_*JiQN*?H*XkGRWWOiR z3nrf4oYdJYw32!~dTJ=p-ZLNMBdyqT4#SQQvuUpFBx zPe%4N6O**<%5kcCdrOe&bd??CWLfr+je21@)v8tJs%Rin^H#D@hs+dHYNCt0)&W78q-LlE!44jsibWY0w3j(S)d$$mKSL z++#x48*SP86M)K1SA|p9jdHr;h3JD6TgFhb3!;UI2(3(dA)!{OGTJx&$@%a*G*m+Q zlA@GhnTfQl?_^bA=>UU+L++ockm?APTDd8mKy@IN$0g(rM6#OfA5tsodfg?cy{1o2*gWz@Gd0;yj1&4v#;Qzl5t^@xJUJMq%(cmHA z+W)Z>kWMWh!^Z9|s9*fITlU>)ZF;b=&@N4y^{}|xGci$sI*Vxd za(S|$v5PdA8Dvv5Tb@so;)edDSllu&(l<0Tnhdb0$RGU)^Z#6avc=tl$|7YR;YD$z zpS6y~jg9lnLSvy->>J!!O?MS1`x92l3jFYNpHGIT74>48dhFJWhJV|wcv6&XAypZR z#VW6YqVv=z=SU&UK}ZI9u^T3^b?HKy!s@V&Cd(Bew)7{GqLOR~VW^#ZR2@tQDFshg z_a|rdCl~mfmM0s9Z)Y>vuc<4cY(&>~o=1|_)Vuuz&OymadNoK+dvx*&lIFU0%d{#j z9G1cEq$SX9y_=LjBe7PJh+t@8vQ=i0NFh)`f{1_xCYUu0ew>a+1;<$AypTuHDtzGN zWJ%&FBuQ0f%k_F%D?#A#0Vq3Ht(WLStdu*`@!`Q0D|uAj9X?vQvLF%V)6wZ^!_J*y zv7iF;-*RDAS^8zwoJ*%z^n}8U8j*ytNFyMt)I|Em-=4v4obINqP+N8p zQqpPJO~8uKkgVuIO0Be=&6>(o%ChE50adAq#b&4?rI6jqc3y1n*G#zl>5}t>mZB<_ z`#4uc#%_@jhLB7*TuaRk$z(oJVTw%&;g}%;891pIB>`n zd4foJ{#?k=t!7e(4l<1VX^{c0Rd$`@BXOfh(f7JLbgNpH4w=02JAfK8vQ{x>>h;0R zup1(eD%Xl$klb2;TVjnZ!QWQfrBcxkqjIa2!kGu;Pfi_APAEuON%NJVKCVON5Pd%sLitQ1p5j z%sQS3N&ajkrC1Gj0qZixDrs3c5vD+-6Ik_wS&jzz=yj+FIp^L^zMDr|lv0Wkez^L^SphZ(CMy!j8AHgOh}?-BrXmNRTDyc(P?^XoZTY zSZ2Rz-g1oDBpb1!3bUHwE2GdIx<&hJyCsxOhiphxPj@7exJHJ}apdTlB&Zq8b|V=X zTEWs^pJ~t1tzf2+Nl2X0DZ6Wf1Vv_!a~e|%H94K~^M+w0bdGAtW{j0|V(ew~b8~9x zW9i4xOaCz_k{To_vgsd|eZSf^Qz_XKyFD|%SNHie!m-Kbll`M)OP+}OOAwo5PXtV* z>1KH@<*Am`Dq7N5CSzB?`~p)zHFp}(-(a;q%_OP#|4%`KbA`8r|F`<>ABDdczF*G$ zzYaftBlrk-6?hRy!B%i8_!YeTN5GX}4ft<(_s@X;0&fM^fCZ2OIsbnU_!K<+KZ6=L z8vFu&{rlimK=}ANSPM=72Ls{d{||Ttcm_BPJOF$NUj2*U17HDc18czX;C|qf@ai{! zX8}3eKNTzozkz4}G`JCb1pEVd2@rmM5*!DXgWtike+0Y;l)wsbAMg?Q_1A#MgR{Ug z@M-w2VZrM=BHw0*?5AummQXILPoeKU|f_ z&1Orm=y%E0ZenbcPuD%|5q{H{4{w(PO9o-a5Zx}otgr*AQ(t(+h5C+TS}<{QOjJtJ z7p|o6AO5sXsx0S=&}c#QIg-i(dLAr}If=+zE%W@Y#zJk%wF3niu-%IZJBoj@3w2yy zvUPq+lpxdzBgz%-z);Ux2LHM2G3@PGwKnnF#* z%*$yaXAZgv)k>j{!9uw~4_y%$ z_~+*`o1{$f$O{Yhw|u*7RK;Y$y3-elh?qU5-#a*6cOT$N!p0n9XW%Lmq#O{b;ch4T z92uddQ`mL)W?0*yMX&BQD({v-ZDpf=oSI=BwT$oPp%P8O5}`|2+EaH>PRxoEQJ{XW zi?PiQ4gZ&X3O$ zP_#byRb16rt@?LoXA9`uZSjaYh3{pB-1hMA_qt~}qV~sqDW^;LEpR5R@10Sp{|LQ= zjmaIIx9*C`C2a4m^9t*uQCoG5>>t4vK+bx)OBjX;^KJF{*yE~&DB>41M;)$cL24s5 zHMZC)HNN*fwPBl@UKdq@`p;~d`l%Ajhb1%hi92sl+)=c6g?o_7Gb_sZ|5fmw2f?EX z|8MQbKMUV~HMkh81jm3c!R!A$Xo4w_fZxLJ{{Y+y-UH;!zY1o-3E=1O`riXLfsXECfn&iB;rVX@a<>0G@EEWS90f$b|4J|o`oSUKKHz%z{j0!c z@Nn=2_BB;GOVF+KHfBt<{HIPyzgz7(3$`SFrJq9-PQeu~?)OAX+xinqB!ZWSwzA&e z`6XkyQn^C)NuLf#uoT5W^wJ8pfyKRF%IqljWs^pB_Hh}x&- zQexuq{DC=caW4n8WEg>Q@pMj3Rbutov^>?Hki7aSzq%)_w;q#obH4gQjY))}2uDO$ zV@f8rh3KSN%M#F>vJ^7}3d|mSMIy44@O_GQ6{)+pins2MIPHSOk&h3g$^YcJJ5M7ygctcuSUw3-o~+h5_D{o7Dp|5n&J*qI^W(BRGH@`4AP^#J4bXr}`$^Ia6syC*zG6a^EgS_guNah0^+uPi zB&Ahngvrcyp)UPLB5D1RNCl@L&*c+SET&WNOLZ%#fd>^8jsKQYW1a*HzI$~Z&s8n$ zvhChTC z;+1L{pHp1gkzfMQ{QK&H&(CxX?Y`oD!n1nRGIt^t2mL@Xa}a%Sy4HYCk4I|qh({y?!-HOr=^O&ao8E%ZTt1t4 z6>&x#<7=y0r%Hr#OS}%_D*}hRRTQ&pdqgOs+Iaxg`fvso?Pz5lsm1Dh#S^2v7wCS) zzqWaPIolnVEZK=7(m9qK@h+4j>E`OT`-)nuTOik5-2zCj(K|79d~P;hC26Xn?`viU zmRXAns`v1p?*;NC6N+_xT=mVVW@DaR6m2KUar6@X*#0U=T=`_;)9E-`7AsfTb(L#_ zCY_*o2v8BpmddSQ2V<7nZbdV%OKR-s*=WEEQ5P$MXxF1M7!*MY9_J-bva2Z@vLF`; z;d6>gM5VjD(Mxqf;@VGVzKY&;^xQ?oQA9X?vuz`V{Welb4St|ti)304yvatRmQiu* zQo8QPqhh3-e z{||-1RQx9V|8~P{-UPod`u}Ud?eO_mgI9nTg7d-s!B64uzX$#k+z8$ZUI5zQ{@@Gn z^&bb9gNwi;z#ri4KMmdhn&6S34-|pu_WuO_{xe`F*Z@ughk`G_-@g$&8HhdqgTP;b zpTOt;82kv_1l|JP3{C~(;5hJL@H=?^&x3b?SAmPbX+U)O4+ftQz90Mtcq_ODh+JSA zYy>O8k>C*US!4m%0nzb49f+R)UxTkA3wS?xA9x|S3~UE$!4UXsa1S7M|8E6X0nzjS z1w8+2z(wFbK-%Kni}L@rOD<2+>1ko}cBZvGn1U8%uRYhmrcY@xX(RkH3O8ac1dKdfJ;&KV9!+Ep*M3}1R?GLSdNti+fH37-#O1= zxRg+(guToRD#DX#dsm9PfR)2)uQxJ0tdhY%ivvY{(5*D9TYh6CJ6R6Z#b7-d5p|;# zBqLgNjk&a4Rhl+Z68Q;}P;NEq{VGjG*JN17p3}D8(i+Q?Gjd2Ty2k7^n{zF5_%4U% zR#}+8cQbHPUXnjY{MC?hqNij@%VIK9TL@I;mM5#Gk>e!u4RqXO_aeK%og>MvG!fOn z-4w6cSeQXwOBxil0qg*284SFtUR64t%OO=j7uSvBd^QqifRU-MOHn+Wrr{nPbA6(HJ$7`-k6=RJ-isvV+_5dQRK zFtUzfKme@)el)7!NIc+VgI6wt<@#w;D_En^DM}a86GZoIYRVdWOGi9r^Qv>!9%Drh zE`=WIu54SO6%DmeQR;R=ICB_uj#fWtOp1tTFxub7DwWb7#u8alq1Be=LZCSi)F-1G zU>hLwIFHnsAR%!xucQ%mzv-bqnee$_Hf3ZZacC$jKdFJ7bIJIylVXu1FsE;iOO4#9 zQXz|K`{4KKXN&%Ov&L+6nX)b8xRS$*)(cj$#a2{mt#P_nCT&#-^wchxdTBd?7UQ4tB(gf}fbixu8 zb26uw6!=Y1&$RE5kui!q67<m5& zh`lYF1Vz%A;Nrez8{R=`tYd0a&tTsZq;Jxdv;sF6n&#pfNFS1&YRRn#C~3;15YSd6D{p- z#(T3_QpXIEGTn}ZvVAi*(4EjdhfVhk(hs_4FtuohHokA`mbR-rD&yKXUeAQ=4UK%f zAU!5=4hr;Y#r_&+OQ?zxDc^&a+py22Wf7JXR4U0TIb_!ZjM18LE0*g5L@zs=di!{} z)BWWnk++-0oxS9H%!yN3%+t#f(%2`jIj(7~-wLHD11{ilKz;QR3P{|+tz+d&E3AAAem{@vi!;CY}8_%`?) z_yBl5SODjNbHO9QZ;=7K3A_^Q0T+Ni@N0Pg4}lkfM}tk^{@}Cl`C{WQzW?3;#3tZE zFa~}N!F~wd46X!cf^qOOc>C+X<=`pc$zTlJ29JLu_y~AC*a=EtGgu46M&Mv@qwxOV zRp6CCd;nI!3Qz>M(MHlv@3pc4JOhRiTh3?gX3_l2+XR{+%ITLJ%Gd)0CX?v* zpg9}!0x&;?NVX!47Za5h_cOxWMR5(kWOtGh90x{OJ8nd0cqiF}g{*QrRFGiu>6`=P z>FKhXtBrV=?CJ3?3WFwZY!;MGXO&k*xBr(s$U8izf}%4r`vr1?4AFe8z3*|s7aOj3jztBi+^ra1< zlG5SRd!}RK!kIRu&HUD(BQLjeQ3p##cwkQdY)3PDWXhpxCbjb^%CBshbiWo~Fsfjb zpdi8IV{#x{^H;XA{mF5Cojo~<=C%GN@DZ5qPT3r=n+!-3l0}^`1tf@zZd0%aKlp?c zmxxI-%?!^X{>RLhhjqGmx}$j85g+f17rDP}fD$Kuwe*=k2=7gSXK zi_2@K430cq^L9MqP&(5BE-{slE2XKddmCp(@9Rt&3;Lk7#b`b!luOXnwLfV^2C>{HQua*BR0t$%eZMUP2Y_bXSADASHYbWF`bMaP+$?TJ8?ifLh&g%Mh9 zN{-eIlNVSCud*?^QZe~EL|rcQ5{_$2y4KW>5$VTa&Y7)CHS5GfYHpSwJ<0nKM#s&o zQ#9jm%AN1+Y@)qD#rs#-L(yUIi%|Y@6}uYQWTp)ttLs9N@QEWwHPT1iYoba-#Pci6 zUN1=zwK9v5Yk)X2!>DdiYr7ZhN*4*lbuGMVwc}MOSh(WRB6j=O^p`|$K-`{;uJp+Y zZA4CY7YeG~{>fEXGVOe-20<*OM$~J3d8|e#)G4Gc%R!B{{uqxvS#(A_XLg*Pz7VzoPNfF7_EUbHdTo5;Le%hT+ zO&#akv+fL}qY0!`@=;-fktC{H&bNsO>kBFv|1DR}8?~e8g%-y*IEXRzvc`U$f_`nD zjT=CHFoptGH?n5i6pucf%#Du>53)ku!4@9r(!#!Khy}2|SI2a6il&acX88-J47hI+ zsX2l+_SsBw+V75<{5U~S8yP=+El+k<%Za$#Gfsq*h(O#E`N~w=TB@gxwg}5Hoj$Y@ zmqtRVMnH3smE(k_EQ(p$QTMbQXSww4iJLvWqGN-%@s`3Tt&6aT|Bno59AX2U2 z!Q-5$f>TF)9L?gyd#1sWBijmHS99hV*3zFLDoGQ4hn|1pu{fZ3b)X_-&5vj!U$A~yBlk+=BP-c{=!XLL%mwtsxIjEpMyClcK z!IPxxNL?j$d)zx;+ZNQD- z@!%YAIQR*?|G$IhfQ!I|;CS$0@PFa;KLJD@@HCKuDKHLhgU1&i0XKtx0#o1!@JV?5 ztHI;IYH(k0EByVZfcOS@Iw*tFf%yGD2K)>j|EJ)3a1{_ge;0#6a1;=~0EdFx;rV|8 zJ_-H>JP&LJ_W%VT@_?JcE5HH}TY0` zv*!d$`RtxaN#&X4p_c1`p!M(=@jLz8$;OFIqG!{=8BOG5=$?{pnX9Z zt54}ky_dB);Ot&bTOyXOu zQA%ec^^mwaidD;g`=zaeoV;l zSD+cHh~91Q9p%<7kSk!f0J0VGn{#7zFLXFfm+6vfdk|;AEE9el`e{M}M&)oUvCJ1D zUy3(#t~foy8PSy&HM&TQ=-m@yQI4Q+%vc^MvEf!RDVLt#;%EJ7=IzI`VKn)B>ttJv^sr{SoCRqa`w8dmV2-!1Ba$&47wil9 zj$T4fRdgJq%*#v~Ej6xRd8~Kjj*b+_QwApX`eczD?UCQDo z^KP<%g2WC#5xd*jh2x@iyf0*v%B@K$mp=}p;-_0`>sLsbj-s?&PS$5m^w!WlIW-v$ ztR2EpX8LDD(x~oXkBUY`PRU%te#nK<^}-SjE~)Hl`&fuZfAutB<2w z5V-5KCzDQxl3)=BVq&s_e;OE$qON~tB6G7jNE()mAVhqf2Hu3(=Pjm>U5CD$I^0>}{YTPd_slpko{&CJFo%B)}pdpv(L zn4?hc(260f=P#o-ET$QLl8fSWq>*9fz68Dq#75wqKy(Jg zPT(nE2iO2k2KNA8gZG#F0bdB#0?`q;8J_->O1NZ}SfzJW49e5f@!4wcbf(L^CMlSGHa5-2Hth_*c2_6A{fIL9_ z2wnj$1IL0dL0GX9cn^>}0-p&cK^cgg;27`~#(3OE@Qz^`aGX}eEZxq$6hYyns)#m}0uSdMKSZ6Mzhi|T{|n7@ z3N{fRZK-BKxu!LHk<6gBBJ`z?`T9IH1Ed|^ItQC+Jz+={^0{Z>>$r4F>DOyfrMY+z z6-5|9W%{^X`83C8xN~}1PPWT(OZw(kLrbG`Feb8$tG{2#G!T-HY!)U1QBK|-vQkl# zMx1R|uG|%lYYfg)W%G5H;`y2`;CWs=jpBeym|%X0j4-F(9mPtL&I&4x0=HT1o|qwG z!ICQ54`bm&Mk)|iuEQ=quIDP-yAdhNGHCrKYPMdarqcPj`HHH;ex-F~G@;kX+``#p zqGkxnmk}_Wef}6ScX3QB!k);c*BA7>FpRRY_3j4I1W_7(O8@0#zrMJEBZ6J;HozyU zTG)tekXI|3b#y(^R`wak`Y$QV->npAXh^ z?Fn698RmHp6)H66&V~%~4gPdR@a6S?WlAnG;=HJFNlh7?34692zNe}p85PQbjP8S&X7(w_ zDQ7{|p8r(YGKM~`?3w4%6guW220)4?GNH+ZAEGC2tHQ9GmXU{Z2oCGAE5cw>T%*l` z##A+JliJu~os4~@xG>0FZr4qtNvsw}xkyCGj5)}pyGc>Bg}l4?GR$kc*-31-83t5M zlsQsvc5AeedNA!{|LJQ0nQeM@%=IYy24|z>$s*%GTLXw;(AqgDi3CvV+uP;Ebn)2e zX{}6o>e@2o5U{3fBW!rrwq4ALnk+AIPC+|q2Zq+x#|B$v+cC%1N4lA%g6?wSAWaLI z3i^TmKVqVs?BY%oXGa+@j;u&~Yb4SRgH0 z;6Xs{`V(IOR|2^M;0W+V_;@+%7e4@(0`UQGPw*{x_IH8H!CLTO@D+IUFN044@dMBV zj{*mRo8iwzw_on>D}q13kG}&v2ULKZ=|3C@pMDd3`TN0R!4y~r#J2yz;AimT-vz?2 zzZ(e8E`I-?0a9=pSO$Izt^N;?bN#Jg5DWmJq1g7n63ChUCLlcg7&r#pABe60dqE4F z2ObK33-A6;@Dj_z`|jRt&!6Z|x7W;}XRzvJL%9d`5Bctuh7H#%jFxvHY!E*H4I86J zvNp)l6BR=}WyN2Kyrb`HLW{-YeN;9ZK7MYWMnOHd7AN7KXMz`OGP=n`bZAMbYi-}} zZ9IG)SZdiM8NhDECmiSq;)rnuZ zO^tutyX5YSMy;bIBVIR7pKPt@j|Ka8l5Er(bVylLK}4XVE_@Iv) z+D$Zgt`@5r0f!dlXfaVB2_#J|2=u8r%~&mv?It#odbllkoMN8%?%ZZNU>rz>mu)EN z3tUI53j2s8OW*6H}*FoV3KKOdu8C(6hkE2SzLd8MlG zT-q(Anx1R&*uFzzX96$@`e|Ydf>HE^mBqcdMeJ~t7aTg0z?iIFZOiQLM1;&;)$Xbl zeUFOLqSd;$WX^UNfAp=?FOd{W#Gt`dElN)}H!PJJ%QRE>z@#vy{aY}?*i&HWl~jGc zN^{ool4^JlCYu-L#Y<{IdWL);hZcP1%1Hgd74eO}kDP8~?m`!DgMMr0xK=#0HZbOq z7;Ye|9#Ed-`uAk}WOZh{ZZsvUr*-^DP~nVJS@|N>?m^*Dd>A4m4>!Jt@MT~o?D(WH zQn)Cnn(`m>hxJV>w2_2l4rMW2pi^XzoM*cY97eiCn~pm>K3U4Ri;^Q2T}AG-tL*U0 z0<%mYi5G=%aX2M6zp8-vq%o6#>0~};NEGpYrY3h!59<%Jhn_(<3h1c1=3f7@vvO3J z+AXzSVV!yq(RUq4Ay+uyANVr*O<686@@qiH%pV-YxOK%-Ly=keAND17!59Qw3%gqs zjk2v*pYr87Cp@)?Tg7LzH4GG|=7%6R2KX})Y4Ps#@R8PxX=!IHaPsf>W*2KcJlc*P zUDe{c#qwm!#x)yp)+@em_MrM-G3LR4oC6I_@@^a4XgSIT68`@Nc+kIvcNPBsT*Lo= z4PIaL|DOrAfe|naz5$Q_M({+i9UKNe3x6+u|EEC;P6J1Po8j?40X_g;2F?b{!L9K4 z9{^W_2`~))A3XjI;Kkrfa5T6b-u{E&1|aA5&jKfb@51B%3wR6=-+qUJAH&;!0=ynP z56C%v37i8C1h>N9Uk9EJg!h*-`Vnv>_yaustw8knUk}8u-=l!=`$OOW@IC1B3GgBC zL2v_jDX4;3@EEWT35D!`pjw}Q@i@oM!bph+T^Fu4zHo_sG}BaSW9CpV=`hg-Cp6eOu- z9in}`R}=fOY8$tdEqBO}mGQ5wSLlDu_2P_ZNn(DrNpU{R{pLW*!A7Rbn?-ohg2a|j zhqAigFw5&mra(!?vk&6(L~kiv9GnMn@IMQ#T}tgXoq4=_K?o(Em~>hTSBqf85ua1k zbxe;@*e$5Y{O5Knnsbd+bq&iLURoFJlh=#hyh}=)F$Tqs_sUj|u(;=Xx9JQLj(43t zEmy6;$5;>l=j++eX1j~Fa&m`#$SnvIt@<4ywi3eS-0_xi>PilQ`KTicw(#mGRjwZO zSB}PPyrQS!iS4AIlL#;7)Eoo?8mWqF(Zfk&|+gqinrIYNdUTCo4Lct$eMuyFoM+$|lz5HuP$3c;<$snFX>`ws)&m zQnhandsIN&sISv)dWuu_p=^2WzYisoWV9@%U(1aHH45pn=V;NFWmUUKz8GDhNG%*c zhO6o(?~y#T+^l2l8yQ!aSk_c8PwsTb1Y4`a+l70|wXD2PW+cU_=9Je>3SC=2Bk$5H zu$@?taf#&0*rfWWF{i3zW3*$S8k!d^7NHe{@bcNh#yXGDMyeC&+=P;e&Sl6qk#wiU zMKR zUrLi#omjpboe$8?I76W8ggv>hi_F6;k1=(8?be4<4HGsbl^0b+LK4^QwE=&oEIv{s zG>NL@!*r982>-tV_VO3PbHe{u4afOqc>U|avq1xh?SB#cH~ju*fY|*%4O|2U!9Bod z;Q3z%o(9eVqVN9|`2BZ*8BhY^6L38^6%>Kk{QnC6UvvT92VMe1A7DK=8XN?^i7eoH z@NRH5cm=o=Yyu~NzX88SF7PSv5pXrw0z^Mx9guqhzJZM3t>7hKCl~}rf#u*g$Orxd zh!4O$;6m^KAaa9yf&Yt);CVeeQ5xV!a>za;Pxt(uAeU)d=_fV|cd*RG9cd1k=wL1j4tj=_TqMz{; z6URY~Z+u-e>s>kPcgRSL(DT)QIr6K7!npRfCzVnhEZh=gb_j96a51!&t{GNIOO`Xy zM4(Wz`jJEke`o6MLt%1hlrM|sVV@5h^RuC=AMw$d@$R!?rD)3UE?MU+IJ;VD9*Gm3 z|!KF(1r6*-UcCg_oZe%Bo_wIxxphyIc?UH(Y>$sRyS#9OW!v z`5;~13=BDp;%X0`HEiT^-Pchyq1bn&?9BE5TLtEK5QoiYjt zh$VEdW^L}!sOXU;`HCO+o!TPRdp9}j=Ty)RHU9}oVH1DR=V z+`yXFL4Po1*mntZHx280oxmz!W-Z(T~tA!nMKa8Cd3 zp6=OdiB~p@B50MhICidN+2oG#pwbNFXzJ|88jUT%=p`CEz07vj+?jSXzJ=6nI{FF) z<3rq4HCPC;wLGgjHHCJEDtvID3+aO02lh6To;_<3no1ZOXtt!8cO^PEJ1gS@T z`dO*LWayH{I#P$nA`*AGfqYgcrnV-YxzV>3TgIzM816lCiJ2%WUlq|T#yVEGvoXBu%OfFIcxox4KN}vkS zIUz5x3``|H9sif4taGsYQ!boeh=mN`yC~$pCsihDzY(cyG?`TQO6|~xWY8aftPIYZpDVpwms`C}(w|qJ; zEsAMs!{Ef$yD3&N`Hvp0Pt0)$J5?<9^$k|r>0GfdIc1!|FgR@O3A*%ffvX0qsy+g^G9D&G9dM5_ z)@{pWp_s0SvWH#-aUDekcByL-CA3Q@EG<0)!AcR@F#Pokyby{3tP3t(N~QtnM9oV0 zm?xTgN&p&do5B+aPp^(Mwnb0S-3hUt4C6C%tNQL~l<;v;RDt}dRd~p059zwZbdzVC zU!F?2^(Mu1U{9Tw>}j;~)R{}#ly-2O?;S9R2rI2sIz+O|#jc4vOrqg8i+dAVGe-$p zD7wl{L)vtM*&?)x$W9QROX^TD>2(UrF%v!bE;5b?+u5)dy~?sFa`)Bils8N`8US5S zT!o-pAt*CWg(>f@vRt@}REzIQwPLYgKO?q^WIULA+pCwtqWwsJ(Q)13I z3Mv);^E13WsdK}JoR679Fpis|9Zfbe^fHfRg;D#koYR#2tilG0HblM+C1S*QQ=V8) zPzqSE>30ODB5`o3SrlA1sl+SlVLW@s+;#JDyuh`^o8h&0;2-54dg1@ehW{7)|F?lFz@x$a zz<1#3zYT5%ZvxK(GhiJ!3ygsyz}MjI<&MB7fKA|Fa1;FeOTmR;7#su+1iyfnzYaVN ztOLuyZSe0u1Rn#!+lx)WC7=%!!99W41&BSs6M&rcZwAMMZ^6&M2fP~yuRjUOUuov0Dc0mFZTg{2>dg60oV$*fK}i=;OFrB zA`93F=D}G&?gcyp90k4)zyFV57uW(e1Ca-;01p8N1GyLA-@p`*_Gp6(!RbKm2>cr$ za)Ddn`#%gm13m`c2*jVjBf;MSkqO)mmhjQtLF_Eep1Y)2gqD^d^?vKO{N3XF5Rp_% zCA;)ErWE>1*@R}xy3}$?xZHg66UaWz{%$H_>8D*1j;;cah=9nBEwWsJf@n{P3LUGe zngBh9yFlP4iVZoL+3nw*r|Lg3Hr;5nE3lzs+gr2M(c#e%TfgnwbatEDT$}>eHj`|g zPw~!+C&o%+Mh;UO^+yzhtdFoBe#Vlu)6>;Tl_N>3O1XuNXN$dnI3(ii8IF5ZrLlk= zK}D>xuvC%l{rbkPWWD(EtL#w;vNKyZH*f5Z)p57Yfy-7Zvy`^dmV4e@l{n4U)CN@UGf3we;?0W0whRk~N;L^_Pzf3m;^tN(RkMa#9X; zE#Fd7^YvsYo6syber}d|S-7tT?##qKSY0rrtUuJDfUcO=I=59-r84eyP~Qm1!CpaM za$M+QbEm6o_msxTw@S|vDLBNk`59FlF+A9&w*bE6<{f>5SL&Q=CasHp|IOntOW-GZ*F z<)xX;^`D@$RFlxpsNHS0Jqh<-I_G6=VRI@)UAr<$yYO*BIY&!v58|~0<6seY5lh3Y z?5KcXXR0V}+Vq7}8#L4RVuI~5P@yWl{zi|ga0yF4$VM#!}G6cZ)NBE9{~4$|)GFk+=(aR4L3dgi1>$H9$|ffI{~utxashm!@c$*lG~Nuq|90?vFb7rvIrIN6{Jq@!cQt5% zGr*DH2k`hG1y_PPSPsP3|Fz&6@M>@ccq*6$Vgs-O+#h@op8sRuHQ-6$Vj$=IM}VKf z>x-}d8^N{Ujo``PNkH`f*MNrtx&QBT;MJfFHiCx&kq5jURKY3W{@`oy^fv?H{pJ2Y z;r}lKYk~L){4xCeJHhk7G&l~7f*-@jzY&N}z&2O`9szy{?|uuo96SX~fd_#@!6)I@ zUk{!O9uI`Ke-OAg_yaWmC=ee2*MP?XX@?Eq98d&u@88$q<=>af&)cq`B&5cCsyek> zZ)_9B8eD|=^a#=}*g#5d$yP_{r$hx3r4o|_^IozK+HG%TcXw)VgNA3s{O&>0@XzI!eDv5imz!^~$Ek5%@FzHT zXPu32boU!_os_%0J$^A!$h@Y|e&6F>vf~u3Zt=0Ca+eLLa&D&BOc(5rbw7L_MO>l& zWNwPLltu-k+JutX`{#R-Hts6Lo}HmD8PZ1qp$?{_hw!25MT@qEBc2@;^}l?~wk2V*lJA@l@7s$VH8%^i}#3=8kZk z%i*nE@nviec53Zm#+lV@jicxtnYJ3aGb}%%YIxI+yvK1tqT>`jdZBpE(>R(@fhDN< zD}J3LVAP)MVyUH{)#482+c_~G5fW*|4Q6DS(bcWLs?Wwr#tBL6&L{FTR0Z#$7cN2N z6X=9@*ALf0tvg87xZ^=X$8((xoYzG0;Zd%shmD@oQt=U&nUM=NLipX$Nyj^$9 zp&5^UM%&pfka|DS9a>haw(~2s#tanY_EFd-oU-_(J-dGotyuSMSI-BFIb9tOvak z^DVS*Mg+d^*a=wgAn>BuUpuow1H`_60jvcN13!hQeNSAvtk!@#Z3{=?u($KTtv)_$8!-vqY9E4C?VsXXcV zSz46*P|^OflFcTFlX(@q35pq~)~L1Y9H?XK*(H-w=I1^otkT%`n63!>ltesdIyt@^ z>$cP>A=6o9;scP~11 zi#pklkOck73BC(1scnsT!YfwY)l|?cVAeB@t1(2?ZpAezPI51-Lc8CB26iEi=C1iX zo#NJ(Ltts%z)D3?ULCC2fZ4-}n4 zEy){oFO_juA(^1HPxEe5@bv*Y`4iFC3F*_j9fMlFwEo@S2lM z>r?%*ewL>(MbOU*DoF633+ZC90d8VkMm+VdOAH@sGDQey9K3Y|mfOcr=!i=aEyf*D zM5Tnx7YkJCC_(oao_NvjVks;9ern1IN=GA|<6aB3pgc_}$926lei(Q_N5G;1nym9{&%aC!Pc zrcLpJERRiaxP@)5Ixh%J-#G~M8SD6pY#n9Ji3^cy45FaqdI%DiKXfw3@~11GdurWG zN=rQ=3{i6`Z8@@uARV$$Rf(2$BdB)4JcU$k?AgvDn?B!6>MwU>lki~zUtO+M^ld)$ zi-oy5ib3d&vatGH0Qbg*7n`c3R}K)^V5qWrw`8KnIHvgj$H0ev8{Sm-f3!E%=V$Qx zqW>?x0YnCHG8hBDfzSUEcmsF>cr@4m?gtJ9pM>9k8+a1f0oH&+!EfRDKL^APK<)q( zU4Wfn02~g)2jDNkH^ECm9jpK%5BM8U0AGXm|0?)2cn6pVCx9cs$B+StEx?7~0w8jM zhlB6I|GyeM7Bs*(5Iul<1GzKcYETB-!O`Hq;Qem_?*elEKMBO<|5$Jc_!>O_4d89y zt>AL-T(AJ9!G++FAOXKX4)A91PvF_01&#+p;CAT!dmwZdz5maGw}96Hxijz-Aom0u z2}EY_ZSb$)*m_OX3}!n+;l+m+1L2y zuD{M??2|Bk`;5%O$88kKTilNlT$IiTIwNbB7Zy9ZVvu`Q^(U-E{4D;}nO{x;@ms%}>h^r^C=+b>m70`Nh3eFY!UtsD!-6erc+Tuk0Xm-shLJ8V z6Fj#Cj3ry{NC9Myo^LiPX$$j#k~U$DH?6){`Y4ecJIg2a$sC*ec(PLHU$Scs6mCz` z30;C|e7bwS(QNxxGTULTuI=m=O$mH3$=9!+@=HG25Omzwz!%iB;J;95vxlXj#BdCj z5_%-uk*Dje!&KpZ(F4(Dhs5NvU|k`cj7IJnObYD7~7m9`W~oLBniiMcmjoW zRjcrhw8S%2ouY8lQ8BCyKhJfdW=Ri3ma^r_k292`=fM_b#1|%}CJCu}<*`w&Ccbgw z0ufnv9t>0F=8L9dkX_epiE=wR9&DCe9;C%Z)LT7^71b{)X7r}GyU*86WK}4tFxz6h z*sC0_Gce(}zolbj^tR}G$~p(0$}__f%IaU+wux1$Pw&U-L|g?xFC{ZI{`2kTM^ccF zO~rSbB^$6?KM4ppMwjZ9KO$V$s`)0-Gm#ec4{$@`q%xK<*Cxu4fE&@5BZzdBI;zXj z3aV=6zYBt!6`_g}rc@;@n@Tf9eYqu;E7)H#5l+HAQzs-z)u|vQ+qWXM>x|-Z=$k=q zo{p+(6*%-QiE(3YwK8u*eI0W^hAkS_Dp{456Mq{o13~$AFI6o$lJ_`L`|_YstX*|E zyF4!|+M8ALPO|e4Ec?|8(y_pxrX<>i*#*f=|6Vr$KLCncvidNsvMfv${lGOVO*}U_ z@+v!IJ=2Iml%I|gKH_4@%tGaM(WpwJYgQDNqfd2SE%&P{ZyT*ryCDKeLIf_MyKqOU*JTm)GUOEy9L1g3OWdO|dUe!-MZZY*bN=TCg!-|aKlLozQ z%Zwqv&`XcoruhFo@R47JpA`OolV<-5--Ory5AY%I4)Bj)3wQ{)4L<+PU=o}Hz7BtX z9T0y181N-UdfBM^UnABTs(2BhF3@G$UDa6A0_zkz3h3&2WnB=~Rm_s@XW zfX9OE;B@d1a4Y=#4dAulSwL+3w}aEb&*9@g3SJJL48*qo1aKI5Aov1&{A+==;XjPO zZ-HNz^Zsjq`0p3p{vX1p%RPT@1Fr;61sg#Dd>p=9?)1ABJO%6kVzd8nV0HV2rhgAE z2hRm!pPztRp!a`z-rZ3A4t_~<%4fc;zcaT@yDcL#bisy*r%7WbygPS>%dzfbr(hG3?~V(~qPI(&!OU)XBv^DhXCX$krn9!~ zcKP%TPS-FEABmeU{v{>#ndm90msnH6<19|+XY3qQU2-Bh=O(tR^a%?qp63dZjQ!-X z*MmE&>8@f>u%HrAPHOKU`vIHUzE(OAbi1@9&D_ccftOgxzFsx5WzVBTf6f*mX*Rf4 znjN`z0lsXy)@U?iMoBl&RCTAPj45;n#q>gA9?z9S<~Qai)jrR)rK6IVnjmj3*SJ02 zj3Bj@qm$@w;j)bLdv!;EHid2Z6)Migb>};cZA}Kc4mZEfMdOMx?4IZzE6I8ng`Z^8 zYE1T96V+|n9K+Gbwy-KkhXOfUi~n3wXE4t%46B$*Jl{uZ;~1=u zCb2@ziP4?}-CH6_9$hD`g1ogKQ}-^Vi76^^I!iwCCslG=nx&L{_^v5=ICmB-o#i{9 z*0vOJiF0~y&_-Q)Zx~|H-WvvX#S9+$-iyhV4}gfc*;ePCS&6Zp5mYt&*!7EXR?;<) zXs>WnW{@EJXw3Dx!pO@ggqV9PD6?{cyIoM0?~)+zKp^LoAef~#rFi72hnMJSGFU-Y zrO`x?HIGh>Qf^lI(n_2h(+zzQKMTrrY{9*witFm|Kp-+UaWE<=7IdEWfB(YC)AEX8 zh1OcU9i^czL$wp(m>0E2og#2BAgAV;o2{bsl!pb^rKqZL;_3zE%#7;HBPuG3i-e*fV~4S;qSx1kB|$z1-u4`jleQ+I5-H1|NmEkmwSuJDT(i(bj@=d} zTbzQ`gln2ESKyE0J$1xYYKd*0k?2yA>e$~eW-=NX5A`w??P(&~xep)jd=ytYW4_nh zJhZD>Xisy{Py`+stS&}LwLv$01)Ht4#zJ(hajWO|Tw%bHx=D)Qt69ZIr#AaWS9Z|T zX<7XC;r7my+4tb(^xz`*N2&ybw;ofwI2$7wIMv1}NN1Oiih{~o(6!JskdRx3hJuHt zzZFy@6>rNdD_@mjRNKi^BV|XjtHD7gxwf>5ErTS*OJQw~UzoXsPr_Ku>EZ@FNaSVX z>*jYh%Qd@Wxin2A+32uYRfmG+P>Yj2t(UD*$DuK-ouxpZr?^zaQ_favS>AZmZv42$ zb2x$FEc3Hn#bu71A$C$|aG4ObbI(vl<2~8XXgi;b>D1b0v(fb2Y_JiO;)r^6ZfTCr z$u;464}T}6M9+;Hg+l$&XD(54$dNOn{PC!fSD2*{BQNG&(;}P&91#}n4F#dB{oojV zv0gx{L>YChpdVF|diRuSuUbJHUlw-!d^sf~@M>SpL z_OOi7h*{AJmH;YZPV$IRI`Z^m^?#QUykFj;HPxSU|2f&fcQ&gvl@E;Q!w#P@ln-a` z%q!_jnpVn4qa@xf!M{rH*xQPh9BF6qOVSnUr-)JR%|!HX;)wAtDTB{^-2d5{(ES5s@}o<*y?oCR6$Zt^!>PWb;p2LDHdzl8s{ z{{Q|RKL5F39XJb&fWyGg;qQM2z6t&lJQb9|Y2a7z_-_Kw1PefP0fgTdAAq6{ApZZK z09FC9|NmDYcl%uiE(BH|;79QB?+0?f-}6Bgh_Ao%!2Q6X;5+d0-xhuz+yLGNUJ4!u z&IN~n-@(^^3w#n>37!is1{ZU z!gHrW4X0}B`0wmV1iAGmYeaEZ#O;oRaP8Lds{RgUXm=)H>8-!_9|?r?7~s&p)m9@| zi9C#kuRIK;@9MxrNzmll1FdTuG=g)6Y)%i@y8KT#TJY77@gCLpkEJ@z?RZR9Yx?5x zv-NJ&k=`QbVxm1X-2)s>^hT*(E}**acR_eyb} z5-z(%pVvNaUKZV`xB}gw?M7H=Ey(V*SICGdyV{GmmDNxuyROQLy0|IKpV4CP8YAH& zGIR6-%w@hU1bOrg9D#^mGwzc0la>l>E?+!Z_84^$&a<05RbN26i;X9z{LAzew9*~1 zJz1DvHkc&qR5%<0g%&YfBbuO>S5}5I^9`)1#b^fiE9x?vnPzzkjX8vh+(5wfMlH?& zl!C`F@6qm?5!0lgBD(wgNl!`}v2k6S-_6hAVy;Yl^2~+qhV{;D_?K!a^uKAji;RNm zjru^>^)FbDqQ%N6=IRA)apR!e6(!d;NcjJ+!*4zv{xm%Q7yJL4fXDzI4_e?%AaVd} z1MoR`ez601ArKkBC^!V%1Ka}d|IgsX;L%_LJPMow9s+)a4B%7XWk6&Co4|v>Ux7a$ z3-~G!`M|Tm6sUl$U|f6PMHcWPa20q8xELG-z7K!@74TjlwgQ)e zc_1=?+u-qq@BaXJ1GpT>JpldSq2K}FH}L(x2I3>|IpEnK1p`3t1o##Z+ky9hSAa=y z0yrN0HTWtrfv%DJx==Kcf7f%E3t}VLZ}`o?=U!Mk?YxA2{?1p;W=i*iZL*J(ut{E)t}+zV|Evt zbKw}GYh|EG1-Wv}i<9p1YsP{b?E0;)zY-uvM+mNID4*PWm#GO)Y&!aSFb?4y z!YKcArmr`Lr50uwv4}#C3(|5q%K^2xSF$?|zoV4CBUfIwQ#PfOdz8Nxd``HSxK69h z&z5ORDcD@ft(uA63$yWM)5=cSD(k4?B55VuuEs)bN`-a_g{37mv2KMn*n{gA2wcUh zvI{PKNXEN#qQFfPfAd6BPppY!lg7}Mp{Lj0U-;&DCpEvx(VTbyi#e!G{dqR)E~cBS z<5>23Hcwz-7~0~dL}g<<5-izwz_}R1qdsH|Zl<}$3|~&_HnKQhw$o>yAIXlwlfbT4 z@(G{Ne*Zj`3`r~1=ksU^+mvpYt+!NYW6(p#9e0nm+%IZ+krYEv?o1FX#5@!|CJlX?z3QHEz=`!VsHEX4S z1qo(9QE+_L#lgjiUBL#GZ(X->%pgjpn$hd1@nZepI33r3_?M}n(2i!ottm( P!8OldyWum{JDmRyt>Pnj diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/beam_search.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/beam_search.py index 57fd35665..8554e44cc 120000 --- a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/beam_search.py +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/beam_search.py @@ -1 +1 @@ -../conv_emformer_transducer_stateless/beam_search.py \ No newline at end of file +../pruned_transducer_stateless2/beam_search.py \ No newline at end of file diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/decode.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/decode.py deleted file mode 120000 index a9e9e1576..000000000 --- a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/decode.py +++ /dev/null @@ -1 +0,0 @@ -../conv_emformer_transducer_stateless/decode.py \ No newline at end of file diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/decode.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/decode.py new file mode 100755 index 000000000..287fb94df --- /dev/null +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/decode.py @@ -0,0 +1,657 @@ +#!/usr/bin/env python3 +# +# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: +(1) greedy search +./conv_emformer_transducer_stateless/decode.py \ + --epoch 30 \ + --avg 10 \ + --exp-dir conv_emformer_transducer_stateless/exp \ + --max-duration 300 \ + --num-encoder-layers 12 \ + --chunk-length 32 \ + --cnn-module-kernel 31 \ + --left-context-length 32 \ + --right-context-length 8 \ + --memory-size 32 \ + --decoding-method greedy_search \ + --use-averaged-model True + +(2) modified beam search +./conv_emformer_transducer_stateless/decode.py \ + --epoch 30 \ + --avg 10 \ + --exp-dir conv_emformer_transducer_stateless/exp \ + --max-duration 300 \ + --num-encoder-layers 12 \ + --chunk-length 32 \ + --cnn-module-kernel 31 \ + --left-context-length 32 \ + --right-context-length 8 \ + --memory-size 32 \ + --decoding-method modified_beam_search \ + --use-averaged-model True \ + --beam-size 4 + +(3) fast beam search +./conv_emformer_transducer_stateless/decode.py \ + --epoch 30 \ + --avg 10 \ + --exp-dir conv_emformer_transducer_stateless/exp \ + --max-duration 300 \ + --num-encoder-layers 12 \ + --chunk-length 32 \ + --cnn-module-kernel 31 \ + --left-context-length 32 \ + --right-context-length 8 \ + --memory-size 32 \ + --decoding-method fast_beam_search \ + --use-averaged-model True \ + --beam 4 \ + --max-contexts 4 \ + --max-states 8 +""" + + +import argparse +import logging +import math +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import k2 +import sentencepiece as spm +import torch +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from beam_search import ( + beam_search, + fast_beam_search_one_best, + greedy_search, + greedy_search_batch, + modified_beam_search, +) +from train import add_model_arguments, get_params, get_transducer_model + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.utils import ( + AttributeDict, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + +LOG_EPS = math.log(1e-10) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=10, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless4/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--decoding-method", + type=str, + default="greedy_search", + help="""Possible values are: + - greedy_search + - modified_beam_search + - fast_beam_search + """, + ) + + parser.add_argument( + "--beam-size", + type=int, + default=4, + help="""An integer indicating how many candidates we will keep for each + frame. Used only when --decoding-method is beam_search or + modified_beam_search.""", + ) + + parser.add_argument( + "--beam", + type=float, + default=4, + help="""A floating point value to calculate the cutoff score during beam + search (i.e., `cutoff = max-score - beam`), which is the same as the + `beam` in Kaldi. + Used only when --decoding-method is fast_beam_search""", + ) + + parser.add_argument( + "--max-contexts", + type=int, + default=4, + help="""Used only when --decoding-method is + fast_beam_search""", + ) + + parser.add_argument( + "--max-states", + type=int, + default=8, + help="""Used only when --decoding-method is + fast_beam_search""", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; " + "2 means tri-gram", + ) + + parser.add_argument( + "--max-sym-per-frame", + type=int, + default=1, + help="""Maximum number of symbols per frame. + Used only when --decoding_method is greedy_search""", + ) + + add_model_arguments(parser) + + return parser + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + batch: dict, + decoding_graph: Optional[k2.Fsa] = None, +) -> Dict[str, List[List[str]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + + - key: It indicates the setting used for decoding. For example, + if greedy_search is used, it would be "greedy_search" + If beam search with a beam size of 7 is used, it would be + "beam_7" + - value: It contains the decoding result. `len(value)` equals to + batch size. `value[i]` is the decoding result for the i-th + utterance in the given batch. + Args: + params: + It's the return value of :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + batch: + It is the return value from iterating + `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation + for the format of the `batch`. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search. + Returns: + Return the decoding result. See above description for the format of + the returned dict. + """ + device = next(model.parameters()).device + feature = batch["inputs"] + assert feature.ndim == 3 + + feature = feature.to(device) + # at entry, feature is (N, T, C) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + feature_lens += params.chunk_length + feature = torch.nn.functional.pad( + feature, + pad=(0, 0, 0, params.chunk_length), + value=LOG_EPS, + ) + + encoder_out, encoder_out_lens = model.encoder( + x=feature, x_lens=feature_lens + ) + hyps = [] + + if params.decoding_method == "fast_beam_search": + hyp_tokens = fast_beam_search_one_best( + model=model, + decoding_graph=decoding_graph, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif ( + params.decoding_method == "greedy_search" + and params.max_sym_per_frame == 1 + ): + hyp_tokens = greedy_search_batch( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + elif params.decoding_method == "modified_beam_search": + hyp_tokens = modified_beam_search( + model=model, + encoder_out=encoder_out, + encoder_out_lens=encoder_out_lens, + beam=params.beam_size, + ) + for hyp in sp.decode(hyp_tokens): + hyps.append(hyp.split()) + else: + batch_size = encoder_out.size(0) + + for i in range(batch_size): + # fmt: off + encoder_out_i = encoder_out[i:i + 1, :encoder_out_lens[i]] + # fmt: on + if params.decoding_method == "greedy_search": + hyp = greedy_search( + model=model, + encoder_out=encoder_out_i, + max_sym_per_frame=params.max_sym_per_frame, + ) + elif params.decoding_method == "beam_search": + hyp = beam_search( + model=model, + encoder_out=encoder_out_i, + beam=params.beam_size, + ) + else: + raise ValueError( + f"Unsupported decoding method: {params.decoding_method}" + ) + hyps.append(sp.decode(hyp).split()) + + if params.decoding_method == "greedy_search": + return {"greedy_search": hyps} + elif params.decoding_method == "fast_beam_search": + return { + ( + f"beam_{params.beam}_" + f"max_contexts_{params.max_contexts}_" + f"max_states_{params.max_states}" + ): hyps + } + else: + return {f"beam_size_{params.beam_size}": hyps} + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, + sp: spm.SentencePieceProcessor, + decoding_graph: Optional[k2.Fsa] = None, +) -> Dict[str, List[Tuple[List[str], List[str]]]]: + """Decode dataset. + + Args: + dl: + PyTorch's dataloader containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + sp: + The BPE model. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search. + Returns: + Return a dict, whose key may be "greedy_search" if greedy search + is used, or it may be "beam_7" if beam size of 7 is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + if params.decoding_method == "greedy_search": + log_interval = 100 + else: + log_interval = 2 + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["supervisions"]["text"] + + hyps_dict = decode_one_batch( + params=params, + model=model, + sp=sp, + decoding_graph=decoding_graph, + batch=batch, + ) + + for name, hyps in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) + for hyp_words, ref_text in zip(hyps, texts): + ref_words = ref_text.split() + this_batch.append((ref_words, hyp_words)) + + results[name].extend(this_batch) + + num_cuts += len(texts) + + if batch_idx % log_interval == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info( + f"batch {batch_str}, cuts processed until now is {num_cuts}" + ) + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[List[int], List[int]]]], +): + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = ( + params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" + ) + store_transcripts(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = ( + params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_filename, "w") as f: + wer = write_error_stats( + f, f"{test_set_name}-{key}", results, enable_log=True + ) + test_set_wers[key] = wer + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = ( + params.res_dir + / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_info, "w") as f: + print("settings\tWER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, WER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + assert params.decoding_method in ( + "greedy_search", + "beam_search", + "fast_beam_search", + "modified_beam_search", + ) + params.res_dir = params.exp_dir / params.decoding_method + + if params.iter > 0: + params.suffix = f"iter-{params.iter}-avg-{params.avg}" + else: + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + + if "fast_beam_search" in params.decoding_method: + params.suffix += f"-beam-{params.beam}" + params.suffix += f"-max-contexts-{params.max_contexts}" + params.suffix += f"-max-states-{params.max_states}" + elif "beam_search" in params.decoding_method: + params.suffix += ( + f"-{params.decoding_method}-beam-size-{params.beam_size}" + ) + else: + params.suffix += f"-context-{params.context_size}" + params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" + + if params.use_averaged_model: + params.suffix += "-use-averaged-model" + + setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") + logging.info("Decoding started") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # and is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.unk_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints( + params.exp_dir, iteration=-params.iter + )[: params.avg] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints( + params.exp_dir, iteration=-params.iter + )[: params.avg + 1] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0 + start = params.epoch - params.avg + assert start >= 1 + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.to(device) + model.eval() + + if params.decoding_method == "fast_beam_search": + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) + else: + decoding_graph = None + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + librispeech = LibriSpeechAsrDataModule(args) + + test_clean_cuts = librispeech.test_clean_cuts() + test_other_cuts = librispeech.test_other_cuts() + + test_clean_dl = librispeech.test_dataloaders(test_clean_cuts) + test_other_dl = librispeech.test_dataloaders(test_other_cuts) + + test_sets = ["test-clean", "test-other"] + test_dl = [test_clean_dl, test_other_dl] + + for test_set, test_dl in zip(test_sets, test_dl): + results_dict = decode_dataset( + dl=test_dl, + params=params, + model=model, + sp=sp, + decoding_graph=decoding_graph, + ) + + save_results( + params=params, + test_set_name=test_set, + results_dict=results_dict, + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/export.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/export.py deleted file mode 120000 index f986b6973..000000000 --- a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/export.py +++ /dev/null @@ -1 +0,0 @@ -../conv_emformer_transducer_stateless/export.py \ No newline at end of file diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/export.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/export.py new file mode 100755 index 000000000..4930881ea --- /dev/null +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/export.py @@ -0,0 +1,287 @@ +#!/usr/bin/env python3 +# +# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# This script converts several saved checkpoints +# to a single one using model averaging. +""" +Usage: +./conv_emformer_transducer_stateless/export.py \ + --exp-dir ./conv_emformer_transducer_stateless/exp \ + --bpe-model data/lang_bpe_500/bpe.model \ + --epoch 30 \ + --avg 10 \ + --use-averaged-model=True \ + --num-encoder-layers 12 \ + --chunk-length 32 \ + --cnn-module-kernel 31 \ + --left-context-length 32 \ + --right-context-length 8 \ + --memory-size 32 \ + --jit False + +It will generate a file exp_dir/pretrained.pt + +To use the generated file with `conv_emformer_transducer_stateless/decode.py`, +you can do: + + cd /path/to/exp_dir + ln -s pretrained.pt epoch-9999.pt + + cd /path/to/egs/librispeech/ASR + ./conv_emformer_transducer_stateless/decode.py \ + --exp-dir ./conv_emformer_transducer_stateless/exp \ + --epoch 9999 \ + --avg 1 \ + --max-duration 100 \ + --bpe-model data/lang_bpe_500/bpe.model \ + --use-averaged-model=False \ + --num-encoder-layers 12 \ + --chunk-length 32 \ + --cnn-module-kernel 31 \ + --left-context-length 32 \ + --right-context-length 8 \ + --memory-size 32 +""" + +import argparse +import logging +from pathlib import Path + +import sentencepiece as spm +import torch +from train import add_model_arguments, get_params, get_transducer_model + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.utils import str2bool + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=28, + help="""It specifies the checkpoint to use for averaging. + Note: Epoch counts from 0. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=15, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless2/exp", + help="""It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--jit", + type=str2bool, + default=False, + help="""True to save a model after applying torch.jit.script. + """, + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; " + "2 means tri-gram", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + add_model_arguments(parser) + + return parser + + +def main(): + args = get_parser().parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + device = torch.device("cpu") + + logging.info(f"device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints( + params.exp_dir, iteration=-params.iter + )[: params.avg] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints( + params.exp_dir, iteration=-params.iter + )[: params.avg + 1] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.eval() + + if params.jit: + # We won't use the forward() method of the model in C++, so just ignore + # it here. + # Otherwise, one of its arguments is a ragged tensor and is not + # torch scriptabe. + model.__class__.forward = torch.jit.ignore(model.__class__.forward) + logging.info("Using torch.jit.script") + model = torch.jit.script(model) + filename = params.exp_dir / "cpu_jit.pt" + model.save(str(filename)) + logging.info(f"Saved to {filename}") + else: + logging.info("Not using torch.jit.script") + # Save it using a format so that it can be loaded + # by :func:`load_checkpoint` + filename = params.exp_dir / "pretrained.pt" + torch.save({"model": model.state_dict()}, str(filename)) + logging.info(f"Saved to {filename}") + + +if __name__ == "__main__": + formatter = ( + "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + ) + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/streaming_decode.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/streaming_decode.py deleted file mode 120000 index f6272202f..000000000 --- a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/streaming_decode.py +++ /dev/null @@ -1 +0,0 @@ -../conv_emformer_transducer_stateless/streaming_decode.py \ No newline at end of file diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/streaming_decode.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/streaming_decode.py new file mode 100755 index 000000000..4fac405b0 --- /dev/null +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/streaming_decode.py @@ -0,0 +1,978 @@ +#!/usr/bin/env python3 +# +# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: +(1) greedy search +./conv_emformer_transducer_stateless/streaming_decode.py \ + --epoch 30 \ + --avg 10 \ + --exp-dir conv_emformer_transducer_stateless/exp \ + --num-decode-streams 2000 \ + --num-encoder-layers 12 \ + --chunk-length 32 \ + --cnn-module-kernel 31 \ + --left-context-length 32 \ + --right-context-length 8 \ + --memory-size 32 \ + --decoding-method greedy_search \ + --use-averaged-model True + +(2) modified beam search +./conv_emformer_transducer_stateless/streaming_decode.py \ + --epoch 30 \ + --avg 10 \ + --exp-dir conv_emformer_transducer_stateless/exp \ + --num-decode-streams 2000 \ + --num-encoder-layers 12 \ + --chunk-length 32 \ + --cnn-module-kernel 31 \ + --left-context-length 32 \ + --right-context-length 8 \ + --memory-size 32 \ + --decoding-method modified_beam_search \ + --use-averaged-model True \ + --beam-size 4 + +(3) fast beam search +./conv_emformer_transducer_stateless/streaming_decode.py \ + --epoch 30 \ + --avg 10 \ + --exp-dir conv_emformer_transducer_stateless/exp \ + --num-decode-streams 2000 \ + --num-encoder-layers 12 \ + --chunk-length 32 \ + --cnn-module-kernel 31 \ + --left-context-length 32 \ + --right-context-length 8 \ + --memory-size 32 \ + --decoding-method fast_beam_search \ + --use-averaged-model True \ + --beam 4 \ + --max-contexts 4 \ + --max-states 8 +""" +import argparse +import logging +import warnings +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import k2 +from lhotse import CutSet +import numpy as np +import sentencepiece as spm +import torch +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from beam_search import Hypothesis, HypothesisList, get_hyps_shape +from emformer import LOG_EPSILON, stack_states, unstack_states +from kaldifeat import Fbank, FbankOptions +from stream import Stream +from torch.nn.utils.rnn import pad_sequence +from train import add_model_arguments, get_params, get_transducer_model + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.decode import one_best_decoding +from icefall.utils import ( + AttributeDict, + get_texts, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=28, + help="It specifies the checkpoint to use for decoding." + "Note: Epoch counts from 0.", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=15, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch'. ", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=False, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="transducer_emformer/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--decoding-method", + type=str, + default="greedy_search", + help="""Possible values are: + - greedy_search + - modified_beam_search + - fast_beam_search + """, + ) + + parser.add_argument( + "--beam-size", + type=int, + default=4, + help="""An interger indicating how many candidates we will keep for each + frame. Used only when --decoding-method is beam_search or + modified_beam_search.""", + ) + + parser.add_argument( + "--beam", + type=float, + default=4, + help="""A floating point value to calculate the cutoff score during beam + search (i.e., `cutoff = max-score - beam`), which is the same as the + `beam` in Kaldi. + Used only when --decoding-method is fast_beam_search""", + ) + + parser.add_argument( + "--max-contexts", + type=int, + default=4, + help="""Used only when --decoding-method is + fast_beam_search""", + ) + + parser.add_argument( + "--max-states", + type=int, + default=8, + help="""Used only when --decoding-method is + fast_beam_search""", + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; " + "2 means tri-gram", + ) + parser.add_argument( + "--max-sym-per-frame", + type=int, + default=1, + help="""Maximum number of symbols per frame. + Used only when --decoding_method is greedy_search""", + ) + + parser.add_argument( + "--sampling-rate", + type=float, + default=16000, + help="Sample rate of the audio", + ) + + parser.add_argument( + "--num-decode-streams", + type=int, + default=2000, + help="The number of streams that can be decoded parallel", + ) + + add_model_arguments(parser) + + return parser + + +def greedy_search( + model: nn.Module, + encoder_out: torch.Tensor, + streams: List[Stream], +) -> None: + """Greedy search in batch mode. It hardcodes --max-sym-per-frame=1. + + Args: + model: + The transducer model. + encoder_out: + Output from the encoder. Its shape is (N, T, C), where N >= 1. + streams: + A list of Stream objects. + """ + assert len(streams) == encoder_out.size(0) + assert encoder_out.ndim == 3 + + blank_id = model.decoder.blank_id + context_size = model.decoder.context_size + device = next(model.parameters()).device + T = encoder_out.size(1) + + encoder_out = model.joiner.encoder_proj(encoder_out) + + decoder_input = torch.tensor( + [stream.hyp[-context_size:] for stream in streams], + device=device, + dtype=torch.int64, + ) + # decoder_out is of shape (batch_size, 1, decoder_out_dim) + decoder_out = model.decoder(decoder_input, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + + for t in range(T): + # current_encoder_out's shape: (batch_size, 1, encoder_out_dim) + current_encoder_out = encoder_out[:, t : t + 1, :] # noqa + + logits = model.joiner( + current_encoder_out.unsqueeze(2), + decoder_out.unsqueeze(1), + project_input=False, + ) + # logits'shape (batch_size, vocab_size) + logits = logits.squeeze(1).squeeze(1) + + assert logits.ndim == 2, logits.shape + y = logits.argmax(dim=1).tolist() + emitted = False + for i, v in enumerate(y): + if v != blank_id: + streams[i].hyp.append(v) + emitted = True + if emitted: + # update decoder output + decoder_input = torch.tensor( + [stream.hyp[-context_size:] for stream in streams], + device=device, + dtype=torch.int64, + ) + decoder_out = model.decoder( + decoder_input, + need_pad=False, + ) + decoder_out = model.joiner.decoder_proj(decoder_out) + + +def modified_beam_search( + model: nn.Module, + encoder_out: torch.Tensor, + streams: List[Stream], + beam: int = 4, +): + """Beam search in batch mode with --max-sym-per-frame=1 being hardcoded. + + Args: + model: + The RNN-T model. + encoder_out: + A 3-D tensor of shape (N, T, encoder_out_dim) containing the output of + the encoder model. + streams: + A list of stream objects. + beam: + Number of active paths during the beam search. + """ + assert encoder_out.ndim == 3, encoder_out.shape + assert len(streams) == encoder_out.size(0) + + blank_id = model.decoder.blank_id + context_size = model.decoder.context_size + device = next(model.parameters()).device + batch_size = len(streams) + T = encoder_out.size(1) + + B = [stream.hyps for stream in streams] + + encoder_out = model.joiner.encoder_proj(encoder_out) + + for t in range(T): + current_encoder_out = encoder_out[:, t].unsqueeze(1).unsqueeze(1) + # current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim) + + hyps_shape = get_hyps_shape(B).to(device) + + A = [list(b) for b in B] + B = [HypothesisList() for _ in range(batch_size)] + + ys_log_probs = torch.stack( + [hyp.log_prob.reshape(1) for hyps in A for hyp in hyps], dim=0 + ) # (num_hyps, 1) + + decoder_input = torch.tensor( + [hyp.ys[-context_size:] for hyps in A for hyp in hyps], + device=device, + dtype=torch.int64, + ) # (num_hyps, context_size) + + decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1) + decoder_out = model.joiner.decoder_proj(decoder_out) + # decoder_out is of shape (num_hyps, 1, 1, decoder_output_dim) + + # Note: For torch 1.7.1 and below, it requires a torch.int64 tensor + # as index, so we use `to(torch.int64)` below. + current_encoder_out = torch.index_select( + current_encoder_out, + dim=0, + index=hyps_shape.row_ids(1).to(torch.int64), + ) # (num_hyps, encoder_out_dim) + + logits = model.joiner( + current_encoder_out, decoder_out, project_input=False + ) + # logits is of shape (num_hyps, 1, 1, vocab_size) + + logits = logits.squeeze(1).squeeze(1) + + log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size) + + log_probs.add_(ys_log_probs) + + vocab_size = log_probs.size(-1) + + log_probs = log_probs.reshape(-1) + + row_splits = hyps_shape.row_splits(1) * vocab_size + log_probs_shape = k2.ragged.create_ragged_shape2( + row_splits=row_splits, cached_tot_size=log_probs.numel() + ) + ragged_log_probs = k2.RaggedTensor( + shape=log_probs_shape, value=log_probs + ) + + for i in range(batch_size): + topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + topk_hyp_indexes = (topk_indexes // vocab_size).tolist() + topk_token_indexes = (topk_indexes % vocab_size).tolist() + + for k in range(len(topk_hyp_indexes)): + hyp_idx = topk_hyp_indexes[k] + hyp = A[i][hyp_idx] + + new_ys = hyp.ys[:] + new_token = topk_token_indexes[k] + if new_token != blank_id: + new_ys.append(new_token) + + new_log_prob = topk_log_probs[k] + new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob) + B[i].add(new_hyp) + + for i in range(batch_size): + streams[i].hyps = B[i] + + +def fast_beam_search_one_best( + model: nn.Module, + streams: List[Stream], + encoder_out: torch.Tensor, + processed_lens: torch.Tensor, + beam: float, + max_states: int, + max_contexts: int, +) -> None: + """It limits the maximum number of symbols per frame to 1. + + A lattice is first obtained using modified beam search, and then + the shortest path within the lattice is used as the final output. + + Args: + model: + An instance of `Transducer`. + streams: + A list of stream objects. + encoder_out: + A tensor of shape (N, T, C) from the encoder. + processed_lens: + A tensor of shape (N,) containing the number of processed frames + in `encoder_out` before padding. + beam: + Beam value, similar to the beam used in Kaldi.. + max_states: + Max states per stream per frame. + max_contexts: + Max contexts pre stream per frame. + """ + assert encoder_out.ndim == 3 + + context_size = model.decoder.context_size + vocab_size = model.decoder.vocab_size + + B, T, C = encoder_out.shape + assert B == len(streams) + + config = k2.RnntDecodingConfig( + vocab_size=vocab_size, + decoder_history_len=context_size, + beam=beam, + max_contexts=max_contexts, + max_states=max_states, + ) + individual_streams = [] + for i in range(B): + individual_streams.append(streams[i].rnnt_decoding_stream) + decoding_streams = k2.RnntDecodingStreams(individual_streams, config) + + encoder_out = model.joiner.encoder_proj(encoder_out) + + for t in range(T): + # shape is a RaggedShape of shape (B, context) + # contexts is a Tensor of shape (shape.NumElements(), context_size) + shape, contexts = decoding_streams.get_contexts() + # `nn.Embedding()` in torch below v1.7.1 supports only torch.int64 + contexts = contexts.to(torch.int64) + # decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim) + decoder_out = model.decoder(contexts, need_pad=False) + decoder_out = model.joiner.decoder_proj(decoder_out) + # current_encoder_out is of shape + # (shape.NumElements(), 1, joiner_dim) + # fmt: off + current_encoder_out = torch.index_select( + encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64) + ) + # fmt: on + logits = model.joiner( + current_encoder_out.unsqueeze(2), + decoder_out.unsqueeze(1), + project_input=False, + ) + logits = logits.squeeze(1).squeeze(1) + log_probs = logits.log_softmax(dim=-1) + decoding_streams.advance(log_probs) + + decoding_streams.terminate_and_flush_to_streams() + + lattice = decoding_streams.format_output(processed_lens.tolist()) + + best_path = one_best_decoding(lattice) + hyps = get_texts(best_path) + + for i in range(B): + streams[i].hyp = hyps[i] + + +def decode_one_chunk( + model: nn.Module, + streams: List[Stream], + params: AttributeDict, + decoding_graph: Optional[k2.Fsa] = None, +) -> List[int]: + """ + Args: + model: + The Transducer model. + streams: + A list of Stream objects. + params: + It is returned by :func:`get_params`. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search. + + Returns: + A list of indexes indicating the finished streams. + """ + device = next(model.parameters()).device + + feature_list = [] + feature_len_list = [] + state_list = [] + num_processed_frames_list = [] + + for stream in streams: + # We should first get `stream.num_processed_frames` + # before calling `stream.get_feature_chunk()` + # since `stream.num_processed_frames` would be updated + num_processed_frames_list.append(stream.num_processed_frames) + feature = stream.get_feature_chunk() + feature_len = feature.size(0) + feature_list.append(feature) + feature_len_list.append(feature_len) + state_list.append(stream.states) + + features = pad_sequence( + feature_list, batch_first=True, padding_value=LOG_EPSILON + ).to(device) + feature_lens = torch.tensor(feature_len_list, device=device) + num_processed_frames = torch.tensor( + num_processed_frames_list, device=device + ) + + # Make sure it has at least 1 frame after subsampling, first-and-last-frame cutting, and right context cutting # noqa + tail_length = ( + 3 * params.subsampling_factor + params.right_context_length + 3 + ) + if features.size(1) < tail_length: + pad_length = tail_length - features.size(1) + feature_lens += pad_length + features = torch.nn.functional.pad( + features, + (0, 0, 0, pad_length), + mode="constant", + value=LOG_EPSILON, + ) + + # Stack states of all streams + states = stack_states(state_list) + + encoder_out, encoder_out_lens, states = model.encoder.infer( + x=features, + x_lens=feature_lens, + states=states, + num_processed_frames=num_processed_frames, + ) + + if params.decoding_method == "greedy_search": + greedy_search( + model=model, + streams=streams, + encoder_out=encoder_out, + ) + elif params.decoding_method == "modified_beam_search": + modified_beam_search( + model=model, + streams=streams, + encoder_out=encoder_out, + beam=params.beam_size, + ) + elif params.decoding_method == "fast_beam_search": + # feature_len is needed to get partial results. + # The rnnt_decoding_stream for fast_beam_search. + fast_beam_search_one_best( + model=model, + streams=streams, + encoder_out=encoder_out, + processed_lens=(num_processed_frames >> 2) + encoder_out_lens, + beam=params.beam, + max_contexts=params.max_contexts, + max_states=params.max_states, + ) + else: + raise ValueError( + f"Unsupported decoding method: {params.decoding_method}" + ) + + # Update cached states of each stream + state_list = unstack_states(states) + for i, s in enumerate(state_list): + streams[i].states = s + + finished_streams = [i for i, stream in enumerate(streams) if stream.done] + return finished_streams + + +def create_streaming_feature_extractor() -> Fbank: + """Create a CPU streaming feature extractor. + + At present, we assume it returns a fbank feature extractor with + fixed options. In the future, we will support passing in the options + from outside. + + Returns: + Return a CPU streaming feature extractor. + """ + opts = FbankOptions() + opts.device = "cpu" + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = 16000 + opts.mel_opts.num_bins = 80 + return Fbank(opts) + + +def decode_dataset( + cuts: CutSet, + model: nn.Module, + params: AttributeDict, + sp: spm.SentencePieceProcessor, + decoding_graph: Optional[k2.Fsa] = None, +): + """Decode dataset. + + Args: + cuts: + Lhotse Cutset containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The Transducer model. + sp: + The BPE model. + decoding_graph: + The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used + only when --decoding_method is fast_beam_search. + + Returns: + Return a dict, whose key may be "greedy_search" if greedy search + is used, or it may be "beam_7" if beam size of 7 is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + device = next(model.parameters()).device + + log_interval = 300 + + fbank = create_streaming_feature_extractor() + + decode_results = [] + streams = [] + for num, cut in enumerate(cuts): + # Each utterance has a Stream. + stream = Stream( + params=params, + decoding_graph=decoding_graph, + device=device, + LOG_EPS=LOG_EPSILON, + ) + + audio: np.ndarray = cut.load_audio() + # audio.shape: (1, num_samples) + assert len(audio.shape) == 2 + assert audio.shape[0] == 1, "Should be single channel" + assert audio.dtype == np.float32, audio.dtype + # The trained model is using normalized samples + assert audio.max() <= 1, "Should be normalized to [-1, 1])" + + samples = torch.from_numpy(audio).squeeze(0) + feature = fbank(samples) + stream.set_feature(feature) + stream.set_ground_truth(cut.supervisions[0].text) + + streams.append(stream) + + while len(streams) >= params.num_decode_streams: + finished_streams = decode_one_chunk( + model=model, + streams=streams, + params=params, + decoding_graph=decoding_graph, + ) + + for i in sorted(finished_streams, reverse=True): + decode_results.append( + ( + streams[i].ground_truth.split(), + sp.decode(streams[i].decoding_result()).split(), + ) + ) + del streams[i] + + if num % log_interval == 0: + logging.info(f"Cuts processed until now is {num}.") + + while len(streams) > 0: + finished_streams = decode_one_chunk( + model=model, + streams=streams, + params=params, + decoding_graph=decoding_graph, + ) + + for i in sorted(finished_streams, reverse=True): + decode_results.append( + ( + streams[i].ground_truth.split(), + sp.decode(streams[i].decoding_result()).split(), + ) + ) + del streams[i] + + if params.decoding_method == "greedy_search": + key = "greedy_search" + elif params.decoding_method == "fast_beam_search": + key = ( + f"beam_{params.beam}_" + f"max_contexts_{params.max_contexts}_" + f"max_states_{params.max_states}" + ) + else: + key = f"beam_size_{params.beam_size}" + + return {key: decode_results} + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[List[str], List[str]]]], +): + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = ( + params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" + ) + store_transcripts(filename=recog_path, texts=sorted(results)) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = ( + params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_filename, "w") as f: + wer = write_error_stats( + f, f"{test_set_name}-{key}", results, enable_log=True + ) + test_set_wers[key] = wer + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = ( + params.res_dir + / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" + ) + with open(errs_info, "w") as f: + print("settings\tWER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, WER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + assert params.decoding_method in ( + "greedy_search", + "fast_beam_search", + "modified_beam_search", + ) + params.res_dir = params.exp_dir / "streaming" / params.decoding_method + + if params.iter > 0: + params.suffix = f"iter-{params.iter}-avg-{params.avg}" + else: + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + + # for streaming + params.suffix += f"-streaming-chunk-length-{params.chunk_length}" + params.suffix += f"-left-context-length-{params.left_context_length}" + params.suffix += f"-right-context-length-{params.right_context_length}" + params.suffix += f"-memory-size-{params.memory_size}" + + if "fast_beam_search" in params.decoding_method: + params.suffix += f"-beam-{params.beam}" + params.suffix += f"-max-contexts-{params.max_contexts}" + params.suffix += f"-max-states-{params.max_states}" + elif "beam_search" in params.decoding_method: + params.suffix += ( + f"-{params.decoding_method}-beam-size-{params.beam_size}" + ) + else: + params.suffix += f"-context-{params.context_size}" + params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" + + if params.use_averaged_model: + params.suffix += "-use-averaged-model" + + setup_logger(f"{params.res_dir}/log-streaming-decode") + logging.info("Decoding started") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # and are defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.unk_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + params.device = device + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints( + params.exp_dir, iteration=-params.iter + )[: params.avg] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.to(device) + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints( + params.exp_dir, iteration=-params.iter + )[: params.avg + 1] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.eval() + + if params.decoding_method == "fast_beam_search": + decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) + else: + decoding_graph = None + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + librispeech = LibriSpeechAsrDataModule(args) + + test_clean_cuts = librispeech.test_clean_cuts() + test_other_cuts = librispeech.test_other_cuts() + + test_sets = ["test-clean", "test-other"] + test_cuts = [test_clean_cuts, test_other_cuts] + + for test_set, test_cut in zip(test_sets, test_cuts): + results_dict = decode_dataset( + cuts=test_cut, + model=model, + params=params, + sp=sp, + decoding_graph=decoding_graph, + ) + + save_results( + params=params, + test_set_name=test_set, + results_dict=results_dict, + ) + + logging.info("Done!") + + +if __name__ == "__main__": + torch.manual_seed(20220410) + main() diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/test_emformer.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/test_emformer.py deleted file mode 120000 index d59fea9ee..000000000 --- a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/test_emformer.py +++ /dev/null @@ -1 +0,0 @@ -../conv_emformer_transducer_stateless/test_emformer.py \ No newline at end of file diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/test_emformer.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/test_emformer.py new file mode 100644 index 000000000..8cde6205b --- /dev/null +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/test_emformer.py @@ -0,0 +1,194 @@ +#!/usr/bin/env python3 +# +# Copyright 2022 Xiaomi Corporation (Author: Fangjun Kuang, +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import torch +from emformer import ConvolutionModule, Emformer, stack_states, unstack_states + + +def test_convolution_module_forward(): + B, D = 2, 256 + chunk_length = 4 + right_context_length = 2 + num_chunks = 3 + U = num_chunks * chunk_length + R = num_chunks * right_context_length + kernel_size = 31 + conv_module = ConvolutionModule( + chunk_length, + right_context_length, + D, + kernel_size, + ) + + utterance = torch.randn(U, B, D) + right_context = torch.randn(R, B, D) + + utterance, right_context = conv_module(utterance, right_context) + assert utterance.shape == (U, B, D), utterance.shape + assert right_context.shape == (R, B, D), right_context.shape + + +def test_convolution_module_infer(): + from emformer import ConvolutionModule + + B, D = 2, 256 + chunk_length = 4 + right_context_length = 2 + num_chunks = 1 + U = num_chunks * chunk_length + R = num_chunks * right_context_length + kernel_size = 31 + conv_module = ConvolutionModule( + chunk_length, + right_context_length, + D, + kernel_size, + ) + + utterance = torch.randn(U, B, D) + right_context = torch.randn(R, B, D) + cache = torch.randn(B, D, kernel_size - 1) + + utterance, right_context, new_cache = conv_module.infer( + utterance, right_context, cache + ) + assert utterance.shape == (U, B, D), utterance.shape + assert right_context.shape == (R, B, D), right_context.shape + assert new_cache.shape == (B, D, kernel_size - 1), new_cache.shape + + +def test_state_stack_unstack(): + num_features = 80 + chunk_length = 32 + encoder_dim = 512 + num_encoder_layers = 2 + kernel_size = 31 + left_context_length = 32 + right_context_length = 8 + memory_size = 32 + + model = Emformer( + num_features=num_features, + chunk_length=chunk_length, + subsampling_factor=4, + d_model=encoder_dim, + num_encoder_layers=num_encoder_layers, + cnn_module_kernel=kernel_size, + left_context_length=left_context_length, + right_context_length=right_context_length, + memory_size=memory_size, + ) + + for batch_size in [1, 2]: + attn_caches = [ + [ + torch.zeros(memory_size, batch_size, encoder_dim), + torch.zeros(left_context_length // 4, batch_size, encoder_dim), + torch.zeros( + left_context_length // 4, + batch_size, + encoder_dim, + ), + ] + for _ in range(num_encoder_layers) + ] + conv_caches = [ + torch.zeros(batch_size, encoder_dim, kernel_size - 1) + for _ in range(num_encoder_layers) + ] + states = [attn_caches, conv_caches] + x = torch.randn(batch_size, 23, num_features) + x_lens = torch.full((batch_size,), 23) + num_processed_frames = torch.full((batch_size,), 0) + y, y_lens, states = model.infer( + x, x_lens, num_processed_frames=num_processed_frames, states=states + ) + + state_list = unstack_states(states) + states2 = stack_states(state_list) + + for ss, ss2 in zip(states[0], states2[0]): + for s, s2 in zip(ss, ss2): + assert torch.allclose(s, s2), f"{s.sum()}, {s2.sum()}" + + for s, s2 in zip(states[1], states2[1]): + assert torch.allclose(s, s2), f"{s.sum()}, {s2.sum()}" + + +def test_torchscript_consistency_infer(): + r"""Verify that scripting Emformer does not change the behavior of method `infer`.""" # noqa + num_features = 80 + chunk_length = 32 + encoder_dim = 512 + num_encoder_layers = 2 + kernel_size = 31 + left_context_length = 32 + right_context_length = 8 + memory_size = 32 + batch_size = 2 + + model = Emformer( + num_features=num_features, + chunk_length=chunk_length, + subsampling_factor=4, + d_model=encoder_dim, + num_encoder_layers=num_encoder_layers, + cnn_module_kernel=kernel_size, + left_context_length=left_context_length, + right_context_length=right_context_length, + memory_size=memory_size, + ).eval() + attn_caches = [ + [ + torch.zeros(memory_size, batch_size, encoder_dim), + torch.zeros(left_context_length // 4, batch_size, encoder_dim), + torch.zeros( + left_context_length // 4, + batch_size, + encoder_dim, + ), + ] + for _ in range(num_encoder_layers) + ] + conv_caches = [ + torch.zeros(batch_size, encoder_dim, kernel_size - 1) + for _ in range(num_encoder_layers) + ] + states = [attn_caches, conv_caches] + x = torch.randn(batch_size, 23, num_features) + x_lens = torch.full((batch_size,), 23) + num_processed_frames = torch.full((batch_size,), 0) + y, y_lens, out_states = model.infer( + x, x_lens, num_processed_frames=num_processed_frames, states=states + ) + + sc_model = torch.jit.script(model).eval() + sc_y, sc_y_lens, sc_out_states = sc_model.infer( + x, x_lens, num_processed_frames=num_processed_frames, states=states + ) + + assert torch.allclose(y, sc_y) + + +if __name__ == "__main__": + test_convolution_module_forward() + test_convolution_module_infer() + test_state_stack_unstack() + test_torchscript_consistency_infer() diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/train.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/train.py deleted file mode 120000 index 597332fdf..000000000 --- a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/train.py +++ /dev/null @@ -1 +0,0 @@ -../conv_emformer_transducer_stateless/train.py \ No newline at end of file diff --git a/egs/librispeech/ASR/conv_emformer_transducer_stateless2/train.py b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/train.py new file mode 100755 index 000000000..106f3e511 --- /dev/null +++ b/egs/librispeech/ASR/conv_emformer_transducer_stateless2/train.py @@ -0,0 +1,1136 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, +# Wei Kang, +# Mingshuang Luo,) +# Zengwei Yao) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: + +export CUDA_VISIBLE_DEVICES="0,1,2,3" + +./conv_emformer_transducer_stateless/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --exp-dir conv_emformer_transducer_stateless/exp \ + --full-libri 1 \ + --max-duration 300 \ + --master-port 12321 \ + --num-encoder-layers 12 \ + --chunk-length 32 \ + --cnn-module-kernel 31 \ + --left-context-length 32 \ + --right-context-length 8 \ + --memory-size 32 + +# For mix precision training: +./conv_emformer_transducer_stateless/train.py \ + --world-size 4 \ + --num-epochs 30 \ + --start-epoch 1 \ + --use-fp16 1 \ + --exp-dir conv_emformer_transducer_stateless/exp \ + --full-libri 1 \ + --max-duration 300 \ + --master-port 12321 \ + --num-encoder-layers 12 \ + --chunk-length 32 \ + --cnn-module-kernel 31 \ + --left-context-length 32 \ + --right-context-length 8 \ + --memory-size 32 +""" + + +import argparse +import copy +import logging +import warnings +from pathlib import Path +from shutil import copyfile +from typing import Any, Dict, Optional, Tuple, Union + +import k2 +import optim +import sentencepiece as spm +import torch +import torch.multiprocessing as mp +import torch.nn as nn +from asr_datamodule import LibriSpeechAsrDataModule +from decoder import Decoder +from emformer import Emformer +from joiner import Joiner +from lhotse.cut import Cut +from lhotse.dataset.sampling.base import CutSampler +from lhotse.utils import fix_random_seed +from model import Transducer +from optim import Eden, Eve +from torch import Tensor +from torch.cuda.amp import GradScaler +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.utils.tensorboard import SummaryWriter + +from icefall import diagnostics +from icefall.checkpoint import load_checkpoint, remove_checkpoints +from icefall.checkpoint import save_checkpoint as save_checkpoint_impl +from icefall.checkpoint import ( + save_checkpoint_with_global_batch_idx, + update_averaged_model, +) +from icefall.dist import cleanup_dist, setup_dist +from icefall.env import get_env_info +from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool + +LRSchedulerType = Union[ + torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler +] + + +def add_model_arguments(parser: argparse.ArgumentParser): + parser.add_argument( + "--encoder-dim", + type=int, + default=512, + help="Attention dim for the Emformer", + ) + + parser.add_argument( + "--nhead", + type=int, + default=8, + help="Number of attention heads for the Emformer", + ) + + parser.add_argument( + "--dim-feedforward", + type=int, + default=2048, + help="Feed-forward dimension for the Emformer", + ) + + parser.add_argument( + "--num-encoder-layers", + type=int, + default=12, + help="Number of encoder layers for the Emformer", + ) + + parser.add_argument( + "--cnn-module-kernel", + type=int, + default=31, + help="Kernel size for the convolution module.", + ) + + parser.add_argument( + "--left-context-length", + type=int, + default=32, + help="""Number of frames before subsampling for left context + in the Emformer.""", + ) + + parser.add_argument( + "--chunk-length", + type=int, + default=32, + help="""Number of frames before subsampling for each chunk + in the Emformer.""", + ) + + parser.add_argument( + "--right-context-length", + type=int, + default=8, + help="""Number of frames before subsampling for right context + in the Emformer.""", + ) + + parser.add_argument( + "--memory-size", + type=int, + default=0, + help="Number of entries in the memory for the Emformer", + ) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--world-size", + type=int, + default=1, + help="Number of GPUs for DDP training.", + ) + + parser.add_argument( + "--master-port", + type=int, + default=12354, + help="Master port to use for DDP training.", + ) + + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=30, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=1, + help="""Resume training from this epoch. It should be positive. + If larger than 1, it will load checkpoint from + exp-dir/epoch-{start_epoch-1}.pt + """, + ) + + parser.add_argument( + "--start-batch", + type=int, + default=0, + help="""If positive, --start-epoch is ignored and + it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt + """, + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless2/exp", + help="""The experiment dir. + It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--bpe-model", + type=str, + default="data/lang_bpe_500/bpe.model", + help="Path to the BPE model", + ) + + parser.add_argument( + "--initial-lr", + type=float, + default=0.003, + help="""The initial learning rate. This value should not need to be + changed.""", + ) + + parser.add_argument( + "--lr-batches", + type=float, + default=5000, + help="""Number of steps that affects how rapidly the learning rate decreases. + We suggest not to change this.""", + ) + + parser.add_argument( + "--lr-epochs", + type=float, + default=6, + help="""Number of epochs that affects how rapidly the learning rate decreases. + """, + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; " + "2 means tri-gram", + ) + + parser.add_argument( + "--prune-range", + type=int, + default=5, + help="The prune range for rnnt loss, it means how many symbols(context)" + "we are using to compute the loss", + ) + + parser.add_argument( + "--lm-scale", + type=float, + default=0.25, + help="The scale to smooth the loss with lm " + "(output of prediction network) part.", + ) + + parser.add_argument( + "--am-scale", + type=float, + default=0.0, + help="The scale to smooth the loss with am (output of encoder network)" + "part.", + ) + + parser.add_argument( + "--simple-loss-scale", + type=float, + default=0.5, + help="To get pruning ranges, we will calculate a simple version" + "loss(joiner is just addition), this simple loss also uses for" + "training (as a regularization item). We will scale the simple loss" + "with this parameter before adding to the final loss.", + ) + + parser.add_argument( + "--seed", + type=int, + default=42, + help="The seed for random generators intended for reproducibility", + ) + + parser.add_argument( + "--print-diagnostics", + type=str2bool, + default=False, + help="Accumulate stats on activations, print them and exit.", + ) + + parser.add_argument( + "--save-every-n", + type=int, + default=8000, + help="""Save checkpoint after processing this number of batches" + periodically. We save checkpoint to exp-dir/ whenever + params.batch_idx_train % save_every_n == 0. The checkpoint filename + has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt' + Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the + end of each epoch where `xxx` is the epoch number counting from 0. + """, + ) + + parser.add_argument( + "--keep-last-k", + type=int, + default=20, + help="""Only keep this number of checkpoints on disk. + For instance, if it is 3, there are only 3 checkpoints + in the exp-dir with filenames `checkpoint-xxx.pt`. + It does not affect checkpoints with name `epoch-xxx.pt`. + """, + ) + + parser.add_argument( + "--average-period", + type=int, + default=100, + help="""Update the averaged model, namely `model_avg`, after processing + this number of batches. `model_avg` is a separate version of model, + in which each floating-point parameter is the average of all the + parameters from the start of training. Each time we take the average, + we do: `model_avg = model * (average_period / batch_idx_train) + + model_avg * ((batch_idx_train - average_period) / batch_idx_train)`. + """, + ) + + parser.add_argument( + "--use-fp16", + type=str2bool, + default=False, + help="Whether to use half precision training.", + ) + + add_model_arguments(parser) + + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + are saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - best_train_loss: Best training loss so far. It is used to select + the model that has the lowest training loss. It is + updated during the training. + + - best_valid_loss: Best validation loss so far. It is used to select + the model that has the lowest validation loss. It is + updated during the training. + + - best_train_epoch: It is the epoch that has the best training loss. + + - best_valid_epoch: It is the epoch that has the best validation loss. + + - batch_idx_train: Used to writing statistics to tensorboard. It + contains number of batches trained so far across + epochs. + + - log_interval: Print training loss if batch_idx % log_interval` is 0 + + - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + + - valid_interval: Run validation if batch_idx % valid_interval is 0 + + - feature_dim: The model input dim. It has to match the one used + in computing features. + + - subsampling_factor: The subsampling factor for the model. + + - encoder_dim: Hidden dim for multi-head attention model. + + - num_decoder_layers: Number of decoder layer of transformer decoder. + + - warm_step: The warm_step for Noam optimizer. + """ + params = AttributeDict( + { + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 50, + "reset_interval": 200, + "valid_interval": 3000, # For the 100h subset, use 800 + # parameters for Emformer + "feature_dim": 80, + "subsampling_factor": 4, + # parameters for decoder + "decoder_dim": 512, + # parameters for joiner + "joiner_dim": 512, + # parameters for Noam + "model_warm_step": 3000, # arg given to model, not for lrate + "env_info": get_env_info(), + } + ) + + return params + + +def get_encoder_model(params: AttributeDict) -> nn.Module: + # TODO: We can add an option to switch between Conformer and Transformer + encoder = Emformer( + num_features=params.feature_dim, + chunk_length=params.chunk_length, + subsampling_factor=params.subsampling_factor, + d_model=params.encoder_dim, + nhead=params.nhead, + dim_feedforward=params.dim_feedforward, + num_encoder_layers=params.num_encoder_layers, + cnn_module_kernel=params.cnn_module_kernel, + left_context_length=params.left_context_length, + right_context_length=params.right_context_length, + memory_size=params.memory_size, + ) + return encoder + + +def get_decoder_model(params: AttributeDict) -> nn.Module: + decoder = Decoder( + vocab_size=params.vocab_size, + decoder_dim=params.decoder_dim, + blank_id=params.blank_id, + context_size=params.context_size, + ) + return decoder + + +def get_joiner_model(params: AttributeDict) -> nn.Module: + joiner = Joiner( + encoder_dim=params.encoder_dim, + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return joiner + + +def get_transducer_model(params: AttributeDict) -> nn.Module: + encoder = get_encoder_model(params) + decoder = get_decoder_model(params) + joiner = get_joiner_model(params) + + model = Transducer( + encoder=encoder, + decoder=decoder, + joiner=joiner, + encoder_dim=params.encoder_dim, + decoder_dim=params.decoder_dim, + joiner_dim=params.joiner_dim, + vocab_size=params.vocab_size, + ) + return model + + +def load_checkpoint_if_available( + params: AttributeDict, + model: nn.Module, + model_avg: nn.Module = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, +) -> Optional[Dict[str, Any]]: + """Load checkpoint from file. + + If params.start_batch is positive, it will load the checkpoint from + `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if + params.start_epoch is larger than 1, it will load the checkpoint from + `params.start_epoch - 1`. + + Apart from loading state dict for `model` and `optimizer` it also updates + `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, + and `best_valid_loss` in `params`. + + Args: + params: + The return value of :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer that we are using. + scheduler: + The scheduler that we are using. + Returns: + Return a dict containing previously saved training info. + """ + if params.start_batch > 0: + filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt" + elif params.start_epoch > 1: + filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" + else: + return None + + assert filename.is_file(), f"{filename} does not exist!" + + saved_params = load_checkpoint( + filename, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + ) + + keys = [ + "best_train_epoch", + "best_valid_epoch", + "batch_idx_train", + "best_train_loss", + "best_valid_loss", + ] + for k in keys: + params[k] = saved_params[k] + + if params.start_batch > 0: + if "cur_epoch" in saved_params: + params["start_epoch"] = saved_params["cur_epoch"] + + if "cur_batch_idx" in saved_params: + params["cur_batch_idx"] = saved_params["cur_batch_idx"] + + return saved_params + + +def save_checkpoint( + params: AttributeDict, + model: Union[nn.Module, DDP], + model_avg: Optional[nn.Module] = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, + sampler: Optional[CutSampler] = None, + scaler: Optional[GradScaler] = None, + rank: int = 0, +) -> None: + """Save model, optimizer, scheduler and training stats to file. + + Args: + params: + It is returned by :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer used in the training. + sampler: + The sampler for the training dataset. + scaler: + The scaler used for mix precision training. + """ + if rank != 0: + return + filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" + save_checkpoint_impl( + filename=filename, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=sampler, + scaler=scaler, + rank=rank, + ) + + if params.best_train_epoch == params.cur_epoch: + best_train_filename = params.exp_dir / "best-train-loss.pt" + copyfile(src=filename, dst=best_train_filename) + + if params.best_valid_epoch == params.cur_epoch: + best_valid_filename = params.exp_dir / "best-valid-loss.pt" + copyfile(src=filename, dst=best_valid_filename) + + +def compute_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + sp: spm.SentencePieceProcessor, + batch: dict, + is_training: bool, + warmup: float = 1.0, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute RNN-T loss given the model and its inputs. + + Args: + params: + Parameters for training. See :func:`get_params`. + model: + The model for training. It is an instance of Conformer in our case. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + is_training: + True for training. False for validation. When it is True, this + function enables autograd during computation; when it is False, it + disables autograd. + warmup: a floating point value which increases throughout training; + values >= 1.0 are fully warmed up and have all modules present. + """ + device = ( + model.device + if isinstance(model, DDP) + else next(model.parameters()).device + ) + feature = batch["inputs"] + # at entry, feature is (N, T, C) + assert feature.ndim == 3 + feature = feature.to(device) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + texts = batch["supervisions"]["text"] + y = sp.encode(texts, out_type=int) + y = k2.RaggedTensor(y).to(device) + + with torch.set_grad_enabled(is_training): + simple_loss, pruned_loss = model( + x=feature, + x_lens=feature_lens, + y=y, + prune_range=params.prune_range, + am_scale=params.am_scale, + lm_scale=params.lm_scale, + warmup=warmup, + ) + # after the main warmup step, we keep pruned_loss_scale small + # for the same amount of time (model_warm_step), to avoid + # overwhelming the simple_loss and causing it to diverge, + # in case it had not fully learned the alignment yet. + pruned_loss_scale = ( + 0.0 + if warmup < 1.0 + else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0) + ) + loss = ( + params.simple_loss_scale * simple_loss + + pruned_loss_scale * pruned_loss + ) + + assert loss.requires_grad == is_training + + info = MetricsTracker() + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + info["frames"] = ( + (feature_lens // params.subsampling_factor).sum().item() + ) + + # Note: We use reduction=sum while computing the loss. + info["loss"] = loss.detach().cpu().item() + info["simple_loss"] = simple_loss.detach().cpu().item() + info["pruned_loss"] = pruned_loss.detach().cpu().item() + + return loss, info + + +def compute_validation_loss( + params: AttributeDict, + model: Union[nn.Module, DDP], + sp: spm.SentencePieceProcessor, + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process.""" + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=False, + ) + assert loss.requires_grad is False + tot_loss = tot_loss + loss_info + + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + + +def train_one_epoch( + params: AttributeDict, + model: Union[nn.Module, DDP], + optimizer: torch.optim.Optimizer, + scheduler: LRSchedulerType, + sp: spm.SentencePieceProcessor, + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + scaler: GradScaler, + model_avg: Optional[nn.Module] = None, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, + rank: int = 0, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + scheduler: + The learning rate scheduler, we call step() every step. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + scaler: + The scaler used for mix precision training. + model_avg: + The stored model averaged from the start of training. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + rank: + The rank of the node in DDP training. If no DDP is used, it should + be set to 0. + """ + model.train() + + tot_loss = MetricsTracker() + + cur_batch_idx = params.get("cur_batch_idx", 0) + + for batch_idx, batch in enumerate(train_dl): + if batch_idx < cur_batch_idx: + continue + cur_batch_idx = batch_idx + + params.batch_idx_train += 1 + batch_size = len(batch["supervisions"]["text"]) + + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, loss_info = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + warmup=(params.batch_idx_train / params.model_warm_step), + ) + # summary stats + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + # NOTE: We use reduction==sum and loss is computed over utterances + # in the batch and there is no normalization to it so far. + scaler.scale(loss).backward() + scheduler.step_batch(params.batch_idx_train) + scaler.step(optimizer) + scaler.update() + optimizer.zero_grad() + + if params.print_diagnostics and batch_idx == 5: + return + + if ( + rank == 0 + and params.batch_idx_train > 0 + and params.batch_idx_train % params.average_period == 0 + ): + update_averaged_model( + params=params, + model_cur=model, + model_avg=model_avg, + ) + + if ( + params.batch_idx_train > 0 + and params.batch_idx_train % params.save_every_n == 0 + ): + params.cur_batch_idx = batch_idx + save_checkpoint_with_global_batch_idx( + out_dir=params.exp_dir, + global_batch_idx=params.batch_idx_train, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + del params.cur_batch_idx + remove_checkpoints( + out_dir=params.exp_dir, + topk=params.keep_last_k, + rank=rank, + ) + + if batch_idx % params.log_interval == 0: + cur_lr = scheduler.get_last_lr()[0] + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, loss[{loss_info}], " + f"tot_loss[{tot_loss}], batch size: {batch_size}, " + f"lr: {cur_lr:.2e}" + ) + + if tb_writer is not None: + tb_writer.add_scalar( + "train/learning_rate", cur_lr, params.batch_idx_train + ) + + loss_info.write_summary( + tb_writer, "train/current_", params.batch_idx_train + ) + tot_loss.write_summary( + tb_writer, "train/tot_", params.batch_idx_train + ) + + if batch_idx > 0 and batch_idx % params.valid_interval == 0: + logging.info("Computing validation loss") + valid_info = compute_validation_loss( + params=params, + model=model, + sp=sp, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") + if tb_writer is not None: + valid_info.write_summary( + tb_writer, "train/valid_", params.batch_idx_train + ) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + params.train_loss = loss_value + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + if params.full_libri is False: + params.valid_interval = 1600 + + fix_random_seed(params.seed) + if world_size > 1: + setup_dist(rank, world_size, params.master_port) + + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info("Training started") + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", rank) + logging.info(f"Device: {device}") + + sp = spm.SentencePieceProcessor() + sp.load(params.bpe_model) + + # is defined in local/train_bpe_model.py + params.blank_id = sp.piece_to_id("") + params.vocab_size = sp.get_piece_size() + + logging.info(params) + + logging.info("About to create model") + model = get_transducer_model(params) + + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + assert params.save_every_n >= params.average_period + model_avg: Optional[nn.Module] = None + if rank == 0: + # model_avg is only used with rank 0 + model_avg = copy.deepcopy(model) + + assert params.start_epoch > 0, params.start_epoch + checkpoints = load_checkpoint_if_available( + params=params, model=model, model_avg=model_avg + ) + + model.to(device) + if world_size > 1: + logging.info("Using DDP") + model = DDP(model, device_ids=[rank]) + + optimizer = Eve(model.parameters(), lr=params.initial_lr) + + scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs) + + if checkpoints and "optimizer" in checkpoints: + logging.info("Loading optimizer state dict") + optimizer.load_state_dict(checkpoints["optimizer"]) + + if ( + checkpoints + and "scheduler" in checkpoints + and checkpoints["scheduler"] is not None + ): + logging.info("Loading scheduler state dict") + scheduler.load_state_dict(checkpoints["scheduler"]) + + if params.print_diagnostics: + opts = diagnostics.TensorDiagnosticOptions( + 2 ** 22 + ) # allow 4 megabytes per sub-module + diagnostic = diagnostics.attach_diagnostics(model, opts) + + librispeech = LibriSpeechAsrDataModule(args) + + train_cuts = librispeech.train_clean_100_cuts() + if params.full_libri: + train_cuts += librispeech.train_clean_360_cuts() + train_cuts += librispeech.train_other_500_cuts() + + def remove_short_and_long_utt(c: Cut): + # Keep only utterances with duration between 1 second and 20 seconds + # + # Caution: There is a reason to select 20.0 here. Please see + # ../local/display_manifest_statistics.py + # + # You should use ../local/display_manifest_statistics.py to get + # an utterance duration distribution for your dataset to select + # the threshold + return 1.0 <= c.duration <= 20.0 + + train_cuts = train_cuts.filter(remove_short_and_long_utt) + + if params.start_batch > 0 and checkpoints and "sampler" in checkpoints: + # We only load the sampler's state dict when it loads a checkpoint + # saved in the middle of an epoch + sampler_state_dict = checkpoints["sampler"] + else: + sampler_state_dict = None + + train_dl = librispeech.train_dataloaders( + train_cuts, sampler_state_dict=sampler_state_dict + ) + + valid_cuts = librispeech.dev_clean_cuts() + valid_cuts += librispeech.dev_other_cuts() + valid_dl = librispeech.valid_dataloaders(valid_cuts) + + if not params.print_diagnostics: + scan_pessimistic_batches_for_oom( + model=model, + train_dl=train_dl, + optimizer=optimizer, + sp=sp, + params=params, + ) + + scaler = GradScaler(enabled=params.use_fp16) + if checkpoints and "grad_scaler" in checkpoints: + logging.info("Loading grad scaler state dict") + scaler.load_state_dict(checkpoints["grad_scaler"]) + + for epoch in range(params.start_epoch, params.num_epochs + 1): + scheduler.step_epoch(epoch - 1) + fix_random_seed(params.seed + epoch - 1) + train_dl.sampler.set_epoch(epoch - 1) + + if tb_writer is not None: + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sp=sp, + train_dl=train_dl, + valid_dl=valid_dl, + scaler=scaler, + tb_writer=tb_writer, + world_size=world_size, + rank=rank, + ) + + if params.print_diagnostics: + diagnostic.print_diagnostics() + break + + save_checkpoint( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + + logging.info("Done!") + + if world_size > 1: + torch.distributed.barrier() + cleanup_dist() + + +def scan_pessimistic_batches_for_oom( + model: Union[nn.Module, DDP], + train_dl: torch.utils.data.DataLoader, + optimizer: torch.optim.Optimizer, + sp: spm.SentencePieceProcessor, + params: AttributeDict, +): + from lhotse.dataset import find_pessimistic_batches + + logging.info( + "Sanity check -- see if any of the batches in epoch 1 would cause OOM." + ) + batches, crit_values = find_pessimistic_batches(train_dl.sampler) + for criterion, cuts in batches.items(): + batch = train_dl.dataset[cuts] + try: + # warmup = 0.0 is so that the derivs for the pruned loss stay zero + # (i.e. are not remembered by the decaying-average in adam), because + # we want to avoid these params being subject to shrinkage in adam. + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, _ = compute_loss( + params=params, + model=model, + sp=sp, + batch=batch, + is_training=True, + warmup=0.0, + ) + loss.backward() + optimizer.step() + optimizer.zero_grad() + except RuntimeError as e: + if "CUDA out of memory" in str(e): + logging.error( + "Your GPU ran out of memory with the current " + "max_duration setting. We recommend decreasing " + "max_duration and trying again.\n" + f"Failing criterion: {criterion} " + f"(={crit_values[criterion]}) ..." + ) + raise + + +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + world_size = args.world_size + assert world_size >= 1 + if world_size > 1: + mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) + else: + run(rank=0, world_size=1, args=args) + + +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + +if __name__ == "__main__": + main()