quantizer training data

This commit is contained in:
Guo Liyong 2022-04-28 20:26:53 +08:00
parent fb9c0c3971
commit c26ead5e09

View File

@ -0,0 +1,152 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (author: Liyong Guo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
from pathlib import Path
from typing import List, Tuple
import torch
from asr_datamodule import LibriSpeechAsrDataModule
from lhotse.features.io import NumpyHdf5Writer
from icefall.utils import (
AttributeDict,
setup_logger,
)
from hubert_utils import extract_layers_result, load_hubert_model, vq_config
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
return parser
def compute_memory(
model: torch.nn.Module,
processor: None,
dl: torch.utils.data.DataLoader,
params: AttributeDict,
writer: None,
) -> List[Tuple[str, List[int]]]:
"""Compute the framewise alignments of a dataset.
Args:
model:
The neural network model.
dl:
Dataloader containing the dataset.
params:
Parameters for computing memory.
Returns:
Return a list of tuples. Each tuple contains two entries:
- Utterance ID
- memory embeddings
"""
total_frames = 0
total_cuts = 0
for batch_idx, batch in enumerate(dl):
supervisions = batch["supervisions"]
cut_list = supervisions["cut"]
w2v_model = model.w2v_encoder.w2v_model
layer_results = extract_layers_result(
w2v_model, batch=batch, device=params.device
)
assert len(layer_results) == params.total_layers
memory_embeddings = layer_results[params.memory_layer - 1][0]
encoder_memory = (
memory_embeddings.transpose(0, 1).to("cpu").numpy()
) # N, T, C
assert len(cut_list) == encoder_memory.shape[0]
assert all(c.start == 0 for c in cut_list)
for idx, cut in enumerate(cut_list):
# 320 is from: 16,000 / 50 = sample_rate / hbuert output frame rate
num_frames = supervisions["num_samples"][idx] // 320
cut.encoder_memory = writer.store_array(
key=cut.id,
value=encoder_memory[idx][:num_frames],
)
total_frames += num_frames
total_cuts += len(cut_list)
logging.info(f"Processed {total_cuts} cuts with {total_frames} frames.")
logging.info(f"Processed {total_cuts} cuts with {total_frames} frames.")
@torch.no_grad()
def main():
parser = get_parser()
LibriSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args()
params = AttributeDict()
params.update(vars(args))
params.update(vq_config)
assert params.return_cuts is True
assert params.concatenate_cuts is False
setup_logger(f"{params.memory_dir}/log/mem")
logging.info("Computing memory embedings- started")
logging.info(params)
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
params["device"] = device
model, processor = load_hubert_model(params)
librispeech = LibriSpeechAsrDataModule(params)
train_cuts = librispeech.train_clean_100_cuts()
train_cuts = train_cuts.subset(first=params.num_utts)
dl = librispeech.train_dataloaders(train_cuts)
memory_dir = Path(params.memory_dir)
memory_dir.mkdir(exist_ok=True)
with NumpyHdf5Writer(
memory_dir
/ f"{params.num_utts}-{params.model_id}-{params.memory_layer}layer-memory_embeddings"
) as writer:
compute_memory(
model=model,
processor=processor,
dl=dl,
params=params,
writer=writer,
)
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
if __name__ == "__main__":
main()