Merge aa3942ac5190b31d026c96205216a8892a6c05a1 into 9af144c26b91065a119d4e67c03004974462d24d

This commit is contained in:
marcoyang1998 2023-10-10 11:00:01 +08:00 committed by GitHub
commit c20ceedafa
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 10962 additions and 0 deletions

View File

@ -0,0 +1,467 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import inspect
import logging
from functools import lru_cache
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional
import torch
from dataset import PromptASRDataset
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
from lhotse.dataset import (
CutConcatenate,
CutMix,
DynamicBucketingSampler,
ExtraPadding,
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SingleCutSampler,
SpecAugment,
)
from lhotse.dataset.input_strategies import OnTheFlyFeatures
from lhotse.utils import fix_random_seed
from torch.utils.data import DataLoader
from icefall.utils import str2bool
class _SeedWorkers:
def __init__(self, seed: int):
self.seed = seed
def __call__(self, worker_id: int):
fix_random_seed(self.seed + worker_id)
class LibriHeavyAsrDataModule:
"""
DataModule for k2 ASR experiments.
It assumes there is always one train and valid dataloader,
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
and test-other).
It contains all the common data pipeline modules used in ASR
experiments, e.g.:
- dynamic batch size,
- bucketing samplers,
- cut concatenation,
- augmentation,
- on-the-fly feature extraction
This class should be derived for specific corpora used in ASR tasks.
"""
def __init__(self, args: argparse.Namespace):
self.args = args
@classmethod
def add_arguments(cls, parser: argparse.ArgumentParser):
group = parser.add_argument_group(
title="ASR data related options",
description="These options are used for the preparation of "
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
"effective batch sizes, sampling strategies, applied data "
"augmentations, etc.",
)
group.add_argument(
"--manifest-dir",
type=Path,
default=Path("data/fbank"),
help="Path to directory with train/valid/test cuts.",
)
group.add_argument(
"--max-duration",
type=int,
default=200.0,
help="Maximum pooled recordings duration (seconds) in a "
"single batch. You can reduce it if it causes CUDA OOM.",
)
group.add_argument(
"--bucketing-sampler",
type=str2bool,
default=True,
help="When enabled, the batches will come from buckets of "
"similar duration (saves padding frames).",
)
group.add_argument(
"--num-buckets",
type=int,
default=30,
help="The number of buckets for the DynamicBucketingSampler"
"(you might want to increase it for larger datasets).",
)
group.add_argument(
"--concatenate-cuts",
type=str2bool,
default=False,
help="When enabled, utterances (cuts) will be concatenated "
"to minimize the amount of padding.",
)
group.add_argument(
"--duration-factor",
type=float,
default=1.0,
help="Determines the maximum duration of a concatenated cut "
"relative to the duration of the longest cut in a batch.",
)
group.add_argument(
"--gap",
type=float,
default=1.0,
help="The amount of padding (in seconds) inserted between "
"concatenated cuts. This padding is filled with noise when "
"noise augmentation is used.",
)
group.add_argument(
"--on-the-fly-feats",
type=str2bool,
default=False,
help="When enabled, use on-the-fly cut mixing and feature "
"extraction. Will drop existing precomputed feature manifests "
"if available.",
)
group.add_argument(
"--shuffle",
type=str2bool,
default=True,
help="When enabled (=default), the examples will be "
"shuffled for each epoch.",
)
group.add_argument(
"--return-cuts",
type=str2bool,
default=True,
help="When enabled, each batch will have the "
"field: batch['supervisions']['cut'] with the cuts that "
"were used to construct it.",
)
group.add_argument(
"--num-workers",
type=int,
default=2,
help="The number of training dataloader workers that "
"collect the batches.",
)
group.add_argument(
"--enable-spec-aug",
type=str2bool,
default=True,
help="When enabled, use SpecAugment for training dataset.",
)
group.add_argument(
"--spec-aug-time-warp-factor",
type=int,
default=80,
help="Used only when --enable-spec-aug is True. "
"It specifies the factor for time warping in SpecAugment. "
"Larger values mean more warping. "
"A value less than 1 means to disable time warp.",
)
group.add_argument(
"--enable-musan",
type=str2bool,
default=True,
help="When enabled, select noise from MUSAN and mix it "
"with training dataset. ",
)
# Libriheavy specific arguments
group.add_argument(
"--subset",
type=str,
default="small",
help="Select the Libriheavy subset (small|medium|large)",
)
group.add_argument(
"--random-left-padding",
type=str2bool,
)
def train_dataloaders(
self,
cuts_train: CutSet,
sampler_state_dict: Optional[Dict[str, Any]] = None,
text_sampling_func: Callable[[List[str]], str] = None,
) -> DataLoader:
"""
Args:
cuts_train:
CutSet for training.
sampler_state_dict:
The state dict for the training sampler.
"""
transforms = []
if self.args.enable_musan:
logging.info("Enable MUSAN")
logging.info("About to get Musan cuts")
cuts_musan = load_manifest(
self.args.manifest_dir / "musan_cuts.jsonl.gz"
)
transforms.append(
CutMix(
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
)
)
else:
logging.info("Disable MUSAN")
if self.args.concatenate_cuts:
logging.info(
f"Using cut concatenation with duration factor "
f"{self.args.duration_factor} and gap {self.args.gap}."
)
# Cut concatenation should be the first transform in the list,
# so that if we e.g. mix noise in, it will fill the gaps between
# different utterances.
transforms = [
CutConcatenate(
duration_factor=self.args.duration_factor, gap=self.args.gap
)
] + transforms
input_transforms = []
if self.args.enable_spec_aug:
logging.info("Enable SpecAugment")
logging.info(
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
)
# Set the value of num_frame_masks according to Lhotse's version.
# In different Lhotse's versions, the default of num_frame_masks is
# different.
num_frame_masks = 10
num_frame_masks_parameter = inspect.signature(
SpecAugment.__init__
).parameters["num_frame_masks"]
if num_frame_masks_parameter.default == 1:
num_frame_masks = 2
logging.info(f"Num frame mask: {num_frame_masks}")
input_transforms.append(
SpecAugment(
time_warp_factor=self.args.spec_aug_time_warp_factor,
num_frame_masks=num_frame_masks,
features_mask_size=27,
num_feature_masks=2,
frames_mask_size=100,
)
)
else:
logging.info("Disable SpecAugment")
logging.info("About to create train dataset")
train = PromptASRDataset(
cut_transforms=transforms,
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
text_sampling_func=text_sampling_func,
)
if self.args.on_the_fly_feats:
# NOTE: the PerturbSpeed transform should be added only if we
# remove it from data prep stage.
# Add on-the-fly speed perturbation; since originally it would
# have increased epoch size by 3, we will apply prob 2/3 and use
# 3x more epochs.
# Speed perturbation probably should come first before
# concatenation, but in principle the transforms order doesn't have
# to be strict (e.g. could be randomized)
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
# Drop feats to be on the safe side.
train = PromptASRDataset(
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(
Fbank(FbankConfig(num_mel_bins=80))
),
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
text_sampling_func=text_sampling_func,
)
if self.args.bucketing_sampler:
logging.info("Using DynamicBucketingSampler.")
train_sampler = DynamicBucketingSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
num_buckets=self.args.num_buckets,
drop_last=True,
)
else:
logging.info("Using SingleCutSampler.")
train_sampler = SingleCutSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
)
logging.info("About to create train dataloader")
if sampler_state_dict is not None:
logging.info("Loading sampler state dict")
train_sampler.load_state_dict(sampler_state_dict)
# 'seed' is derived from the current random state, which will have
# previously been set in the main process.
seed = torch.randint(0, 100000, ()).item()
worker_init_fn = _SeedWorkers(seed)
train_dl = DataLoader(
train,
sampler=train_sampler,
batch_size=None,
num_workers=self.args.num_workers,
persistent_workers=False,
worker_init_fn=worker_init_fn,
)
return train_dl
def valid_dataloaders(self,
cuts_valid: CutSet,
text_sampling_func: Callable[[List[str]], str] = None,
) -> DataLoader:
transforms = []
if self.args.random_left_padding:
logging.info("Enable random left padding")
transforms.append(
ExtraPadding(extra_frames=16, randomized=True, direction="left")
)
if self.args.concatenate_cuts:
transforms = [
CutConcatenate(
duration_factor=self.args.duration_factor, gap=self.args.gap
)
] + transforms
logging.info("About to create dev dataset")
if self.args.on_the_fly_feats:
validate = PromptASRDataset(
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(
Fbank(FbankConfig(num_mel_bins=80))
),
return_cuts=self.args.return_cuts,
text_sampling_func=text_sampling_func,
)
else:
validate = PromptASRDataset(
cut_transforms=transforms,
return_cuts=self.args.return_cuts,
text_sampling_func=text_sampling_func,
)
valid_sampler = DynamicBucketingSampler(
cuts_valid,
max_duration=self.args.max_duration,
shuffle=False,
)
logging.info("About to create dev dataloader")
valid_dl = DataLoader(
validate,
sampler=valid_sampler,
batch_size=None,
num_workers=2,
persistent_workers=False,
)
return valid_dl
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
logging.debug("About to create test dataset")
test = K2SpeechRecognitionDataset(
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
if self.args.on_the_fly_feats
else PrecomputedFeatures(),
return_cuts=self.args.return_cuts,
)
sampler = DynamicBucketingSampler(
cuts,
max_duration=self.args.max_duration,
shuffle=False,
)
logging.debug("About to create test dataloader")
test_dl = DataLoader(
test,
batch_size=None,
sampler=sampler,
num_workers=self.args.num_workers,
)
return test_dl
@lru_cache()
def train_cuts(self) -> CutSet:
logging.info(f"About to get {self.args.subset} cuts")
path = (
self.args.manifest_dir
/ f"librilight_cuts_train_{self.args.subset}.jsonl.gz"
)
cuts_train = CutSet.from_jsonl_lazy(path)
return cuts_train
@lru_cache()
def dev_cuts(self) -> CutSet:
logging.info("About to get dev cuts")
cuts_valid = load_manifest_lazy(
self.args.manifest_dir / "librilight_cuts_dev.jsonl.gz"
)
return cuts_valid
@lru_cache()
def test_cuts(self) -> CutSet:
logging.info("About to get test cuts")
cuts_valid = load_manifest_lazy(
self.args.manifest_dir / "librilight_cuts_test.jsonl.gz"
)
return cuts_valid
@lru_cache()
def test_clean_cuts(self) -> CutSet:
logging.info("About to get test-clean cuts")
cuts = load_manifest_lazy(
self.args.manifest_dir / "librilight_finetuning_clean.jsonl.gz"
)
return cuts
@lru_cache()
def test_other_cuts(self) -> CutSet:
logging.info("About to get test-other cuts")
cuts = load_manifest_lazy(
self.args.manifest_dir / "librilight_finetuning_other.jsonl.gz"
)
return cuts
@lru_cache()
def librispeech_test_clean_cuts(self) -> CutSet:
logging.info("About to get test-clean cuts")
return load_manifest_lazy(
self.args.manifest_dir / "librispeech_cuts_test-clean.jsonl.gz"
)
@lru_cache()
def librispeech_test_other_cuts(self) -> CutSet:
logging.info("About to get test-other cuts")
return load_manifest_lazy(
self.args.manifest_dir / "librispeech_cuts_test-other.jsonl.gz"
)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,354 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Dict, List, Optional, Union
import random
import numpy as np
import torch
from lhotse import validate
from lhotse.cut import CutSet
from lhotse.dataset import K2SpeechRecognitionDataset
from lhotse.dataset.input_strategies import BatchIO, PrecomputedFeatures
from lhotse.utils import compute_num_frames, ifnone
from torch.utils.data.dataloader import DataLoader, default_collate
from text_normalization import (
remove_non_alphabetic,
upper_only_alpha,
lower_only_alpha,
upper_all_char,
lower_all_char,
train_text_normalization,
)
class PromptASRDataset(torch.utils.data.Dataset):
"""This is a dataset for Prompt ASR. It supports the following features:
1. Select a tuple of (text, pre_text, style_text) randomly from a
list of texts as supervisions.
"""
def __init__(
self,
return_cuts: bool = False,
cut_transforms: List[Callable[[CutSet], CutSet]] = None,
input_transforms: List[Callable[[torch.Tensor], torch.Tensor]] = None,
input_strategy: BatchIO = PrecomputedFeatures(),
text_sampling_func: Optional[Callable[[List[str]], str]] = None,
):
"""
Icefall ASR IterableDataset constructor. See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py
for more details.
:param return_cuts: When ``True``, will additionally return a "cut" field in each batch with the Cut
objects used to create that batch.
:param cut_transforms: A list of transforms to be applied on each sampled batch,
before converting cuts to an input representation (audio/features).
Examples: cut concatenation, noise cuts mixing, etc.
:param input_transforms: A list of transforms to be applied on each sampled batch,
after the cuts are converted to audio/features.
Examples: normalization, SpecAugment, etc.
:param input_strategy: Converts cuts into a collated batch of audio/features.
By default, reads pre-computed features from disk.
:param text_sampling_func: Sampling a text as transcription from a list of texts.
"""
super().__init__()
# Initialize the fields
self.return_cuts = return_cuts
self.cut_transforms = ifnone(cut_transforms, [])
self.input_transforms = ifnone(input_transforms, [])
self.input_strategy = input_strategy
# a text sampling function
self.text_sampling_func = text_sampling_func
def __getitem__(
self, cuts: CutSet
) -> Dict[str, Union[torch.Tensor, List[str]]]:
"""
Return a new batch, with the batch size automatically determined using the constraints
of max_frames and max_cuts.
"""
validate_for_asr(cuts)
# Sort the cuts by duration so that the first one determines the batch time dimensions.
cuts = cuts.sort_by_duration(ascending=False)
# Optional CutSet transforms - e.g. padding, or speed perturbation that adjusts
# the supervision boundaries.
for tnfm in self.cut_transforms:
cuts = tnfm(cuts)
# Sort the cuts again after transforms
cuts = cuts.sort_by_duration(ascending=False)
# Get a tensor with batched feature matrices, shape (B, T, F)
# Collation performs auto-padding, if necessary.
input_tpl = self.input_strategy(cuts)
if len(input_tpl) == 3:
# An input strategy with fault tolerant audio reading mode.
# "cuts" may be a subset of the original "cuts" variable,
# that only has cuts for which we succesfully read the audio.
inputs, _, cuts = input_tpl
else:
inputs, _ = input_tpl
# Get a dict of tensors that encode the positional information about supervisions
# in the batch of feature matrices. The tensors are named "sequence_idx",
# "start_frame/sample" and "num_frames/samples".
supervision_intervals = self.input_strategy.supervision_intervals(cuts)
# Apply all available transforms on the inputs, i.e. either audio or features.
# This could be feature extraction, global MVN, SpecAugment, etc.
segments = torch.stack(list(supervision_intervals.values()), dim=1)
for tnfm in self.input_transforms:
inputs = tnfm(inputs, supervision_segments=segments)
batch = {
"inputs": inputs,
"supervisions": default_collate(
[
self.text_sampling_func(
texts=supervision.texts, pre_texts=supervision.pre_texts
)
if self.text_sampling_func is not None
else {
"text": train_text_normalization(supervision.texts[0]),
"pre_text": train_text_normalization(
supervision.pre_texts[0]
),
"style_text": train_text_normalization(
supervision.pre_texts[0]
),
"transform_ids": 0,
}
for sequence_idx, cut in enumerate(cuts)
for supervision in cut.supervisions
]
),
}
# Update the 'supervisions' field with sequence_idx and start/num frames/samples
batch["supervisions"].update(supervision_intervals)
if self.return_cuts:
batch["supervisions"]["cut"] = [
cut for cut in cuts for sup in cut.supervisions
]
has_word_alignments = all(
s.alignment is not None and "word" in s.alignment
for c in cuts
for s in c.supervisions
)
return batch
def validate_for_asr(cuts: CutSet) -> None:
validate(cuts)
tol = 2e-3 # 1ms
for cut in cuts:
for supervision in cut.supervisions:
assert supervision.start >= -tol, (
f"Supervisions starting before the cut are not supported for ASR"
f" (sup id: {supervision.id}, cut id: {cut.id})"
)
# Supervision start time is relative to Cut ...
# https://lhotse.readthedocs.io/en/v0.10_e/cuts.html
#
# 'supervision.end' is end of supervision inside the Cut
assert supervision.end <= cut.duration + tol, (
f"Supervisions ending after the cut "
f"are not supported for ASR"
f" (sup id: {supervision.id}, cut id: {cut.id})"
)
def get_substring(s: str, min_len: int = 40, max_len: int = 250) -> str:
"""A helper function that generates a random substring from a given string
Args:
s (str): Input string
Returns:
str: Returned substring
"""
min_len = min(len(s), min_len)
start = random.randint(0, len(s) - min_len)
end = min(start + max_len, random.randint(start + min_len, len(s)))
return s[start:end]
def triplet_text_sampling(
texts: List[str],
pre_texts: List[str],
transforms: Optional[List[Callable[[str], str]]] = None,
min_len_style: Optional[int] = 80,
) -> Dict[str, str]:
"""This function generates a tuple of
(pre_text, style_text, ref_text). The style of style_text and ref_text
should always match, whereas the style of pre_text is arbitrary.
Suppose we have 3 different transforms A,B,C, and the groundtruth
text and pre_text are referred to as text and pre_text.
The following three tuples are all valid:
(A(pre_text), B(style_text), B(text))
(A(pre_text), C(style_text), C(text))
(A(pre_text), A(style_text), A(text))
...
If transforms is not given, the following pre-defined transforms
are available:
0: original (normal case, with punc)
1: recog (upper, no punc)
2: upper_only_alpha (upper, no punc)
3: lower_only_alpha (lower, no punc)
4: upper_all (upper, with punc)
5: lower_all (lower, with punc)
When the transform of text and pre_text match, we can use the whole
pre_text as the prompt text.
Args:
texts (List[str]):
A list of ref_texts whose first item is the ground truth
text from books.
pre_texts (List[str]):
A list of pre_texts, whose first item is the groundtruth
pre_text from books.
transforms (List[Callable[[str], str]]): A list of possible transforms to be applied
Returns:
str: A dictionary
"""
# import pdb; pdb.set_trace()
assert len(texts) == len(pre_texts)
assert len(texts) == 2
# we assume the first item to be ground truth
gt_text = texts[0]
gt_pre_text = pre_texts[0]
if transforms is None:
transforms = [
lambda x: x, # return it self
upper_only_alpha,
lower_only_alpha,
lower_all_char,
]
sampling_weight = [0.5, 0.2, 0.15, 0.15] # Mixed-punc should have the largest sampling prob
total_transforms = len(transforms) # do not use the recognized trans
# Select a transformation randomly
i_text, i_pre_text = np.random.choice(total_transforms, 2, p=sampling_weight)
# get the normalized text and pre_text
text = transforms[i_text](gt_text)
pre_text = transforms[i_pre_text](gt_pre_text)
if i_text == i_pre_text:
style_text = get_substring(pre_text, min_len=min_len_style, max_len=150)
else:
# get the pre_text of same style as text
# For now, do not do transform to the style text
style_text = gt_pre_text
# style_text = pre_texts[i_text] if i_text <= 1 else transforms[i_text-2](gt_pre_text)
style_text = get_substring(style_text, min_len=min_len_style, max_len=150)
return {
"text": train_text_normalization(text),
"pre_text": train_text_normalization(pre_text),
"style_text": train_text_normalization(style_text),
"transform_ids": i_text,
}
def naive_triplet_text_sampling(
texts: List[str],
pre_texts: List[str],
min_len_style: Optional[int] = 120,
):
return {
"text": train_text_normalization(texts[0]),
"pre_text": train_text_normalization(pre_texts[0]),
"style_text": train_text_normalization(pre_texts[0][:150]),
# "style_text": "Mixed-case English transcription, with punctuation. Actually, it is fully not related.",
# "style_text": train_text_normalization(get_substring(pre_texts[0], min_len=min_len_style)),
"transform_ids": 0,
}
def random_shuffle_subset(
data: List[str],
p: float = 0.2,
p_mask: float = 0.05,
) -> List[str]:
"""
Randomly shuffle the subset by probability p, which means that p% of the samples
in the original batch are shuffled, the others are kept in the original order.
With a probability of p_mask, replace the original string with an empty string.
"""
num_to_shuffle = int(len(data) * p)
id_to_shuffle = np.random.choice(len(data), num_to_shuffle, replace=False)
item_to_shuffle = [data[id] for id in id_to_shuffle]
random.shuffle(item_to_shuffle)
# print(num_to_shuffle,id_to_shuffle, item_to_shuffle)
for id, item in zip(id_to_shuffle, item_to_shuffle):
data[id] = item
if p_mask > 0:
for i in range(len(data)):
if random.random() < p_mask:
data[i] = ""
return data
if __name__ == "__main__":
texts = [
"AA, BB, cC, dD!",
"AA BB CC DD",
]
pre_texts = [
"EE, Ff, Gg? EE, Ff, Gg? EE, Ff, Gg? EE, Ff, Gg?",
"EE FF GG EE FF GG EE FF GG EE FF GG EE FF GG",
]
# for i in range(10):
# print(f"Run: {i}")
# print(triplet_text_sampling(texts, pre_texts))
import time
start = time.time()
data = [str(i) for i in range(30)]
random.shuffle(data)
print(data)
for i in range(1):
shuffled = random_shuffle_subset(data=data, p=0.4, p_mask=0.1)
print(shuffled)
print((time.time() - start)/100)

View File

@ -0,0 +1,858 @@
#!/usr/bin/env python3
#
# Copyright 2021-2022 Xiaomi Corporation (Author: Xiaoyu Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
(1) greedy search
./pruned_transducer_stateless7/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless7/exp \
--max-duration 600 \
--decoding-method greedy_search
(2) modified beam search
./pruned_transducer_stateless7/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless7/exp \
--max-duration 600 \
--decoding-method modified_beam_search \
--beam-size 4
"""
import argparse
import logging
import math
import warnings
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Callable
import k2
import sentencepiece as spm
import torch
import torch.nn as nn
from asr_datamodule import LibriHeavyAsrDataModule
from beam_search import (
greedy_search,
greedy_search_batch,
modified_beam_search,
)
from dataset import naive_triplet_text_sampling
from text_normalization import ref_text_normalization, remove_non_alphabetic, upper_only_alpha, upper_all_char, lower_all_char, lower_only_alpha
from train import (
add_model_arguments,
get_params,
get_transducer_model,
_encode_texts_as_bytes,
)
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
setup_logger,
store_transcripts,
str2bool,
write_error_stats,
)
LOG_EPS = math.log(1e-10)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=30,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=9,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless7/exp",
help="The experiment dir",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--lang-dir",
type=Path,
default="data/lang_bpe_500",
help="The lang dir containing word table and LG graph",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="""Possible values are:
- greedy_search
- beam_search
- modified_beam_search
- fast_beam_search
- fast_beam_search_nbest
- fast_beam_search_nbest_oracle
- fast_beam_search_nbest_LG
- modified_beam_search_lm_shallow_fusion # for rnn lm shallow fusion
- modified_beam_search_LODR
If you use fast_beam_search_nbest_LG, you have to specify
`--lang-dir`, which should contain `LG.pt`.
""",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
help="""An integer indicating how many candidates we will keep for each
frame. Used only when --decoding-method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=20.0,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --decoding-method is fast_beam_search,
fast_beam_search_nbest, fast_beam_search_nbest_LG,
and fast_beam_search_nbest_oracle
""",
)
parser.add_argument(
"--ngram-lm-scale",
type=float,
default=0.01,
help="""
Used only when --decoding_method is fast_beam_search_nbest_LG.
It specifies the scale for n-gram LM scores.
""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=8,
help="""Used only when --decoding-method is
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--max-states",
type=int,
default=64,
help="""Used only when --decoding-method is
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
default=1,
help="""Maximum number of symbols per frame.
Used only when --decoding_method is greedy_search""",
)
parser.add_argument(
"--num-paths",
type=int,
default=200,
help="""Number of paths for nbest decoding.
Used only when the decoding method is fast_beam_search_nbest,
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--nbest-scale",
type=float,
default=0.5,
help="""Scale applied to lattice scores when computing nbest paths.
Used only when the decoding method is fast_beam_search_nbest,
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--use-pre-text",
type=str2bool,
default=True,
help="Use pre-text is available during decoding",
)
parser.add_argument(
"--use-style-prompt",
type=str2bool,
default=True,
help="Use style prompt when evaluation"
)
parser.add_argument(
"--post-normalization",
type=str2bool,
default=True,
help="Normalized the recognition results by uppercasing and removing non-alphabetic symbols. ",
)
parser.add_argument(
"--compute-CER",
type=str2bool,
default=False,
help="Reports CER. By default, only reports WER",
)
parser.add_argument(
"--style-text-transform",
type=str,
choices=["mixed-punc", "upper-no-punc", "lower-no-punc","lower-punc"],
default="mixed-punc",
help="The style of style prompt, i.e style_text"
)
parser.add_argument(
"--pre-text-transform",
type=str,
choices=["mixed-punc", "upper-no-punc", "lower-no-punc","lower-punc"],
default="mixed-punc",
help="The style of content prompt, i.e pre_text"
)
add_model_arguments(parser)
return parser
def _apply_style_transform(text: List[str], transform: str) -> List[str]:
"""Apply transform to a list of text. By default, the text are in
ground truth format, i.e mixed-punc.
Args:
text (List[str]): Input text string
transform (str): Transform to be applied
Returns:
List[str]: _description_
"""
if transform == "mixed-punc":
return text
elif transform == "upper-no-punc":
return [upper_only_alpha(s) for s in text]
elif transform == "lower-no-punc":
return [lower_only_alpha(s) for s in text]
elif transform == "lower-punc":
return [lower_all_char(s) for s in text]
else:
raise NotImplementedError(f"Unseen transform: {transform}")
def decode_one_batch(
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
batch: dict,
word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
- key: It indicates the setting used for decoding. For example,
if greedy_search is used, it would be "greedy_search"
If beam search with a beam size of 7 is used, it would be
"beam_7"
- value: It contains the decoding result. `len(value)` equals to
batch size. `value[i]` is the decoding result for the i-th
utterance in the given batch.
Args:
params:
It's the return value of :func:`get_params`.
model:
The neural model.
sp:
The BPE model.
batch:
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
for the format of the `batch`.
word_table:
The word symbol table.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
LM:
A neural net LM for shallow fusion. Only used when `--use-shallow-fusion`
set to true.
ngram_lm:
A ngram lm. Used in LODR decoding.
ngram_lm_scale:
The scale of the ngram language model.
Returns:
Return the decoding result. See above description for the format of
the returned dict.
"""
device = next(model.parameters()).device
feature = batch["inputs"]
batch_size = feature.size(0)
if "pre_text" in batch["supervisions"] and params.use_pre_text:
pre_texts = batch["supervisions"]["pre_text"]
else:
pre_texts = ["" for _ in range(batch_size)]
if params.use_style_prompt:
style_texts = batch["supervisions"]["style_text"]
else:
style_texts = ["" for _ in range(batch_size)] # use empty string
# Get the text embedding input
if params.use_pre_text or params.use_style_prompt:
# apply style transform to the pre_text and style_text
pre_texts = _apply_style_transform(pre_texts, params.pre_text_transform)
style_texts = _apply_style_transform(style_texts, params.style_text_transform)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
pre_texts, pre_texts_lens, style_lens = _encode_texts_as_bytes(
pre_texts,
style_texts,
device,
max_len=1200
) # note that the output pre_texts include style_text and actual pre_text
memory, memory_key_padding_mask = model.encode_text(
text=pre_texts,
text_lens=pre_texts_lens,
style_lens=style_lens,
)
else:
memory = None
memory_key_padding_mask = None
# Get the transducer encoder output
assert feature.ndim == 3
feature = feature.to(device)
# at entry, feature is (N, T, C)
supervisions = batch["supervisions"]
feature_lens = supervisions["num_frames"].to(device)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
encoder_out, encoder_out_lens = model.encode_audio(
feature=feature,
feature_lens=feature_lens,
memory=memory,
memory_key_padding_mask=memory_key_padding_mask,
)
hyps = []
if (
params.decoding_method == "greedy_search"
and params.max_sym_per_frame == 1
):
hyp_tokens = greedy_search_batch(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "modified_beam_search":
hyp_tokens = modified_beam_search(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
else:
batch_size = encoder_out.size(0)
for i in range(batch_size):
# fmt: off
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
# fmt: on
if params.decoding_method == "greedy_search":
hyp = greedy_search(
model=model,
encoder_out=encoder_out_i,
max_sym_per_frame=params.max_sym_per_frame,
)
elif params.decoding_method == "beam_search":
hyp = beam_search(
model=model,
encoder_out=encoder_out_i,
beam=params.beam_size,
)
else:
raise ValueError(
f"Unsupported decoding method: {params.decoding_method}"
)
hyps.append(sp.decode(hyp).split())
if params.decoding_method == "greedy_search":
return {"greedy_search": hyps}
else:
return {f"beam_size_{params.beam_size}": hyps}
def decode_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
"""Decode dataset.
Args:
dl:
PyTorch's dataloader containing the dataset to decode.
params:
It is returned by :func:`get_params`.
model:
The neural model.
sp:
The BPE model.
word_table:
The word symbol table.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
LM:
A neural network LM, used during shallow fusion
Returns:
Return a dict, whose key may be "greedy_search" if greedy search
is used, or it may be "beam_7" if beam size of 7 is used.
Its value is a list of tuples. Each tuple contains two elements:
The first is the reference transcript, and the second is the
predicted result.
"""
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
if params.decoding_method == "greedy_search":
log_interval = 50
else:
log_interval = 20
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):
texts = batch["supervisions"]["text"] # By default, this should be in mixed-punc format
# the style of ref_text should match style_text
if params.use_style_prompt:
texts = _apply_style_transform(texts, params.style_text_transform)
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
hyps_dict = decode_one_batch(
params=params,
model=model,
sp=sp,
decoding_graph=decoding_graph,
word_table=word_table,
batch=batch,
)
for name, hyps in hyps_dict.items():
this_batch = []
assert len(hyps) == len(texts)
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
ref_text = ref_text_normalization(
ref_text
) # remove full-width symbols & some book marks
if params.post_normalization:
ref_words = ref_text.split()
ref_words = [remove_non_alphabetic(w.upper()) for w in ref_words]
ref_words = [w for w in ref_words if w != ""]
hyp_words = [remove_non_alphabetic(w.upper()) for w in hyp_words]
hyp_words = [w for w in hyp_words if w != ""]
else:
ref_words = ref_text.split()
this_batch.append((cut_id, ref_words, hyp_words))
results[name].extend(this_batch)
num_cuts += len(texts)
if batch_idx % log_interval == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(
f"batch {batch_str}, cuts processed until now is {num_cuts}"
)
return results
def save_results(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
):
test_set_wers = dict()
test_set_cers = dict()
for key, results in results_dict.items():
recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
results = sorted(results)
store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs.
errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
with open(errs_filename, "w") as f:
wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True
)
test_set_wers[key] = wer
logging.info("Wrote detailed error stats to {}".format(errs_filename))
if params.compute_CER:
# Write CER statistics
recog_path = params.res_dir / f"recogs-{test_set_name}-char-{params.suffix}.txt"
store_transcripts(filename=recog_path, texts=results, char_level=True)
errs_filename = (
params.res_dir / f"errs-CER-{test_set_name}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f:
cer = write_error_stats(
f,
f"{test_set_name}-{key}",
results,
enable_log=True,
compute_CER=params.compute_CER,
)
test_set_cers[key] = cer
logging.info("Wrote detailed CER stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = (
params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
)
with open(errs_info, "w") as f:
print("settings\tWER", file=f)
for key, val in test_set_wers:
print("{}\t{}".format(key, val), file=f)
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
note = "\tbest for {}".format(test_set_name)
for key, val in test_set_wers:
s += "{}\t{}{}\n".format(key, val, note)
note = ""
logging.info(s)
if params.compute_CER:
test_set_cers = sorted(test_set_cers.items(), key=lambda x: x[1])
errs_info = (
params.res_dir / f"cer-summary-{test_set_name}-{params.suffix}.txt"
)
with open(errs_info, "w") as f:
print("settings\tcER", file=f)
for key, val in test_set_cers:
print("{}\t{}".format(key, val), file=f)
s = "\nFor {}, CER of different settings are:\n".format(test_set_name)
note = "\tbest for {}".format(test_set_name)
for key, val in test_set_cers:
s += "{}\t{}{}\n".format(key, val, note)
note = ""
logging.info(s)
@torch.no_grad()
def main():
parser = get_parser()
LibriHeavyAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
assert params.decoding_method in (
"greedy_search",
"modified_beam_search",
)
params.res_dir = params.exp_dir / params.decoding_method
if params.iter > 0:
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
else:
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
if params.causal:
assert (
"," not in params.chunk_size
), "chunk_size should be one value in decoding."
assert (
"," not in params.left_context_frames
), "left_context_frames should be one value in decoding."
params.suffix += f"-chunk-{params.chunk_size}"
params.suffix += f"-left-context-{params.left_context_frames}"
if "beam_search" in params.decoding_method:
params.suffix += (
f"-{params.decoding_method}-beam-size-{params.beam_size}"
)
else:
params.suffix += f"-context-{params.context_size}"
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
if params.use_pre_text:
params.suffix += f"-pre-text-{params.pre_text_transform}"
if params.use_style_prompt:
params.suffix += f"-style-prompt-{params.style_text_transform}"
if params.post_normalization:
params.suffix += "-post-normalization"
if params.use_averaged_model:
params.suffix += "-use-averaged-model"
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
logging.info("Decoding started")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> and <unk> are defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.piece_to_id("<unk>")
params.vocab_size = sp.get_piece_size()
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(
params.exp_dir, iteration=-params.iter
)[: params.avg]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(
params.exp_dir, iteration=-params.iter
)[: params.avg + 1]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to(device)
model.eval()
LM = None
decoding_graph = None
word_table = None
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
# we need cut ids to display recognition results.
args.return_cuts = True
libriheavy = LibriHeavyAsrDataModule(args)
test_cuts = libriheavy.test_cuts()
#test_cuts = test_cuts.subset(first=200)
test_clean_cuts = libriheavy.test_clean_cuts()
test_other_cuts = libriheavy.test_other_cuts()
ls_test_clean_cuts = libriheavy.librispeech_test_clean_cuts()
ls_test_other_cuts = libriheavy.librispeech_test_other_cuts()
test_dl = libriheavy.valid_dataloaders(test_cuts, text_sampling_func=naive_triplet_text_sampling)
test_clean_dl = libriheavy.test_dataloaders(test_clean_cuts)
test_other_dl = libriheavy.test_dataloaders(test_other_cuts)
ls_test_clean_dl = libriheavy.test_dataloaders(ls_test_clean_cuts)
ls_test_other_dl = libriheavy.test_dataloaders(ls_test_other_cuts)
#test_sets = ["test-clean", "test-other", "ls-test-clean", "ls-test-other"]
#test_dl = [test_clean_dl, test_other_dl, ls_test_clean_dl, ls_test_other_dl]
# test_sets = ["ls-test-clean", "ls-test-other"]
# test_dl = [ls_test_clean_dl, ls_test_other_dl]
test_sets = ["test",]
test_dl = [test_dl]
for test_set, test_dl in zip(test_sets, test_dl):
results_dict = decode_dataset(
dl=test_dl,
params=params,
model=model,
sp=sp,
word_table=word_table,
decoding_graph=decoding_graph,
)
save_results(
params=params,
test_set_name=test_set,
results_dict=results_dict,
)
logging.info("Done!")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,123 @@
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
import torch.nn.functional as F
from scaling import Balancer
class Decoder(nn.Module):
"""This class modifies the stateless decoder from the following paper:
RNN-transducer with stateless prediction network
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419
It removes the recurrent connection from the decoder, i.e., the prediction
network. Different from the above paper, it adds an extra Conv1d
right after the embedding layer.
TODO: Implement https://arxiv.org/pdf/2109.07513.pdf
"""
def __init__(
self,
vocab_size: int,
decoder_dim: int,
blank_id: int,
context_size: int,
):
"""
Args:
vocab_size:
Number of tokens of the modeling unit including blank.
decoder_dim:
Dimension of the input embedding, and of the decoder output.
blank_id:
The ID of the blank symbol.
context_size:
Number of previous words to use to predict the next word.
1 means bigram; 2 means trigram. n means (n+1)-gram.
"""
super().__init__()
self.embedding = nn.Embedding(
num_embeddings=vocab_size,
embedding_dim=decoder_dim,
padding_idx=blank_id,
)
# the balancers are to avoid any drift in the magnitude of the
# embeddings, which would interact badly with parameter averaging.
self.balancer = Balancer(decoder_dim, channel_dim=-1,
min_positive=0.0, max_positive=1.0,
min_abs=0.5, max_abs=1.0,
prob=0.05)
self.blank_id = blank_id
assert context_size >= 1, context_size
self.context_size = context_size
self.vocab_size = vocab_size
if context_size > 1:
self.conv = nn.Conv1d(
in_channels=decoder_dim,
out_channels=decoder_dim,
kernel_size=context_size,
padding=0,
groups=decoder_dim//4, # group size == 4
bias=False,
)
self.balancer2 = Balancer(decoder_dim, channel_dim=-1,
min_positive=0.0, max_positive=1.0,
min_abs=0.5, max_abs=1.0,
prob=0.05)
def forward(self, y: torch.Tensor, need_pad: bool = True) -> torch.Tensor:
"""
Args:
y:
A 2-D tensor of shape (N, U).
need_pad:
True to left pad the input. Should be True during training.
False to not pad the input. Should be False during inference.
Returns:
Return a tensor of shape (N, U, decoder_dim).
"""
y = y.to(torch.int64)
# this stuff about clamp() is a temporary fix for a mismatch
# at utterance start, we use negative ids in beam_search.py
embedding_out = self.embedding(y.clamp(min=0)) * (y >= 0).unsqueeze(-1)
embedding_out = self.balancer(embedding_out)
if self.context_size > 1:
embedding_out = embedding_out.permute(0, 2, 1)
if need_pad is True:
embedding_out = F.pad(
embedding_out, pad=(self.context_size - 1, 0)
)
else:
# During inference time, there is no need to do extra padding
# as we only need one output
assert embedding_out.size(-1) == self.context_size
embedding_out = self.conv(embedding_out)
embedding_out = embedding_out.permute(0, 2, 1)
embedding_out = F.relu(embedding_out)
embedding_out = self.balancer2(embedding_out)
return embedding_out

View File

@ -0,0 +1,43 @@
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple
import torch
import torch.nn as nn
class EncoderInterface(nn.Module):
def forward(
self, x: torch.Tensor, x_lens: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
x:
A tensor of shape (batch_size, input_seq_len, num_features)
containing the input features.
x_lens:
A tensor of shape (batch_size,) containing the number of frames
in `x` before padding.
Returns:
Return a tuple containing two tensors:
- encoder_out, a tensor of (batch_size, out_seq_len, output_dim)
containing unnormalized probabilities, i.e., the output of a
linear layer.
- encoder_out_lens, a tensor of shape (batch_size,) containing
the number of frames in `encoder_out` before padding.
"""
raise NotImplementedError("Please implement it in a subclass")

View File

@ -0,0 +1,69 @@
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
from scaling import (
ScaledLinear
)
class Joiner(nn.Module):
def __init__(
self,
encoder_dim: int,
decoder_dim: int,
joiner_dim: int,
vocab_size: int,
):
super().__init__()
self.encoder_proj = ScaledLinear(encoder_dim, joiner_dim, initial_scale=0.25)
self.decoder_proj = ScaledLinear(decoder_dim, joiner_dim, initial_scale=0.25)
self.output_linear = nn.Linear(joiner_dim, vocab_size)
def forward(
self,
encoder_out: torch.Tensor,
decoder_out: torch.Tensor,
project_input: bool = True,
) -> torch.Tensor:
"""
Args:
encoder_out:
Output from the encoder. Its shape is (N, T, s_range, C).
decoder_out:
Output from the decoder. Its shape is (N, T, s_range, C).
project_input:
If true, apply input projections encoder_proj and decoder_proj.
If this is false, it is the user's responsibility to do this
manually.
Returns:
Return a tensor of shape (N, T, s_range, C).
"""
assert encoder_out.ndim == decoder_out.ndim == 4
assert encoder_out.shape[:-1] == decoder_out.shape[:-1]
if project_input:
logit = self.encoder_proj(encoder_out) + self.decoder_proj(
decoder_out
)
else:
logit = encoder_out + decoder_out
logit = self.output_linear(torch.tanh(logit))
return logit

View File

@ -0,0 +1,348 @@
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import k2
import torch
import torch.nn as nn
import random
import warnings
from encoder_interface import EncoderInterface
from icefall.utils import add_sos, make_pad_mask
from scaling import penalize_abs_values_gt, ScaledLinear
from torch import Tensor
from typing import Optional, Tuple
class PromptedTransducer(nn.Module):
"""It implements https://arxiv.org/pdf/1211.3711.pdf
"Sequence Transduction with Recurrent Neural Networks"
"""
def __init__(
self,
encoder_embed: nn.Module,
encoder: EncoderInterface,
text_embed: nn.Module,
text_encoder: EncoderInterface,
decoder: nn.Module,
joiner: nn.Module,
encoder_dim: int,
decoder_dim: int,
joiner_dim: int,
vocab_size: int,
):
"""
Args:
encoder_embed:
It is a Convolutional 2D subsampling module. It converts
an input of shape (N, T, idim) to an output of of shape
(N, T', odim), where T' = (T-3)//2-2 = (T-7)//2.
encoder:
It is the transcription network in the paper. Its accepts
two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,).
It returns two tensors: `logits` of shape (N, T, encoder_dm) and
`logit_lens` of shape (N,).
decoder:
It is the prediction network in the paper. Its input shape
is (N, U) and its output shape is (N, U, decoder_dim).
It should contain one attribute: `blank_id`.
joiner:
It has two inputs with shapes: (N, T, encoder_dim) and (N, U, decoder_dim).
Its output shape is (N, T, U, vocab_size). Note that its output contains
unnormalized probs, i.e., not processed by log-softmax.
"""
super().__init__()
assert isinstance(encoder, EncoderInterface), type(encoder)
assert hasattr(decoder, "blank_id")
self.encoder_embed = encoder_embed
self.encoder = encoder
self.text_embed = text_embed
self.text_encoder = text_encoder
self.decoder = decoder
self.joiner = joiner
self.simple_am_proj = ScaledLinear(
encoder_dim,
vocab_size,
initial_scale=0.25,
)
self.simple_lm_proj = ScaledLinear(
decoder_dim,
vocab_size,
initial_scale=0.25,
)
def forward(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
text: torch.Tensor,
text_lens: torch.Tensor,
style_lens: torch.Tensor,
y: k2.RaggedTensor,
prune_range: int = 5,
am_scale: float = 0.0,
lm_scale: float = 0.0,
use_pre_text: bool = True,
) -> torch.Tensor:
"""
Args:
x:
A 3-D tensor of shape (N, T, C).
x_lens:
A 1-D tensor of shape (N,). It contains the number of frames in `x`
before padding.
x_lens:
A 1-D tensor of shape (N,). It contains the number of frames in `x`
before padding.
text:
A 2-D tensor of integer dtype containing prompt text, of shape (N, T).
It is exptected to contain the style prompt (first) and then the content
prompt.
text_lens:
A 1-D tensor of shape (N,). It contains the number of elements (bytes)
in `text` before padding, which will include the lengths of the
style plus the content prompt.
style_lens:
A 1-D tensor of shape (N,), containing the number of elements (bytes)
within each row of `text` that correspond to the style prompt (these
are expected to come first).
y:
A ragged tensor with 2 axes [utt][label]. It contains labels of each
utterance.
prune_range:
The prune range for rnnt loss, it means how many symbols(context)
we are considering for each frame to compute the loss.
am_scale:
The scale to smooth the loss with am (output of encoder network)
part
lm_scale:
The scale to smooth the loss with lm (output of predictor network)
part
Returns:
Return the transducer loss.
Note:
Regarding am_scale & lm_scale, it will make the loss-function one of
the form:
lm_scale * lm_probs + am_scale * am_probs +
(1-lm_scale-am_scale) * combined_probs
"""
assert x.ndim == 3, x.shape
assert x_lens.ndim == 1, x_lens.shape
assert y.num_axes == 2, y.num_axes
assert x.size(0) == x_lens.size(0) == y.dim0
x, x_lens = self.encoder_embed(x, x_lens)
src_key_padding_mask = make_pad_mask(x_lens)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
if use_pre_text:
memory, memory_key_padding_mask = self.encode_text(
text,
text_lens,
style_lens
)
else:
memory = None
memory_key_padding_mask = None
encoder_out, x_lens = self.encoder(
x,
x_lens,
src_key_padding_mask,
memory=memory,
memory_key_padding_mask=memory_key_padding_mask,
)
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
assert torch.all(x_lens > 0)
# Now for the decoder, i.e., the prediction network
row_splits = y.shape.row_splits(1)
y_lens = row_splits[1:] - row_splits[:-1]
blank_id = self.decoder.blank_id
sos_y = add_sos(y, sos_id=blank_id)
# sos_y_padded: [B, S + 1], start with SOS.
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
# decoder_out: [B, S + 1, decoder_dim]
decoder_out = self.decoder(sos_y_padded)
# Note: y does not start with SOS
# y_padded : [B, S]
y_padded = y.pad(mode="constant", padding_value=0)
y_padded = y_padded.to(torch.int64)
boundary = torch.zeros(
(encoder_out.size(0), 4),
dtype=torch.int64,
device=encoder_out.device,
)
boundary[:, 2] = y_lens
boundary[:, 3] = x_lens
lm = self.simple_lm_proj(decoder_out)
am = self.simple_am_proj(encoder_out)
# if self.training and random.random() < 0.25:
# lm = penalize_abs_values_gt(lm, 100.0, 1.0e-04)
# if self.training and random.random() < 0.25:
# am = penalize_abs_values_gt(am, 30.0, 1.0e-04)
with torch.cuda.amp.autocast(enabled=False):
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
lm=lm.float(),
am=am.float(),
symbols=y_padded,
termination_symbol=blank_id,
lm_only_scale=lm_scale,
am_only_scale=am_scale,
boundary=boundary,
reduction="sum",
return_grad=True,
)
# ranges : [B, T, prune_range]
ranges = k2.get_rnnt_prune_ranges(
px_grad=px_grad,
py_grad=py_grad,
boundary=boundary,
s_range=prune_range,
)
# am_pruned : [B, T, prune_range, encoder_dim]
# lm_pruned : [B, T, prune_range, decoder_dim]
am_pruned, lm_pruned = k2.do_rnnt_pruning(
am=self.joiner.encoder_proj(encoder_out),
lm=self.joiner.decoder_proj(decoder_out),
ranges=ranges,
)
# logits : [B, T, prune_range, vocab_size]
# project_input=False since we applied the decoder's input projections
# prior to do_rnnt_pruning (this is an optimization for speed).
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
with torch.cuda.amp.autocast(enabled=False):
pruned_loss = k2.rnnt_loss_pruned(
logits=logits.float(),
symbols=y_padded,
ranges=ranges,
termination_symbol=blank_id,
boundary=boundary,
reduction="sum",
)
return (simple_loss, pruned_loss)
def _add_style_indicator(self, memory: Tensor, style_lens: Tensor):
"""
Adds to `memory` an indicator that is 1.0 for positions that correspond to
the `style prompt` and 0 elsewhere. The scale can be fixed because the
scale of the embedding vector can adjust to compensate.
Args:
memory: (memory_len, batch_size, embed_dim)
style_lens: (batch_size,), a vector of lengths of the style prompt.
"""
(memory_len, batch_size, embed_dim) = memory.shape
indicator = (
torch.arange(memory_len, device=memory.device).unsqueeze(-1)
< style_lens
)
indicator = indicator.to(memory.dtype)
extra_term = torch.zeros_like(memory)
extra_term[..., 0] += indicator
return memory + extra_term
def encode_text(
self,
text: Tensor,
text_lens: Tensor,
style_lens: Tensor,
) -> Tuple[Tensor, Tensor]:
"""Get the embeddings of text
Args:
text (Tensor): The input text data in utf-8 bytes, (N, T)
text_lens (Tensor): The length of the input text (N, ), including style_prompt
style_lens (Tensor): The length of the style prompt (N, )
Returns:
Tuple[Tensor, Tensor]: Returns the text embeddings encoded by the
text_encoder and the attention mask
"""
text = text.t() # now (T, N)
text = self.text_embed(text) # now (T, N, C)
text_key_padding_mask = make_pad_mask(text_lens)
text = self._add_style_indicator(text, style_lens)
memory, text_lens = self.text_encoder(
text, text_lens, text_key_padding_mask
)
memory_key_padding_mask = make_pad_mask(text_lens)
return memory, memory_key_padding_mask
def encode_audio(
self,
feature: Tensor,
feature_lens: Tensor,
memory: Optional[Tensor],
memory_key_padding_mask: Optional[Tensor],
) -> Tuple[Tensor, Tensor]:
"""Encode the input audio features
Args:
feature (Tensor): Input audio (N,T,C)
feature_lens (Tensor): Length of input audio (N,)
memory (Tensor): Embeddings from the text encoder
memory_key_padding_mask (Tensor): _description_
Returns:
Tuple[Tensor, Tensor]: _description_
"""
x, x_lens = self.encoder_embed(feature, feature_lens)
src_key_padding_mask = make_pad_mask(x_lens)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
encoder_out, encoder_out_lens = self.encoder(
x=x,
x_lens=x_lens,
memory=memory,
memory_key_padding_mask=memory_key_padding_mask,
)
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
return encoder_out, encoder_out_lens
Transducer = PromptedTransducer # for decoding

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,280 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Daniel Povey)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple
import warnings
import torch
from torch import Tensor, nn
from scaling import (
Balancer,
BiasNorm,
Dropout3,
FloatLike,
Optional,
ScaledConv2d,
ScaleGrad,
ScheduledFloat,
SwooshL,
SwooshR,
Whiten,
)
class ConvNeXt(nn.Module):
"""
Our interpretation of the ConvNeXt module as used in https://arxiv.org/pdf/2206.14747.pdf
"""
def __init__(
self,
channels: int,
hidden_ratio: int = 3,
kernel_size: Tuple[int, int] = (7, 7),
layerdrop_rate: FloatLike = None,
):
super().__init__()
padding = ((kernel_size[0] - 1) // 2, (kernel_size[1] - 1) // 2)
hidden_channels = channels * hidden_ratio
if layerdrop_rate is None:
layerdrop_rate = ScheduledFloat((0.0, 0.2), (20000.0, 0.015))
self.layerdrop_rate = layerdrop_rate
self.depthwise_conv = nn.Conv2d(
in_channels=channels,
out_channels=channels,
groups=channels,
kernel_size=kernel_size,
padding=padding,
)
self.pointwise_conv1 = nn.Conv2d(
in_channels=channels, out_channels=hidden_channels, kernel_size=1
)
self.hidden_balancer = Balancer(
hidden_channels,
channel_dim=1,
min_positive=0.3,
max_positive=1.0,
min_abs=0.75,
max_abs=5.0,
)
self.activation = SwooshL()
self.pointwise_conv2 = ScaledConv2d(
in_channels=hidden_channels,
out_channels=channels,
kernel_size=1,
initial_scale=0.01,
)
self.out_balancer = Balancer(
channels,
channel_dim=1,
min_positive=0.4,
max_positive=0.6,
min_abs=1.0,
max_abs=6.0,
)
self.out_whiten = Whiten(
num_groups=1,
whitening_limit=5.0,
prob=(0.025, 0.25),
grad_scale=0.01,
)
def forward(self, x: Tensor) -> Tensor:
if torch.jit.is_scripting() or not self.training:
return self.forward_internal(x)
layerdrop_rate = float(self.layerdrop_rate)
if layerdrop_rate != 0.0:
batch_size = x.shape[0]
mask = (
torch.rand(
(batch_size, 1, 1, 1), dtype=x.dtype, device=x.device
)
> layerdrop_rate
)
else:
mask = None
# turns out this caching idea does not work with --world-size > 1
# return caching_eval(self.forward_internal, x, mask)
return self.forward_internal(x, mask)
def forward_internal(
self, x: Tensor, layer_skip_mask: Optional[Tensor] = None
) -> Tensor:
"""
x layout: (N, C, H, W), i.e. (batch_size, num_channels, num_frames, num_freqs)
The returned value has the same shape as x.
"""
bypass = x
x = self.depthwise_conv(x)
x = self.pointwise_conv1(x)
x = self.hidden_balancer(x)
x = self.activation(x)
x = self.pointwise_conv2(x)
if layer_skip_mask is not None:
x = x * layer_skip_mask
x = bypass + x
x = self.out_balancer(x)
x = x.transpose(1, 3) # (N, W, H, C); need channel dim to be last
x = self.out_whiten(x)
x = x.transpose(1, 3) # (N, C, H, W)
return x
class Conv2dSubsampling(nn.Module):
"""Convolutional 2D subsampling (to 1/2 length).
Convert an input of shape (N, T, idim) to an output
with shape (N, T', odim), where
T' = (T-3)//2 - 2 == (T-7)//2
It is based on
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/subsampling.py # noqa
"""
def __init__(
self,
in_channels: int,
out_channels: int,
layer1_channels: int = 8,
layer2_channels: int = 32,
layer3_channels: int = 128,
dropout: FloatLike = 0.1,
) -> None:
"""
Args:
in_channels:
Number of channels in. The input shape is (N, T, in_channels).
Caution: It requires: T >=7, in_channels >=7
out_channels
Output dim. The output shape is (N, (T-3)//2, out_channels)
layer1_channels:
Number of channels in layer1
layer1_channels:
Number of channels in layer2
bottleneck:
bottleneck dimension for 1d squeeze-excite
"""
assert in_channels >= 7
super().__init__()
# The ScaleGrad module is there to prevent the gradients
# w.r.t. the weight or bias of the first Conv2d module in self.conv from
# exceeding the range of fp16 when using automatic mixed precision (amp)
# training. (The second one is necessary to stop its bias from getting
# a too-large gradient).
self.conv = nn.Sequential(
nn.Conv2d(
in_channels=1,
out_channels=layer1_channels,
kernel_size=3,
padding=(0, 1), # (time, freq)
),
ScaleGrad(0.2),
Balancer(layer1_channels, channel_dim=1, max_abs=1.0),
SwooshR(),
nn.Conv2d(
in_channels=layer1_channels,
out_channels=layer2_channels,
kernel_size=3,
stride=2,
padding=0,
),
Balancer(layer2_channels, channel_dim=1, max_abs=4.0),
SwooshR(),
nn.Conv2d(
in_channels=layer2_channels,
out_channels=layer3_channels,
kernel_size=3,
stride=(1, 2), # (time, freq)
),
Balancer(layer3_channels, channel_dim=1, max_abs=4.0),
SwooshR(),
)
# just one convnext layer
self.convnext = ConvNeXt(layer3_channels, kernel_size=(7, 7))
out_width = (((in_channels - 1) // 2) - 1) // 2
self.out = nn.Linear(out_width * layer3_channels, out_channels)
# use a larger than normal grad_scale on this whitening module; there is
# only one such module, so there is not a concern about adding together
# many copies of this extra gradient term.
self.out_whiten = Whiten(
num_groups=1,
whitening_limit=ScheduledFloat(
(0.0, 4.0), (20000.0, 8.0), default=4.0
),
prob=(0.025, 0.25),
grad_scale=0.02,
)
# max_log_eps=0.0 is to prevent both eps and the output of self.out from
# getting large, there is an unnecessary degree of freedom.
self.out_norm = BiasNorm(out_channels)
self.dropout = Dropout3(dropout, shared_dim=1)
def forward(self, x: torch.Tensor, x_lens: torch.Tensor) -> torch.Tensor:
"""Subsample x.
Args:
x:
Its shape is (N, T, idim).
x_lens:
A tensor of shape (batch_size,) containing the number of frames in
Returns:
- a tensor of shape (N, ((T-1)//2 - 1)//2, odim)
- output lengths, of shape (batch_size,)
"""
# On entry, x is (N, T, idim)
x = x.unsqueeze(1) # (N, T, idim) -> (N, 1, T, idim) i.e., (N, C, H, W)
# scaling x by 0.1 allows us to use a larger grad-scale in fp16 "amp" (automatic mixed precision)
# training, since the weights in the first convolution are otherwise the limiting factor for getting infinite
# gradients.
x = self.conv(x)
x = self.convnext(x)
# Now x is of shape (N, odim, ((T-3)//2 - 1)//2, ((idim-1)//2 - 1)//2)
b, c, t, f = x.size()
x = x.transpose(1, 2).reshape(b, t, c * f)
# now x: (N, ((T-1)//2 - 1))//2, out_width * layer3_channels))
x = self.out(x)
# Now x is of shape (N, ((T-1)//2 - 1))//2, odim)
x = self.out_whiten(x)
x = self.out_norm(x)
x = self.dropout(x)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
x_lens = (x_lens - 7) // 2
assert x.size(1) == x_lens.max().item()
return x, x_lens

View File

@ -0,0 +1,118 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
To run this file, do:
cd icefall/egs/librispeech/ASR
python ./pruned_transducer_stateless4/test_model.py
"""
from train_deeper_conv_relu import get_params, get_transducer_model, get_text_encoder
from zipformer import Zipformer2
from scaling import ScheduledFloat
def test_model_1():
params = get_params()
params.vocab_size = 500
params.blank_id = 0
params.context_size = 2
params.num_encoder_layers = 24
params.dim_feedforward = 1536 # 384 * 4
params.encoder_dim = 384
model = get_transducer_model(params)
num_param = sum([p.numel() for p in model.parameters()])
print(f"Number of model parameters: {num_param}")
# See Table 1 from https://arxiv.org/pdf/2005.08100.pdf
def test_model_M():
params = get_params()
params.vocab_size = 500
params.blank_id = 0
params.context_size = 2
params.num_encoder_layers = "2,4,3,2,4"
params.feedforward_dims = "1024,1024,2048,2048,1024"
params.nhead = "8,8,8,8,8"
params.encoder_dims = "384,384,384,384,384"
params.attention_dims = "192,192,192,192,192"
params.encoder_unmasked_dims = "256,256,256,256,256"
params.zipformer_downsampling_factors = "1,2,4,8,2"
params.cnn_module_kernels = "31,31,15,15"
params.text_encoder_dim = (192,192,256,384)
params.decoder_dim = 512
params.joiner_dim = 512
model = Zipformer2(
output_downsampling_factor=8,
downsampling_factor=(1, 2, 4, 8),
num_encoder_layers=(2, 4, 4, 4),
encoder_dim=(192, 192, 256, 384),
encoder_unmasked_dim=(192, 192, 256, 256),
query_head_dim=(32, 32, 32, 32),
pos_head_dim=(4, 4, 4, 4),
value_head_dim=(12, 12, 12, 12),
pos_dim=48,
num_heads=(4, 4, 4, 8),
feedforward_dim=(
384,
512,
768,
1024,
), # could increase this if there is nough data
cnn_module_kernel=(31, 31, 15, 15),
dropout=ScheduledFloat((0.0, 0.3), (20000.0, 0.1)),
warmup_batches=4000.0,
causal=False,
)
num_param = sum([p.numel() for p in model.parameters()])
print(f"Number of model parameters: {num_param}")
model = Zipformer2(
output_downsampling_factor=8,
downsampling_factor=(1, 2, 4, 8),
num_encoder_layers=(2, 4, 6, 6),
encoder_dim=(256,256,384,512),
encoder_unmasked_dim=(196, 196, 256, 256),
query_head_dim=(32, 32, 32, 32),
pos_head_dim=(4, 4, 4, 4),
value_head_dim=(12, 12, 12, 12),
pos_dim=48,
num_heads=(4, 4, 4, 8),
feedforward_dim=(
384,
512,
768,
1024,
), # could increase this if there is nough data
cnn_module_kernel=(31, 31, 15, 15),
dropout=ScheduledFloat((0.0, 0.3), (20000.0, 0.1)),
warmup_batches=4000.0,
causal=False,
)
num_param = sum([p.numel() for p in model.parameters()])
print(f"Number of model parameters: {num_param}")
def main():
# test_model_1()
test_model_M()
if __name__ == "__main__":
main()

View File

@ -0,0 +1,69 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
def train_text_normalization(s: str) -> str:
s = s.replace("", '"')
s = s.replace("", '"')
s = s.replace("", "'")
s = s.replace("", "'")
return s
def ref_text_normalization(ref_text: str) -> str:
# Rule 1: Remove the [FN#[]]
p = r"[FN#[0-9]*]"
pattern = re.compile(p)
# ref_text = ref_text.replace("”", "\"")
# ref_text = ref_text.replace("", "'")
res = pattern.findall(ref_text)
ref_text = re.sub(p, "", ref_text)
ref_text = train_text_normalization(ref_text)
return ref_text
def remove_non_alphabetic(text: str) -> str:
# Note, this also keeps space
return re.sub("[^a-zA-Z\s]+", "", text)
def recog_text_normalization(recog_text: str) -> str:
pass
def upper_only_alpha(text: str) -> str:
return remove_non_alphabetic(text.upper())
def lower_only_alpha(text: str) -> str:
return remove_non_alphabetic(text.lower())
def lower_all_char(text: str) -> str:
return text.lower()
def upper_all_char(text: str) -> str:
return text.upper()
if __name__ == "__main__":
ref_text = " Hello “! My name is haha"
print(ref_text)
res = train_text_normalization(ref_text)
print(res)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff