mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 10:16:14 +00:00
further simplification
This commit is contained in:
parent
68a4b6d090
commit
c2056a5ab5
@ -1,254 +0,0 @@
|
||||
# Copyright (c) 2022 Xiaomi Corporation (authors: Xiaoyu Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
|
||||
import torch
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.rnn_lm.model import RnnLmModel
|
||||
from icefall.transformer_lm.model import TransformerLM
|
||||
from icefall.utils import AttributeDict, str2bool
|
||||
|
||||
|
||||
class LmScorer(torch.nn.Module):
|
||||
"""This is a wrapper for NN LMs
|
||||
The language models supported include:
|
||||
RNN,
|
||||
Transformer
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
lm_type: str,
|
||||
params: AttributeDict,
|
||||
device,
|
||||
lm_scale: float = 0.3,
|
||||
):
|
||||
super(LmScorer, self).__init__()
|
||||
assert lm_type in ["rnn", "transformer"], f"{lm_type} is not supported"
|
||||
self.lm_type = lm_type
|
||||
self.lm = self.get_lm(lm_type, device, params)
|
||||
self.lm_scale = lm_scale
|
||||
self.params = params
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser):
|
||||
# LM general arguments
|
||||
parser.add_argument(
|
||||
"--lm-vocab-size",
|
||||
type=int,
|
||||
default=500,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-epoch",
|
||||
type=int,
|
||||
default=7,
|
||||
help="""Which epoch to be used
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-avg",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Number of checkpoints to be averaged
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument("--lm-exp-dir", type=str, help="Path to LM experiments")
|
||||
|
||||
# Now RNNLM related arguments
|
||||
parser.add_argument(
|
||||
"--rnn-lm-embedding-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Embedding dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-hidden-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Hidden dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-num-layers",
|
||||
type=int,
|
||||
default=3,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-tie-weights",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="""True to share the weights between the input embedding layer and the
|
||||
last output linear layer
|
||||
""",
|
||||
)
|
||||
|
||||
# Now transformers
|
||||
parser.add_argument(
|
||||
"--transformer-lm-exp-dir", type=str, help="Directory of transformer LM exp"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--transformer-lm-dim-feedforward",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Dimension of FFW module in transformer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--transformer-lm-encoder-dim",
|
||||
type=int,
|
||||
default=768,
|
||||
help="Encoder dimension of transformer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--transformer-lm-embedding-dim",
|
||||
type=int,
|
||||
default=768,
|
||||
help="Input embedding dimension of transformer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--transformer-lm-nhead",
|
||||
type=int,
|
||||
default=8,
|
||||
help="Number of attention heads in transformer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--transformer-lm-num-layers",
|
||||
type=int,
|
||||
default=16,
|
||||
help="Number of encoder layers in transformer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--transformer-lm-tie-weights",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="If tie weights in transformer LM",
|
||||
)
|
||||
|
||||
def get_lm(self, lm_type: str, device, params: AttributeDict) -> torch.nn.Module:
|
||||
"""Return the neural network LM
|
||||
|
||||
Args:
|
||||
lm_type (str): Type name of NN LM
|
||||
"""
|
||||
if lm_type == "rnn":
|
||||
model = RnnLmModel(
|
||||
vocab_size=params.lm_vocab_size,
|
||||
embedding_dim=params.rnn_lm_embedding_dim,
|
||||
hidden_dim=params.rnn_lm_hidden_dim,
|
||||
num_layers=params.rnn_lm_num_layers,
|
||||
tie_weights=params.rnn_lm_tie_weights,
|
||||
)
|
||||
|
||||
if params.lm_avg == 1:
|
||||
load_checkpoint(
|
||||
f"{params.lm_exp_dir}/epoch-{params.lm_epoch}.pt", model
|
||||
)
|
||||
model.to(device)
|
||||
else:
|
||||
start = params.lm_epoch - params.lm_avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.lm_epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.lm_exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
elif lm_type == "transformer":
|
||||
model = TransformerLM(
|
||||
vocab_size=params.lm_vocab_size,
|
||||
d_model=params.transformer_lm_encoder_dim,
|
||||
embedding_dim=params.transformer_lm_embedding_dim,
|
||||
dim_feedforward=params.transformer_lm_dim_feedforward,
|
||||
nhead=params.transformer_lm_nhead,
|
||||
num_layers=params.transformer_lm_num_layers,
|
||||
tie_weights=params.transformer_lm_tie_weights,
|
||||
params=params,
|
||||
)
|
||||
|
||||
if params.lm_avg == 1:
|
||||
load_checkpoint(
|
||||
f"{params.lm_exp_dir}/epoch-{params.lm_epoch}.pt", model
|
||||
)
|
||||
model.to(device)
|
||||
else:
|
||||
start = params.lm_epoch - params.lm_avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.lm_epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.lm_exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
return model
|
||||
|
||||
def score_token(self, x: torch.Tensor, x_lens: torch.Tensor, state=None):
|
||||
"""Score the input and return the prediction
|
||||
This requires the lm to have the method `score_token`
|
||||
Args:
|
||||
x (torch.Tensor): Input tokens
|
||||
x_lens (torch.Tensor): Length of the input tokens
|
||||
state (optional): LM states
|
||||
|
||||
"""
|
||||
return self.lm.score_token(x, x_lens, state)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
LmScorer.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
params = AttributeDict()
|
||||
params.update(vars(args))
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
Scorer = LmScorer(params=params, device=device)
|
||||
Scorer.eval()
|
||||
|
||||
x = (
|
||||
torch.tensor([[1, 4, 19, 256, 77], [1, 4, 19, 256, 77]])
|
||||
.to(device)
|
||||
.to(torch.int64)
|
||||
)
|
||||
x_lens = torch.tensor([5, 5]).to(device)
|
||||
|
||||
state = None
|
||||
|
||||
score, state = Scorer.score(x, x_lens)
|
||||
print(score.shape)
|
||||
print(score[0])
|
||||
print(score[1])
|
1
icefall/rnn_lm/.gitignore
vendored
1
icefall/rnn_lm/.gitignore
vendored
@ -1 +0,0 @@
|
||||
icefall-librispeech-rnn-lm
|
@ -1,128 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2023 Xiaomi Corporation
|
||||
|
||||
"""
|
||||
Usage:
|
||||
|
||||
./check-onnx-streaming.py \
|
||||
--jit ./icefall-librispeech-rnn-lm/exp/cpu_jit.pt \
|
||||
--onnx ./icefall-librispeech-rnn-lm/exp/with-state-epoch-99-avg-1.onnx
|
||||
|
||||
Note: You can download pre-trained models from
|
||||
https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from typing import Tuple
|
||||
|
||||
import onnxruntime as ort
|
||||
import torch
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit",
|
||||
required=True,
|
||||
type=str,
|
||||
help="Path to the torchscript model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--onnx",
|
||||
required=True,
|
||||
type=str,
|
||||
help="Path to the onnx model",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
class OnnxModel:
|
||||
def __init__(self, filename: str):
|
||||
session_opts = ort.SessionOptions()
|
||||
session_opts.inter_op_num_threads = 1
|
||||
session_opts.intra_op_num_threads = 1
|
||||
|
||||
self.model = ort.InferenceSession(
|
||||
filename,
|
||||
sess_options=session_opts,
|
||||
)
|
||||
|
||||
meta_data = self.model.get_modelmeta().custom_metadata_map
|
||||
self.sos_id = int(meta_data["sos_id"])
|
||||
self.eos_id = int(meta_data["eos_id"])
|
||||
self.vocab_size = int(meta_data["vocab_size"])
|
||||
self.num_layers = int(meta_data["num_layers"])
|
||||
self.hidden_size = int(meta_data["hidden_size"])
|
||||
print(meta_data)
|
||||
|
||||
def __call__(
|
||||
self, x: torch.Tensor, y: torch.Tensor, h0: torch.Tensor, c0: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
out = self.model.run(
|
||||
[
|
||||
self.model.get_outputs()[0].name,
|
||||
self.model.get_outputs()[1].name,
|
||||
self.model.get_outputs()[2].name,
|
||||
],
|
||||
{
|
||||
self.model.get_inputs()[0].name: x.numpy(),
|
||||
self.model.get_inputs()[1].name: y.numpy(),
|
||||
self.model.get_inputs()[2].name: h0.numpy(),
|
||||
self.model.get_inputs()[3].name: c0.numpy(),
|
||||
},
|
||||
)
|
||||
return (
|
||||
torch.from_numpy(out[0]),
|
||||
torch.from_numpy(out[1]),
|
||||
torch.from_numpy(out[2]),
|
||||
)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
logging.info(vars(args))
|
||||
|
||||
torch_model = torch.jit.load(args.jit).cpu()
|
||||
onnx_model = OnnxModel(args.onnx)
|
||||
N = torch.arange(1, 5).tolist()
|
||||
|
||||
num_layers = onnx_model.num_layers
|
||||
hidden_size = onnx_model.hidden_size
|
||||
|
||||
for n in N:
|
||||
L = torch.randint(low=1, high=100, size=(1,)).item()
|
||||
x = torch.randint(
|
||||
low=1, high=onnx_model.vocab_size, size=(n, L), dtype=torch.int64
|
||||
)
|
||||
h0 = torch.rand(num_layers, n, hidden_size)
|
||||
c0 = torch.rand(num_layers, n, hidden_size)
|
||||
|
||||
torch_log_prob, torch_h0, torch_c0 = torch_model.score_token_onnx(x, h0, c0)
|
||||
onnx_log_prob, onnx_h0, onnx_c0 = onnx_model(x, h0, c0)
|
||||
|
||||
for torch_v, onnx_v in zip(
|
||||
(torch_log_prob, torch_h0, torch_c0), (onnx_log_prob, onnx_h0, onnx_c0)
|
||||
):
|
||||
assert torch.allclose(torch_v, onnx_v, atol=1e-5), (
|
||||
torch_v.shape,
|
||||
onnx_v.shape,
|
||||
(torch_v - onnx_v).abs().max(),
|
||||
)
|
||||
print(n, L, torch_v.sum(), onnx_v.sum())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(20230423)
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
@ -1,119 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2023 Xiaomi Corporation
|
||||
|
||||
"""
|
||||
Usage:
|
||||
|
||||
./check-onnx.py \
|
||||
--jit ./icefall-librispeech-rnn-lm/exp/cpu_jit.pt \
|
||||
--onnx ./icefall-librispeech-rnn-lm/exp/no-state-epoch-99-avg-1.onnx
|
||||
|
||||
Note: You can download pre-trained models from
|
||||
https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
|
||||
import onnxruntime as ort
|
||||
import torch
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit",
|
||||
required=True,
|
||||
type=str,
|
||||
help="Path to the torchscript model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--onnx",
|
||||
required=True,
|
||||
type=str,
|
||||
help="Path to the onnx model",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
class OnnxModel:
|
||||
def __init__(self, filename: str):
|
||||
session_opts = ort.SessionOptions()
|
||||
session_opts.inter_op_num_threads = 1
|
||||
session_opts.intra_op_num_threads = 1
|
||||
|
||||
self.model = ort.InferenceSession(
|
||||
filename,
|
||||
sess_options=session_opts,
|
||||
)
|
||||
|
||||
meta_data = self.model.get_modelmeta().custom_metadata_map
|
||||
self.sos_id = int(meta_data["sos_id"])
|
||||
self.eos_id = int(meta_data["eos_id"])
|
||||
self.vocab_size = int(meta_data["vocab_size"])
|
||||
print(meta_data)
|
||||
|
||||
def __call__(self, x: torch.Tensor, x_lens: torch.Tensor) -> torch.Tensor:
|
||||
out = self.model.run(
|
||||
[
|
||||
self.model.get_outputs()[0].name,
|
||||
],
|
||||
{
|
||||
self.model.get_inputs()[0].name: x.numpy(),
|
||||
self.model.get_inputs()[1].name: x_lens.numpy(),
|
||||
},
|
||||
)
|
||||
return torch.from_numpy(out[0])
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
logging.info(vars(args))
|
||||
|
||||
torch_model = torch.jit.load(args.jit).cpu()
|
||||
onnx_model = OnnxModel(args.onnx)
|
||||
N = torch.arange(1, 5).tolist()
|
||||
|
||||
for n in N:
|
||||
L = torch.randint(low=1, high=100, size=(1,)).item()
|
||||
x = torch.randint(
|
||||
low=1, high=onnx_model.vocab_size, size=(n, L), dtype=torch.int64
|
||||
)
|
||||
x_lens = torch.full((n,), fill_value=L, dtype=torch.int64)
|
||||
if n > 1:
|
||||
x_lens[0] = L // 2 + 1
|
||||
|
||||
sos = torch.full((1,), fill_value=onnx_model.sos_id).expand(n, 1)
|
||||
sos_x = torch.cat([sos, x], dim=1)
|
||||
|
||||
pad_col = torch.zeros((1,), dtype=x.dtype).expand(n, 1)
|
||||
x_eos = torch.cat([x, pad_col], dim=1)
|
||||
|
||||
row_index = torch.arange(0, n, dtype=x.dtype)
|
||||
x_eos[row_index, x_lens] = onnx_model.eos_id
|
||||
|
||||
torch_nll = torch_model(sos_x, x_eos, x_lens + 1).sum(dim=-1)
|
||||
onnx_nll = onnx_model(x, x_lens)
|
||||
# Note: For int8 models, the differences may be quite large,
|
||||
# e.g., within 0.9
|
||||
assert torch.allclose(torch_nll, onnx_nll), (
|
||||
torch_nll,
|
||||
onnx_nll,
|
||||
)
|
||||
print(n, L, torch_nll, onnx_nll)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(20230420)
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
@ -1,275 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Usage:
|
||||
./rnn_lm/compute_perplexity.py \
|
||||
--epoch 4 \
|
||||
--avg 2 \
|
||||
--lm-data ./data/lm_training_bpe_500/sorted_lm_data-test.pt
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from dataset import get_dataloader
|
||||
from model import RnnLmModel
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint
|
||||
from icefall.utils import AttributeDict, setup_logger, str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=49,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="rnn_lm/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-data",
|
||||
type=str,
|
||||
help="Path to the LM test data for computing perplexity",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--vocab-size",
|
||||
type=int,
|
||||
default=500,
|
||||
help="Vocabulary size of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--embedding-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Embedding dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--hidden-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Hidden dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-layers",
|
||||
type=int,
|
||||
default=3,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tie-weights",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to share the weights between the input embedding layer and the
|
||||
last output linear layer
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--batch-size",
|
||||
type=int,
|
||||
default=50,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-sent-len",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sos-id",
|
||||
type=int,
|
||||
default=1,
|
||||
help="SOS ID",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--eos-id",
|
||||
type=int,
|
||||
default=1,
|
||||
help="EOS ID",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--blank-id",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Blank ID",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lm_data = Path(args.lm_data)
|
||||
|
||||
params = AttributeDict(vars(args))
|
||||
|
||||
if params.iter > 0:
|
||||
setup_logger(
|
||||
f"{params.exp_dir}/log-ppl/log-ppl-iter-{params.iter}-avg-{params.avg}"
|
||||
)
|
||||
else:
|
||||
setup_logger(
|
||||
f"{params.exp_dir}/log-ppl/log-ppl-epoch-{params.epoch}-avg-{params.avg}"
|
||||
)
|
||||
logging.info("Computing perplexity started")
|
||||
logging.info(params)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
logging.info("About to create model")
|
||||
model = RnnLmModel(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.embedding_dim,
|
||||
hidden_dim=params.hidden_dim,
|
||||
num_layers=params.num_layers,
|
||||
tie_weights=params.tie_weights,
|
||||
)
|
||||
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints(filenames, device=device), strict=False
|
||||
)
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints(filenames, device=device), strict=False
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
num_param_requires_grad = sum(
|
||||
[p.numel() for p in model.parameters() if p.requires_grad]
|
||||
)
|
||||
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
logging.info(
|
||||
f"Number of model parameters (requires_grad): "
|
||||
f"{num_param_requires_grad} "
|
||||
f"({num_param_requires_grad/num_param_requires_grad*100}%)"
|
||||
)
|
||||
|
||||
logging.info(f"Loading LM test data from {params.lm_data}")
|
||||
test_dl = get_dataloader(
|
||||
filename=params.lm_data,
|
||||
is_distributed=False,
|
||||
params=params,
|
||||
)
|
||||
|
||||
tot_loss = 0.0
|
||||
num_tokens = 0
|
||||
num_sentences = 0
|
||||
for batch_idx, batch in enumerate(test_dl):
|
||||
x, y, sentence_lengths = batch
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
sentence_lengths = sentence_lengths.to(device)
|
||||
|
||||
nll = model(x, y, sentence_lengths)
|
||||
loss = nll.sum().cpu().item()
|
||||
|
||||
tot_loss += loss
|
||||
num_tokens += sentence_lengths.sum().cpu().item()
|
||||
num_sentences += x.size(0)
|
||||
|
||||
ppl = math.exp(tot_loss / num_tokens)
|
||||
logging.info(
|
||||
f"total nll: {tot_loss}, num tokens: {num_tokens}, "
|
||||
f"num sentences: {num_sentences}, ppl: {ppl:.3f}"
|
||||
)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1,214 +0,0 @@
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Daniel Povey, Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
|
||||
from icefall.utils import AttributeDict, add_eos, add_sos
|
||||
|
||||
|
||||
class LmDataset(torch.utils.data.Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
sentences: k2.RaggedTensor,
|
||||
words: k2.RaggedTensor,
|
||||
sentence_lengths: torch.Tensor,
|
||||
max_sent_len: int,
|
||||
batch_size: int,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
sentences:
|
||||
A ragged tensor of dtype torch.int32 with 2 axes [sentence][word].
|
||||
words:
|
||||
A ragged tensor of dtype torch.int32 with 2 axes [word][token].
|
||||
sentence_lengths:
|
||||
A 1-D tensor of dtype torch.int32 containing number of tokens
|
||||
of each sentence.
|
||||
max_sent_len:
|
||||
Maximum sentence length. It is used to change the batch size
|
||||
dynamically. In general, we try to keep the product of
|
||||
"max_sent_len in a batch" and "num_of_sent in a batch" being
|
||||
a constant.
|
||||
batch_size:
|
||||
The expected batch size. It is changed dynamically according
|
||||
to the "max_sent_len".
|
||||
|
||||
See `../local/prepare_lm_training_data.py` for how `sentences` and
|
||||
`words` are generated. We assume that `sentences` are sorted by length.
|
||||
See `../local/sort_lm_training_data.py`.
|
||||
"""
|
||||
super().__init__()
|
||||
self.sentences = sentences
|
||||
self.words = words
|
||||
|
||||
sentence_lengths = sentence_lengths.tolist()
|
||||
|
||||
assert batch_size > 0, batch_size
|
||||
assert max_sent_len > 1, max_sent_len
|
||||
batch_indexes = []
|
||||
num_sentences = sentences.dim0
|
||||
cur = 0
|
||||
while cur < num_sentences:
|
||||
sz = sentence_lengths[cur] // max_sent_len + 1
|
||||
# Assume the current sentence has 3 * max_sent_len tokens,
|
||||
# in the worst case, the subsequent sentences also have
|
||||
# this number of tokens, we should reduce the batch size
|
||||
# so that this batch will not contain too many tokens
|
||||
actual_batch_size = batch_size // sz + 1
|
||||
actual_batch_size = min(actual_batch_size, batch_size)
|
||||
end = cur + actual_batch_size
|
||||
end = min(end, num_sentences)
|
||||
this_batch_indexes = torch.arange(cur, end).tolist()
|
||||
batch_indexes.append(this_batch_indexes)
|
||||
cur = end
|
||||
assert batch_indexes[-1][-1] == num_sentences - 1
|
||||
|
||||
self.batch_indexes = k2.RaggedTensor(batch_indexes)
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""Return number of batches in this dataset"""
|
||||
return self.batch_indexes.dim0
|
||||
|
||||
def __getitem__(self, i: int) -> k2.RaggedTensor:
|
||||
"""Get the i'th batch in this dataset
|
||||
Return a ragged tensor with 2 axes [sentence][token].
|
||||
"""
|
||||
assert 0 <= i < len(self), i
|
||||
|
||||
# indexes is a 1-D tensor containing sentence indexes
|
||||
indexes = self.batch_indexes[i]
|
||||
|
||||
# sentence_words is a ragged tensor with 2 axes
|
||||
# [sentence][word]
|
||||
sentence_words = self.sentences[indexes]
|
||||
|
||||
# in case indexes contains only 1 entry, the returned
|
||||
# sentence_words is a 1-D tensor, we have to convert
|
||||
# it to a ragged tensor
|
||||
if isinstance(sentence_words, torch.Tensor):
|
||||
sentence_words = k2.RaggedTensor(sentence_words.unsqueeze(0))
|
||||
|
||||
# sentence_word_tokens is a ragged tensor with 3 axes
|
||||
# [sentence][word][token]
|
||||
sentence_word_tokens = self.words.index(sentence_words)
|
||||
assert sentence_word_tokens.num_axes == 3
|
||||
|
||||
sentence_tokens = sentence_word_tokens.remove_axis(1)
|
||||
return sentence_tokens
|
||||
|
||||
|
||||
class LmDatasetCollate:
|
||||
def __init__(self, sos_id: int, eos_id: int, blank_id: int):
|
||||
"""
|
||||
Args:
|
||||
sos_id:
|
||||
Token ID of the SOS symbol.
|
||||
eos_id:
|
||||
Token ID of the EOS symbol.
|
||||
blank_id:
|
||||
Token ID of the blank symbol.
|
||||
"""
|
||||
self.sos_id = sos_id
|
||||
self.eos_id = eos_id
|
||||
self.blank_id = blank_id
|
||||
|
||||
def __call__(
|
||||
self, batch: List[k2.RaggedTensor]
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Return a tuple containing 3 tensors:
|
||||
|
||||
- x, a 2-D tensor of dtype torch.int32; each row contains tokens
|
||||
for a sentence starting with `self.sos_id`. It is padded to
|
||||
the max sentence length with `self.blank_id`.
|
||||
|
||||
- y, a 2-D tensor of dtype torch.int32; each row contains tokens
|
||||
for a sentence ending with `self.eos_id` before padding.
|
||||
Then it is padded to the max sentence length with
|
||||
`self.blank_id`.
|
||||
|
||||
- lengths, a 2-D tensor of dtype torch.int32, containing the number of
|
||||
tokens of each sentence before padding.
|
||||
"""
|
||||
# The batching stuff has already been done in LmDataset
|
||||
assert len(batch) == 1
|
||||
sentence_tokens = batch[0]
|
||||
row_splits = sentence_tokens.shape.row_splits(1)
|
||||
sentence_token_lengths = row_splits[1:] - row_splits[:-1]
|
||||
sentence_tokens_with_sos = add_sos(sentence_tokens, self.sos_id)
|
||||
sentence_tokens_with_eos = add_eos(sentence_tokens, self.eos_id)
|
||||
|
||||
x = sentence_tokens_with_sos.pad(mode="constant", padding_value=self.blank_id)
|
||||
y = sentence_tokens_with_eos.pad(mode="constant", padding_value=self.blank_id)
|
||||
sentence_token_lengths += 1 # plus 1 since we added a SOS
|
||||
|
||||
return x.to(torch.int64), y.to(torch.int64), sentence_token_lengths
|
||||
|
||||
|
||||
def get_dataloader(
|
||||
filename: str,
|
||||
is_distributed: bool,
|
||||
params: AttributeDict,
|
||||
) -> torch.utils.data.DataLoader:
|
||||
"""Get dataloader for LM training.
|
||||
|
||||
Args:
|
||||
filename:
|
||||
Path to the file containing LM data. The file is assumed to
|
||||
be generated by `../local/sort_lm_training_data.py`.
|
||||
is_distributed:
|
||||
True if using DDP training. False otherwise.
|
||||
params:
|
||||
Set `get_params()` from `rnn_lm/train.py`
|
||||
Returns:
|
||||
Return a dataloader containing the LM data.
|
||||
"""
|
||||
lm_data = torch.load(filename)
|
||||
|
||||
words = lm_data["words"]
|
||||
sentences = lm_data["sentences"]
|
||||
sentence_lengths = lm_data["sentence_lengths"]
|
||||
|
||||
dataset = LmDataset(
|
||||
sentences=sentences,
|
||||
words=words,
|
||||
sentence_lengths=sentence_lengths,
|
||||
max_sent_len=params.max_sent_len,
|
||||
batch_size=params.batch_size,
|
||||
)
|
||||
if is_distributed:
|
||||
sampler = DistributedSampler(dataset, shuffle=True, drop_last=True)
|
||||
else:
|
||||
sampler = None
|
||||
|
||||
collate_fn = LmDatasetCollate(
|
||||
sos_id=params.sos_id,
|
||||
eos_id=params.eos_id,
|
||||
blank_id=params.blank_id,
|
||||
)
|
||||
|
||||
dataloader = DataLoader(
|
||||
dataset,
|
||||
batch_size=1,
|
||||
collate_fn=collate_fn,
|
||||
sampler=sampler,
|
||||
shuffle=sampler is None,
|
||||
)
|
||||
return dataloader
|
@ -1,395 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2023 Xiaomi Corporation
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
|
||||
import onnx
|
||||
import torch
|
||||
from model import RnnLmModel
|
||||
from onnxruntime.quantization import QuantType, quantize_dynamic
|
||||
from train import get_params
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint
|
||||
from icefall.utils import AttributeDict, str2bool
|
||||
|
||||
|
||||
def add_meta_data(filename: str, meta_data: Dict[str, str]):
|
||||
"""Add meta data to an ONNX model. It is changed in-place.
|
||||
|
||||
Args:
|
||||
filename:
|
||||
Filename of the ONNX model to be changed.
|
||||
meta_data:
|
||||
Key-value pairs.
|
||||
"""
|
||||
model = onnx.load(filename)
|
||||
for key, value in meta_data.items():
|
||||
meta = model.metadata_props.add()
|
||||
meta.key = key
|
||||
meta.value = value
|
||||
|
||||
onnx.save(model, filename)
|
||||
|
||||
|
||||
# A wrapper for RnnLm model to simpily the C++ calling code
|
||||
# when exporting the model to ONNX.
|
||||
#
|
||||
# TODO(fangjun): The current wrapper works only for non-streaming ASR
|
||||
# since we don't expose the LM state and it is used to score
|
||||
# a complete sentence at once.
|
||||
class RnnLmModelWrapper(torch.nn.Module):
|
||||
def __init__(self, model: RnnLmModel, sos_id: int, eos_id: int):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.sos_id = sos_id
|
||||
self.eos_id = eos_id
|
||||
|
||||
def forward(self, x: torch.Tensor, x_lens: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A 2-D tensor of shape (N, L) with dtype torch.int64.
|
||||
It does not contain SOS or EOS. We will add SOS and EOS inside
|
||||
this function.
|
||||
x_lens:
|
||||
A 1-D tensor of shape (N,) with dtype torch.int64. It contains
|
||||
number of valid tokens in ``x`` before padding.
|
||||
Returns:
|
||||
Return a 1-D tensor of shape (N,) containing negative loglikelihood.
|
||||
Its dtype is torch.float32
|
||||
"""
|
||||
N = x.size(0)
|
||||
|
||||
sos_tensor = torch.full((1,), fill_value=self.sos_id, dtype=x.dtype).expand(
|
||||
N, 1
|
||||
)
|
||||
sos_x = torch.cat([sos_tensor, x], dim=1)
|
||||
|
||||
pad_col = torch.zeros((1,), dtype=x.dtype).expand(N, 1)
|
||||
x_eos = torch.cat([x, pad_col], dim=1)
|
||||
|
||||
row_index = torch.arange(0, N, dtype=x.dtype)
|
||||
x_eos[row_index, x_lens] = self.eos_id
|
||||
|
||||
# use x_lens + 1 here since we prepended x with sos
|
||||
return (
|
||||
self.model(x=sos_x, y=x_eos, lengths=x_lens + 1)
|
||||
.to(torch.float32)
|
||||
.sum(dim=1)
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=29,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=5,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--vocab-size",
|
||||
type=int,
|
||||
default=500,
|
||||
help="Vocabulary size of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--embedding-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Embedding dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--hidden-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Hidden dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-layers",
|
||||
type=int,
|
||||
default=3,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tie-weights",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="""True to share the weights between the input embedding layer and the
|
||||
last output linear layer
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="rnn_lm/exp",
|
||||
help="""It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def export_without_state(
|
||||
model: RnnLmModel,
|
||||
filename: str,
|
||||
params: AttributeDict,
|
||||
opset_version: int,
|
||||
):
|
||||
model_wrapper = RnnLmModelWrapper(
|
||||
model,
|
||||
sos_id=params.sos_id,
|
||||
eos_id=params.eos_id,
|
||||
)
|
||||
|
||||
N = 1
|
||||
L = 20
|
||||
x = torch.randint(low=1, high=params.vocab_size, size=(N, L), dtype=torch.int64)
|
||||
x_lens = torch.full((N,), fill_value=L, dtype=torch.int64)
|
||||
|
||||
# Note(fangjun): The following warnings can be ignored.
|
||||
# We can use ./check-onnx.py to validate the exported model with batch_size > 1
|
||||
"""
|
||||
torch/onnx/symbolic_opset9.py:2119: UserWarning: Exporting a model to ONNX
|
||||
with a batch_size other than 1, with a variable length with LSTM can cause
|
||||
an error when running the ONNX model with a different batch size. Make sure
|
||||
to save the model with a batch size of 1, or define the initial states
|
||||
(h0/c0) as inputs of the model. warnings.warn("Exporting a model to ONNX
|
||||
with a batch_size other than 1, " +
|
||||
"""
|
||||
|
||||
torch.onnx.export(
|
||||
model_wrapper,
|
||||
(x, x_lens),
|
||||
filename,
|
||||
verbose=False,
|
||||
opset_version=opset_version,
|
||||
input_names=["x", "x_lens"],
|
||||
output_names=["nll"],
|
||||
dynamic_axes={
|
||||
"x": {0: "N", 1: "L"},
|
||||
"x_lens": {0: "N"},
|
||||
"nll": {0: "N"},
|
||||
},
|
||||
)
|
||||
|
||||
meta_data = {
|
||||
"model_type": "rnnlm",
|
||||
"version": "1",
|
||||
"model_author": "k2-fsa",
|
||||
"comment": "rnnlm without state",
|
||||
"sos_id": str(params.sos_id),
|
||||
"eos_id": str(params.eos_id),
|
||||
"vocab_size": str(params.vocab_size),
|
||||
"url": "https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm",
|
||||
}
|
||||
logging.info(f"meta_data: {meta_data}")
|
||||
|
||||
add_meta_data(filename=filename, meta_data=meta_data)
|
||||
|
||||
|
||||
def export_with_state(
|
||||
model: RnnLmModel,
|
||||
filename: str,
|
||||
params: AttributeDict,
|
||||
opset_version: int,
|
||||
):
|
||||
N = 1
|
||||
L = 20
|
||||
num_layers = model.rnn.num_layers
|
||||
hidden_size = model.rnn.hidden_size
|
||||
embedding_dim = model.embedding_dim
|
||||
|
||||
x = torch.randint(low=1, high=params.vocab_size, size=(N, L), dtype=torch.int64)
|
||||
h0 = torch.zeros(num_layers, N, hidden_size)
|
||||
c0 = torch.zeros(num_layers, N, hidden_size)
|
||||
|
||||
# Note(fangjun): The following warnings can be ignored.
|
||||
# We can use ./check-onnx.py to validate the exported model with batch_size > 1
|
||||
"""
|
||||
torch/onnx/symbolic_opset9.py:2119: UserWarning: Exporting a model to ONNX
|
||||
with a batch_size other than 1, with a variable length with LSTM can cause
|
||||
an error when running the ONNX model with a different batch size. Make sure
|
||||
to save the model with a batch size of 1, or define the initial states
|
||||
(h0/c0) as inputs of the model. warnings.warn("Exporting a model to ONNX
|
||||
with a batch_size other than 1, " +
|
||||
"""
|
||||
|
||||
torch.onnx.export(
|
||||
model,
|
||||
(x, h0, c0),
|
||||
filename,
|
||||
verbose=False,
|
||||
opset_version=opset_version,
|
||||
input_names=["x", "h0", "c0"],
|
||||
output_names=["log_softmax", "next_h0", "next_c0"],
|
||||
dynamic_axes={
|
||||
"x": {0: "N", 1: "L"},
|
||||
"h0": {1: "N"},
|
||||
"c0": {1: "N"},
|
||||
"log_softmax": {0: "N"},
|
||||
"next_h0": {1: "N"},
|
||||
"next_c0": {1: "N"},
|
||||
},
|
||||
)
|
||||
|
||||
meta_data = {
|
||||
"model_type": "rnnlm",
|
||||
"version": "1",
|
||||
"model_author": "k2-fsa",
|
||||
"comment": "rnnlm state",
|
||||
"sos_id": str(params.sos_id),
|
||||
"eos_id": str(params.eos_id),
|
||||
"vocab_size": str(params.vocab_size),
|
||||
"num_layers": str(num_layers),
|
||||
"hidden_size": str(hidden_size),
|
||||
"embedding_dim": str(embedding_dim),
|
||||
"url": "https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm",
|
||||
}
|
||||
logging.info(f"meta_data: {meta_data}")
|
||||
|
||||
add_meta_data(filename=filename, meta_data=meta_data)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
logging.info(params)
|
||||
|
||||
device = torch.device("cpu")
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
model = RnnLmModel(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.embedding_dim,
|
||||
hidden_dim=params.hidden_dim,
|
||||
num_layers=params.num_layers,
|
||||
tie_weights=params.tie_weights,
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints(filenames, device=device), strict=False
|
||||
)
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints(filenames, device=device), strict=False
|
||||
)
|
||||
|
||||
model.to("cpu")
|
||||
model.eval()
|
||||
|
||||
if params.iter > 0:
|
||||
suffix = f"iter-{params.iter}"
|
||||
else:
|
||||
suffix = f"epoch-{params.epoch}"
|
||||
|
||||
suffix += f"-avg-{params.avg}"
|
||||
|
||||
opset_version = 13
|
||||
|
||||
logging.info("Exporting model without state")
|
||||
filename = params.exp_dir / f"no-state-{suffix}.onnx"
|
||||
export_without_state(
|
||||
model=model,
|
||||
filename=filename,
|
||||
params=params,
|
||||
opset_version=opset_version,
|
||||
)
|
||||
|
||||
filename_int8 = params.exp_dir / f"no-state-{suffix}.int8.onnx"
|
||||
quantize_dynamic(
|
||||
model_input=filename,
|
||||
model_output=filename_int8,
|
||||
weight_type=QuantType.QInt8,
|
||||
)
|
||||
|
||||
# now for streaming export
|
||||
saved_forward = model.__class__.forward
|
||||
model.__class__.forward = model.__class__.score_token_onnx
|
||||
streaming_filename = params.exp_dir / f"with-state-{suffix}.onnx"
|
||||
export_with_state(
|
||||
model=model,
|
||||
filename=streaming_filename,
|
||||
params=params,
|
||||
opset_version=opset_version,
|
||||
)
|
||||
model.__class__.forward = saved_forward
|
||||
|
||||
streaming_filename_int8 = params.exp_dir / f"with-state-{suffix}.int8.onnx"
|
||||
quantize_dynamic(
|
||||
model_input=streaming_filename,
|
||||
model_output=streaming_filename_int8,
|
||||
weight_type=QuantType.QInt8,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
@ -1,26 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# We use the model from
|
||||
# https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm/tree/main
|
||||
# as an example
|
||||
|
||||
export CUDA_VISIBLE_DEVICES=
|
||||
|
||||
if [ ! -f ./icefall-librispeech-rnn-lm/exp/pretrained.pt ]; then
|
||||
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm
|
||||
pushd icefall-librispeech-rnn-lm/exp
|
||||
git lfs pull --include "pretrained.pt"
|
||||
ln -s pretrained.pt epoch-99.pt
|
||||
popd
|
||||
fi
|
||||
|
||||
python3 ./export-onnx.py \
|
||||
--exp-dir ./icefall-librispeech-rnn-lm/exp \
|
||||
--epoch 99 \
|
||||
--avg 1 \
|
||||
--vocab-size 500 \
|
||||
--embedding-dim 2048 \
|
||||
--hidden-dim 2048 \
|
||||
--num-layers 3 \
|
||||
--tie-weights 1
|
||||
|
@ -1,205 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This script converts several saved checkpoints
|
||||
# to a single one using model averaging.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from model import RnnLmModel
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint
|
||||
from icefall.utils import AttributeDict, str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=29,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=5,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--vocab-size",
|
||||
type=int,
|
||||
default=500,
|
||||
help="Vocabulary size of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--embedding-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Embedding dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--hidden-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Hidden dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-layers",
|
||||
type=int,
|
||||
default=3,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tie-weights",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="""True to share the weights between the input embedding layer and the
|
||||
last output linear layer
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="rnn_lm/exp",
|
||||
help="""It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="""True to save a model after applying torch.jit.script.
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = AttributeDict({})
|
||||
params.update(vars(args))
|
||||
|
||||
logging.info(params)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
model = RnnLmModel(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.embedding_dim,
|
||||
hidden_dim=params.hidden_dim,
|
||||
num_layers=params.num_layers,
|
||||
tie_weights=params.tie_weights,
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints(filenames, device=device), strict=False
|
||||
)
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints(filenames, device=device), strict=False
|
||||
)
|
||||
|
||||
model.to("cpu")
|
||||
model.eval()
|
||||
|
||||
if params.jit:
|
||||
logging.info("Using torch.jit.script")
|
||||
|
||||
model.__class__.score_token_onnx = torch.jit.export(
|
||||
model.__class__.score_token_onnx
|
||||
)
|
||||
model = torch.jit.script(model)
|
||||
filename = params.exp_dir / "cpu_jit.pt"
|
||||
model.save(str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
else:
|
||||
logging.info("Not using torch.jit.script")
|
||||
# Save it using a format so that it can be loaded
|
||||
# by :func:`load_checkpoint`
|
||||
filename = params.exp_dir / "pretrained.pt"
|
||||
torch.save({"model": model.state_dict()}, str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
@ -1,27 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# We use the model from
|
||||
# https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm/tree/main
|
||||
# as an example
|
||||
|
||||
export CUDA_VISIBLE_DEVICES=
|
||||
|
||||
if [ ! -f ./icefall-librispeech-rnn-lm/exp/pretrained.pt ]; then
|
||||
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm
|
||||
pushd icefall-librispeech-rnn-lm/exp
|
||||
git lfs pull --include "pretrained.pt"
|
||||
ln -s pretrained.pt epoch-99.pt
|
||||
popd
|
||||
fi
|
||||
|
||||
python3 ./export.py \
|
||||
--exp-dir ./icefall-librispeech-rnn-lm/exp \
|
||||
--epoch 99 \
|
||||
--avg 1 \
|
||||
--vocab-size 500 \
|
||||
--embedding-dim 2048 \
|
||||
--hidden-dim 2048 \
|
||||
--num-layers 3 \
|
||||
--tie-weights 1 \
|
||||
--jit 1
|
||||
|
@ -1,295 +0,0 @@
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from icefall.utils import add_eos, add_sos, make_pad_mask
|
||||
|
||||
|
||||
class RnnLmModel(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int,
|
||||
embedding_dim: int,
|
||||
hidden_dim: int,
|
||||
num_layers: int,
|
||||
tie_weights: bool = False,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
vocab_size:
|
||||
Vocabulary size of BPE model.
|
||||
embedding_dim:
|
||||
Input embedding dimension.
|
||||
hidden_dim:
|
||||
Hidden dimension of RNN layers.
|
||||
num_layers:
|
||||
Number of RNN layers.
|
||||
tie_weights:
|
||||
True to share the weights between the input embedding layer and the
|
||||
last output linear layer. See https://arxiv.org/abs/1608.05859
|
||||
and https://arxiv.org/abs/1611.01462
|
||||
"""
|
||||
super().__init__()
|
||||
self.vocab_size = vocab_size
|
||||
self.embedding_dim = embedding_dim
|
||||
self.hidden_dim = hidden_dim
|
||||
self.num_layers = num_layers
|
||||
self.tie_weights = tie_weights
|
||||
|
||||
self.input_embedding = torch.nn.Embedding(
|
||||
num_embeddings=vocab_size,
|
||||
embedding_dim=embedding_dim,
|
||||
)
|
||||
|
||||
self.rnn = torch.nn.LSTM(
|
||||
input_size=embedding_dim,
|
||||
hidden_size=hidden_dim,
|
||||
num_layers=num_layers,
|
||||
batch_first=True,
|
||||
)
|
||||
|
||||
self.output_linear = torch.nn.Linear(
|
||||
in_features=hidden_dim, out_features=vocab_size
|
||||
)
|
||||
|
||||
self.vocab_size = vocab_size
|
||||
if tie_weights:
|
||||
logging.info("Tying weights")
|
||||
assert embedding_dim == hidden_dim, (embedding_dim, hidden_dim)
|
||||
self.output_linear.weight = self.input_embedding.weight
|
||||
else:
|
||||
logging.info("Not tying weights")
|
||||
|
||||
self.cache = {}
|
||||
|
||||
def streaming_forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
y: torch.Tensor,
|
||||
h0: torch.Tensor,
|
||||
c0: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A 2-D tensor of shape (N, L). We won't prepend it with SOS.
|
||||
y:
|
||||
A 2-D tensor of shape (N, L). We won't append it with EOS.
|
||||
h0:
|
||||
A 3-D tensor of shape (num_layers, N, hidden_size).
|
||||
(If proj_size > 0, then it is (num_layers, N, proj_size))
|
||||
c0:
|
||||
A 3-D tensor of shape (num_layers, N, hidden_size).
|
||||
Returns:
|
||||
Return a tuple containing 3 tensors:
|
||||
- negative loglike (nll), a 1-D tensor of shape (N,)
|
||||
- next_h0, a 3-D tensor with the same shape as h0
|
||||
- next_c0, a 3-D tensor with the same shape as c0
|
||||
"""
|
||||
assert x.ndim == y.ndim == 2, (x.ndim, y.ndim)
|
||||
assert x.shape == y.shape, (x.shape, y.shape)
|
||||
|
||||
# embedding is of shape (N, L, embedding_dim)
|
||||
embedding = self.input_embedding(x)
|
||||
# Note: We use batch_first==True
|
||||
rnn_out, (next_h0, next_c0) = self.rnn(embedding, (h0, c0))
|
||||
logits = self.output_linear(rnn_out)
|
||||
nll_loss = F.cross_entropy(
|
||||
logits.reshape(-1, self.vocab_size), y.reshape(-1), reduction="none"
|
||||
)
|
||||
|
||||
batch_size = x.size(0)
|
||||
nll_loss = nll_loss.reshape(batch_size, -1).sum(dim=1)
|
||||
return nll_loss, next_h0, next_c0
|
||||
|
||||
def forward(
|
||||
self, x: torch.Tensor, y: torch.Tensor, lengths: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A 2-D tensor with shape (N, L). Each row
|
||||
contains token IDs for a sentence and starts with the SOS token.
|
||||
y:
|
||||
A shifted version of `x` and with EOS appended.
|
||||
lengths:
|
||||
A 1-D tensor of shape (N,). It contains the sentence lengths
|
||||
before padding.
|
||||
Returns:
|
||||
Return a 2-D tensor of shape (N, L) containing negative log-likelihood
|
||||
loss values. Note: Loss values for padding positions are set to 0.
|
||||
"""
|
||||
assert x.ndim == y.ndim == 2, (x.ndim, y.ndim)
|
||||
assert lengths.ndim == 1, lengths.ndim
|
||||
assert x.shape == y.shape, (x.shape, y.shape)
|
||||
|
||||
batch_size = x.size(0)
|
||||
assert lengths.size(0) == batch_size, (lengths.size(0), batch_size)
|
||||
|
||||
# embedding is of shape (N, L, embedding_dim)
|
||||
embedding = self.input_embedding(x)
|
||||
|
||||
# Note: We use batch_first==True
|
||||
rnn_out, _ = self.rnn(embedding)
|
||||
logits = self.output_linear(rnn_out)
|
||||
|
||||
# Note: No need to use `log_softmax()` here
|
||||
# since F.cross_entropy() expects unnormalized probabilities
|
||||
|
||||
# nll_loss is of shape (N*L,)
|
||||
# nll -> negative log-likelihood
|
||||
nll_loss = F.cross_entropy(
|
||||
logits.reshape(-1, self.vocab_size), y.reshape(-1), reduction="none"
|
||||
)
|
||||
# Set loss values for padding positions to 0
|
||||
mask = make_pad_mask(lengths).reshape(-1)
|
||||
nll_loss.masked_fill_(mask, 0)
|
||||
|
||||
nll_loss = nll_loss.reshape(batch_size, -1)
|
||||
|
||||
return nll_loss
|
||||
|
||||
def predict_batch(self, tokens, token_lens, sos_id, eos_id, blank_id):
|
||||
device = next(self.parameters()).device
|
||||
batch_size = len(token_lens)
|
||||
|
||||
sos_tokens = add_sos(tokens, sos_id)
|
||||
tokens_eos = add_eos(tokens, eos_id)
|
||||
sos_tokens_row_splits = sos_tokens.shape.row_splits(1)
|
||||
|
||||
sentence_lengths = sos_tokens_row_splits[1:] - sos_tokens_row_splits[:-1]
|
||||
|
||||
x_tokens = sos_tokens.pad(mode="constant", padding_value=blank_id)
|
||||
y_tokens = tokens_eos.pad(mode="constant", padding_value=blank_id)
|
||||
|
||||
x_tokens = x_tokens.to(torch.int64).to(device)
|
||||
y_tokens = y_tokens.to(torch.int64).to(device)
|
||||
sentence_lengths = sentence_lengths.to(torch.int64).to(device)
|
||||
|
||||
embedding = self.input_embedding(x_tokens)
|
||||
|
||||
# Note: We use batch_first==True
|
||||
rnn_out, states = self.rnn(embedding)
|
||||
logits = self.output_linear(rnn_out)
|
||||
mask = torch.zeros(logits.shape).bool().to(device)
|
||||
for i in range(batch_size):
|
||||
mask[i, token_lens[i], :] = True
|
||||
logits = logits[mask].reshape(batch_size, -1)
|
||||
|
||||
return logits[:, :].log_softmax(-1), states
|
||||
|
||||
def clean_cache(self):
|
||||
self.cache = {}
|
||||
|
||||
def score_token(self, x: torch.Tensor, x_lens: torch.Tensor, state=None):
|
||||
"""Score a batch of tokens, i.e each sample in the batch should be a
|
||||
single token. For example, x = torch.tensor([[5],[10],[20]])
|
||||
|
||||
|
||||
Args:
|
||||
x (torch.Tensor):
|
||||
A batch of tokens
|
||||
x_lens (torch.Tensor):
|
||||
The length of tokens in the batch before padding
|
||||
state (optional):
|
||||
Either None or a tuple of two torch.Tensor. Each tensor has
|
||||
the shape of (num_layers, bs, hidden_dim)
|
||||
|
||||
Returns:
|
||||
_type_: _description_
|
||||
"""
|
||||
device = next(self.parameters()).device
|
||||
batch_size = x.size(0)
|
||||
if state:
|
||||
h, c = state
|
||||
else:
|
||||
h = torch.zeros(self.rnn.num_layers, batch_size, self.rnn.hidden_size).to(
|
||||
device
|
||||
)
|
||||
c = torch.zeros(self.rnn.num_layers, batch_size, self.rnn.hidden_size).to(
|
||||
device
|
||||
)
|
||||
|
||||
embedding = self.input_embedding(x)
|
||||
rnn_out, states = self.rnn(embedding, (h, c))
|
||||
logits = self.output_linear(rnn_out)
|
||||
|
||||
return logits[:, 0].log_softmax(-1), states
|
||||
|
||||
def score_token_onnx(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
state_h: torch.Tensor,
|
||||
state_c: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""Score a batch of tokens, i.e each sample in the batch should be a
|
||||
single token. For example, x = torch.tensor([[5],[10],[20]])
|
||||
|
||||
|
||||
Args:
|
||||
x (torch.Tensor):
|
||||
A batch of tokens
|
||||
state_h:
|
||||
state h of RNN has the shape of (num_layers, bs, hidden_dim)
|
||||
state_c:
|
||||
state c of RNN has the shape of (num_layers, bs, hidden_dim)
|
||||
|
||||
Returns:
|
||||
_type_: _description_
|
||||
"""
|
||||
embedding = self.input_embedding(x)
|
||||
rnn_out, (next_h0, next_c0) = self.rnn(embedding, (state_h, state_c))
|
||||
logits = self.output_linear(rnn_out)
|
||||
|
||||
return logits[:, 0].log_softmax(-1), next_h0, next_c0
|
||||
|
||||
def forward_with_state(
|
||||
self, tokens, token_lens, sos_id, eos_id, blank_id, state=None
|
||||
):
|
||||
batch_size = len(token_lens)
|
||||
if state:
|
||||
h, c = state
|
||||
else:
|
||||
h = torch.zeros(self.rnn.num_layers, batch_size, self.rnn.hidden_size)
|
||||
c = torch.zeros(self.rnn.num_layers, batch_size, self.rnn.hidden_size)
|
||||
|
||||
device = next(self.parameters()).device
|
||||
|
||||
sos_tokens = add_sos(tokens, sos_id)
|
||||
tokens_eos = add_eos(tokens, eos_id)
|
||||
sos_tokens_row_splits = sos_tokens.shape.row_splits(1)
|
||||
|
||||
sentence_lengths = sos_tokens_row_splits[1:] - sos_tokens_row_splits[:-1]
|
||||
|
||||
x_tokens = sos_tokens.pad(mode="constant", padding_value=blank_id)
|
||||
y_tokens = tokens_eos.pad(mode="constant", padding_value=blank_id)
|
||||
|
||||
x_tokens = x_tokens.to(torch.int64).to(device)
|
||||
y_tokens = y_tokens.to(torch.int64).to(device)
|
||||
sentence_lengths = sentence_lengths.to(torch.int64).to(device)
|
||||
|
||||
embedding = self.input_embedding(x_tokens)
|
||||
|
||||
# Note: We use batch_first==True
|
||||
rnn_out, states = self.rnn(embedding, (h, c))
|
||||
logits = self.output_linear(rnn_out)
|
||||
|
||||
return logits, states
|
@ -1,71 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import k2
|
||||
import torch
|
||||
from rnn_lm.dataset import LmDataset, LmDatasetCollate
|
||||
|
||||
|
||||
def main():
|
||||
sentences = k2.RaggedTensor(
|
||||
[[0, 1, 2], [1, 0, 1], [0, 1], [1, 3, 0, 2, 0], [3], [0, 2, 1]]
|
||||
)
|
||||
words = k2.RaggedTensor([[3, 6], [2, 8, 9, 3], [5], [5, 6, 7, 8, 9]])
|
||||
|
||||
num_sentences = sentences.dim0
|
||||
|
||||
sentence_lengths = [0] * num_sentences
|
||||
for i in range(num_sentences):
|
||||
word_ids = sentences[i]
|
||||
|
||||
# NOTE: If word_ids is a tensor with only 1 entry,
|
||||
# token_ids is a torch.Tensor
|
||||
token_ids = words[word_ids]
|
||||
if isinstance(token_ids, k2.RaggedTensor):
|
||||
token_ids = token_ids.values
|
||||
|
||||
# token_ids is a 1-D tensor containing the BPE tokens
|
||||
# of the current sentence
|
||||
|
||||
sentence_lengths[i] = token_ids.numel()
|
||||
|
||||
sentence_lengths = torch.tensor(sentence_lengths, dtype=torch.int32)
|
||||
|
||||
indices = torch.argsort(sentence_lengths, descending=True)
|
||||
sentences = sentences[indices.to(torch.int32)]
|
||||
sentence_lengths = sentence_lengths[indices]
|
||||
|
||||
dataset = LmDataset(
|
||||
sentences=sentences,
|
||||
words=words,
|
||||
sentence_lengths=sentence_lengths,
|
||||
max_sent_len=3,
|
||||
batch_size=4,
|
||||
)
|
||||
|
||||
collate_fn = LmDatasetCollate(sos_id=1, eos_id=-1, blank_id=0)
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
dataset, batch_size=1, collate_fn=collate_fn
|
||||
)
|
||||
|
||||
for i in dataloader:
|
||||
print(i)
|
||||
# I've checked the output manually; the output is as expected.
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1,103 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
from rnn_lm.dataset import LmDataset, LmDatasetCollate
|
||||
from torch import distributed as dist
|
||||
|
||||
|
||||
def generate_data():
|
||||
sentences = k2.RaggedTensor(
|
||||
[[0, 1, 2], [1, 0, 1], [0, 1], [1, 3, 0, 2, 0], [3], [0, 2, 1]]
|
||||
)
|
||||
words = k2.RaggedTensor([[3, 6], [2, 8, 9, 3], [5], [5, 6, 7, 8, 9]])
|
||||
|
||||
num_sentences = sentences.dim0
|
||||
|
||||
sentence_lengths = [0] * num_sentences
|
||||
for i in range(num_sentences):
|
||||
word_ids = sentences[i]
|
||||
|
||||
# NOTE: If word_ids is a tensor with only 1 entry,
|
||||
# token_ids is a torch.Tensor
|
||||
token_ids = words[word_ids]
|
||||
if isinstance(token_ids, k2.RaggedTensor):
|
||||
token_ids = token_ids.values
|
||||
|
||||
# token_ids is a 1-D tensor containing the BPE tokens
|
||||
# of the current sentence
|
||||
|
||||
sentence_lengths[i] = token_ids.numel()
|
||||
|
||||
sentence_lengths = torch.tensor(sentence_lengths, dtype=torch.int32)
|
||||
|
||||
indices = torch.argsort(sentence_lengths, descending=True)
|
||||
sentences = sentences[indices.to(torch.int32)]
|
||||
sentence_lengths = sentence_lengths[indices]
|
||||
|
||||
return sentences, words, sentence_lengths
|
||||
|
||||
|
||||
def run(rank, world_size):
|
||||
os.environ["MASTER_ADDR"] = "localhost"
|
||||
os.environ["MASTER_PORT"] = "12352"
|
||||
|
||||
dist.init_process_group("nccl", rank=rank, world_size=world_size)
|
||||
torch.cuda.set_device(rank)
|
||||
|
||||
sentences, words, sentence_lengths = generate_data()
|
||||
|
||||
dataset = LmDataset(
|
||||
sentences=sentences,
|
||||
words=words,
|
||||
sentence_lengths=sentence_lengths,
|
||||
max_sent_len=3,
|
||||
batch_size=4,
|
||||
)
|
||||
sampler = torch.utils.data.distributed.DistributedSampler(
|
||||
dataset, shuffle=True, drop_last=False
|
||||
)
|
||||
|
||||
collate_fn = LmDatasetCollate(sos_id=1, eos_id=-1, blank_id=0)
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
dataset,
|
||||
batch_size=1,
|
||||
collate_fn=collate_fn,
|
||||
sampler=sampler,
|
||||
shuffle=False,
|
||||
)
|
||||
|
||||
for i in dataloader:
|
||||
print(f"rank: {rank}", i)
|
||||
|
||||
dist.destroy_process_group()
|
||||
|
||||
|
||||
def main():
|
||||
world_size = 2
|
||||
mp.spawn(run, args=(world_size,), nprocs=world_size, join=True)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1,69 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
from rnn_lm.model import RnnLmModel
|
||||
|
||||
|
||||
def test_rnn_lm_model():
|
||||
vocab_size = 4
|
||||
model = RnnLmModel(
|
||||
vocab_size=vocab_size, embedding_dim=10, hidden_dim=10, num_layers=2
|
||||
)
|
||||
x = torch.tensor(
|
||||
[
|
||||
[1, 3, 2, 2],
|
||||
[1, 2, 2, 0],
|
||||
[1, 2, 0, 0],
|
||||
]
|
||||
)
|
||||
y = torch.tensor(
|
||||
[
|
||||
[3, 2, 2, 1],
|
||||
[2, 2, 1, 0],
|
||||
[2, 1, 0, 0],
|
||||
]
|
||||
)
|
||||
lengths = torch.tensor([4, 3, 2])
|
||||
nll_loss = model(x, y, lengths)
|
||||
print(nll_loss)
|
||||
"""
|
||||
tensor([[1.1180, 1.3059, 1.2426, 1.7773],
|
||||
[1.4231, 1.2783, 1.7321, 0.0000],
|
||||
[1.4231, 1.6752, 0.0000, 0.0000]], grad_fn=<ViewBackward>)
|
||||
"""
|
||||
|
||||
|
||||
def test_rnn_lm_model_tie_weights():
|
||||
model = RnnLmModel(
|
||||
vocab_size=10,
|
||||
embedding_dim=10,
|
||||
hidden_dim=10,
|
||||
num_layers=2,
|
||||
tie_weights=True,
|
||||
)
|
||||
assert model.input_embedding.weight is model.output_linear.weight
|
||||
|
||||
|
||||
def main():
|
||||
test_rnn_lm_model()
|
||||
test_rnn_lm_model_tie_weights()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(20211122)
|
||||
main()
|
@ -1,689 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Usage:
|
||||
./rnn_lm/train.py \
|
||||
--start-epoch 0 \
|
||||
--world-size 2 \
|
||||
--num-epochs 1 \
|
||||
--use-fp16 0 \
|
||||
--tie-weights 0 \
|
||||
--embedding-dim 800 \
|
||||
--hidden-dim 200 \
|
||||
--num-layers 2 \
|
||||
--batch-size 400
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from dataset import get_dataloader
|
||||
from lhotse.utils import fix_random_seed
|
||||
from model import RnnLmModel
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.checkpoint import save_checkpoint_with_global_batch_idx
|
||||
from icefall.dist import cleanup_dist, setup_dist
|
||||
from icefall.env import get_env_info
|
||||
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--world-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of GPUs for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--master-port",
|
||||
type=int,
|
||||
default=12354,
|
||||
help="Master port to use for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=30,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""Resume training from from this epoch.
|
||||
If it is positive, it will load checkpoint from
|
||||
exp_dir/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-batch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --start-epoch is ignored and
|
||||
it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="rnn_lm/exp",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, logs, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-fp16",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to use half precision training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--batch-size",
|
||||
type=int,
|
||||
default=400,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-data",
|
||||
type=str,
|
||||
default="data/lm_training_bpe_500/sorted_lm_data.pt",
|
||||
help="LM training data",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-data-valid",
|
||||
type=str,
|
||||
default="data/lm_training_bpe_500/sorted_lm_data-valid.pt",
|
||||
help="LM validation data",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--vocab-size",
|
||||
type=int,
|
||||
default=500,
|
||||
help="Vocabulary size of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--embedding-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Embedding dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--hidden-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Hidden dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-layers",
|
||||
type=int,
|
||||
default=3,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tie-weights",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="""True to share the weights between the input embedding layer and the
|
||||
last output linear layer
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--seed",
|
||||
type=int,
|
||||
default=42,
|
||||
help="The seed for random generators intended for reproducibility",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lr",
|
||||
type=float,
|
||||
default=1e-3,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-sent-len",
|
||||
type=int,
|
||||
default=200,
|
||||
help="""Maximum number of tokens in a sentence. This is used
|
||||
to adjust batch-size dynamically""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--save-every-n",
|
||||
type=int,
|
||||
default=2000,
|
||||
help="""Save checkpoint after processing this number of batches"
|
||||
periodically. We save checkpoint to exp-dir/ whenever
|
||||
params.batch_idx_train % save_every_n == 0. The checkpoint filename
|
||||
has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt'
|
||||
Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the
|
||||
end of each epoch where `xxx` is the epoch number counting from 0.
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters."""
|
||||
|
||||
params = AttributeDict(
|
||||
{
|
||||
"max_sent_len": 200,
|
||||
"sos_id": 1,
|
||||
"eos_id": 1,
|
||||
"blank_id": 0,
|
||||
"weight_decay": 1e-6,
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 100,
|
||||
"reset_interval": 2000,
|
||||
"valid_interval": 200,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def load_checkpoint_if_available(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
) -> None:
|
||||
"""Load checkpoint from file.
|
||||
|
||||
If params.start_batch is positive, it will load the checkpoint from
|
||||
`params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if
|
||||
params.start_epoch is larger than 1, it will load the checkpoint from
|
||||
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||
|
||||
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||
and `best_valid_loss` in `params`.
|
||||
|
||||
Args:
|
||||
params:
|
||||
The return value of :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
optimizer:
|
||||
The optimizer that we are using.
|
||||
scheduler:
|
||||
The learning rate scheduler we are using.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
|
||||
if params.start_batch > 0:
|
||||
filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt"
|
||||
elif params.start_epoch > 1:
|
||||
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||
else:
|
||||
return None
|
||||
|
||||
logging.info(f"Loading checkpoint: {filename}")
|
||||
saved_params = load_checkpoint(
|
||||
filename,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
keys = [
|
||||
"best_train_epoch",
|
||||
"best_valid_epoch",
|
||||
"batch_idx_train",
|
||||
"best_train_loss",
|
||||
"best_valid_loss",
|
||||
]
|
||||
for k in keys:
|
||||
params[k] = saved_params[k]
|
||||
|
||||
if params.start_batch > 0:
|
||||
if "cur_epoch" in saved_params:
|
||||
params["start_epoch"] = saved_params["cur_epoch"]
|
||||
|
||||
if "cur_batch_idx" in saved_params:
|
||||
params["cur_batch_idx"] = saved_params["cur_batch_idx"]
|
||||
|
||||
return saved_params
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save model, optimizer, scheduler and training stats to file.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||
save_checkpoint_impl(
|
||||
filename=filename,
|
||||
model=model,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.best_train_epoch == params.cur_epoch:
|
||||
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||
copyfile(src=filename, dst=best_train_filename)
|
||||
|
||||
if params.best_valid_epoch == params.cur_epoch:
|
||||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
|
||||
def compute_loss(
|
||||
model: nn.Module,
|
||||
x: torch.Tensor,
|
||||
y: torch.Tensor,
|
||||
sentence_lengths: torch.Tensor,
|
||||
is_training: bool,
|
||||
) -> Tuple[torch.Tensor, MetricsTracker]:
|
||||
"""Compute the negative log-likelihood loss given a model and its input.
|
||||
Args:
|
||||
model:
|
||||
The NN model, e.g., RnnLmModel.
|
||||
x:
|
||||
A 2-D tensor. Each row contains BPE token IDs for a sentence. Also,
|
||||
each row starts with SOS ID.
|
||||
y:
|
||||
A 2-D tensor. Each row is a shifted version of the corresponding row
|
||||
in `x` but ends with an EOS ID (before padding).
|
||||
sentence_lengths:
|
||||
A 1-D tensor containing number of tokens of each sentence
|
||||
before padding.
|
||||
is_training:
|
||||
True for training. False for validation.
|
||||
"""
|
||||
with torch.set_grad_enabled(is_training):
|
||||
device = model.device
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
sentence_lengths = sentence_lengths.to(device)
|
||||
|
||||
nll = model(x, y, sentence_lengths)
|
||||
loss = nll.sum()
|
||||
|
||||
num_tokens = sentence_lengths.sum().item()
|
||||
|
||||
loss_info = MetricsTracker()
|
||||
# Note: Due to how MetricsTracker() is designed,
|
||||
# we use "frames" instead of "num_tokens" as a key here
|
||||
loss_info["frames"] = num_tokens
|
||||
loss_info["loss"] = loss.detach().item()
|
||||
return loss, loss_info
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> MetricsTracker:
|
||||
"""Run the validation process. The validation loss
|
||||
is saved in `params.valid_loss`.
|
||||
"""
|
||||
model.eval()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
x, y, sentence_lengths = batch
|
||||
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||
loss, loss_info = compute_loss(
|
||||
model=model,
|
||||
x=x,
|
||||
y=y,
|
||||
sentence_lengths=sentence_lengths,
|
||||
is_training=False,
|
||||
)
|
||||
|
||||
assert loss.requires_grad is False
|
||||
tot_loss = tot_loss + loss_info
|
||||
|
||||
if world_size > 1:
|
||||
tot_loss.reduce(loss.device)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
if loss_value < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = loss_value
|
||||
|
||||
return tot_loss
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
The training loss from the mean of all sentences is saved in
|
||||
`params.train_loss`. It runs the validation process every
|
||||
`params.valid_interval` batches.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer we are using.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
"""
|
||||
model.train()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
cur_batch_idx = params.get("cur_batch_idx", 0)
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
if batch_idx < cur_batch_idx:
|
||||
continue
|
||||
cur_batch_idx = batch_idx
|
||||
|
||||
params.batch_idx_train += 1
|
||||
x, y, sentence_lengths = batch
|
||||
batch_size = x.size(0)
|
||||
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||
loss, loss_info = compute_loss(
|
||||
model=model,
|
||||
x=x,
|
||||
y=y,
|
||||
sentence_lengths=sentence_lengths,
|
||||
is_training=True,
|
||||
)
|
||||
|
||||
# summary stats
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
|
||||
if (
|
||||
params.batch_idx_train > 0
|
||||
and params.batch_idx_train % params.save_every_n == 0
|
||||
):
|
||||
params.cur_batch_idx = batch_idx
|
||||
save_checkpoint_with_global_batch_idx(
|
||||
out_dir=params.exp_dir,
|
||||
global_batch_idx=params.batch_idx_train,
|
||||
model=model,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
rank=rank,
|
||||
)
|
||||
del params.cur_batch_idx
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
# Note: "frames" here means "num_tokens"
|
||||
this_batch_ppl = math.exp(loss_info["loss"] / loss_info["frames"])
|
||||
tot_ppl = math.exp(tot_loss["loss"] / tot_loss["frames"])
|
||||
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}, ppl: {this_batch_ppl}] "
|
||||
f"tot_loss[{tot_loss}, ppl: {tot_ppl}], "
|
||||
f"batch size: {batch_size}"
|
||||
)
|
||||
|
||||
if tb_writer is not None:
|
||||
loss_info.write_summary(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
)
|
||||
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||
|
||||
tb_writer.add_scalar(
|
||||
"train/current_ppl", this_batch_ppl, params.batch_idx_train
|
||||
)
|
||||
|
||||
tb_writer.add_scalar("train/tot_ppl", tot_ppl, params.batch_idx_train)
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||
logging.info("Computing validation loss")
|
||||
|
||||
valid_info = compute_validation_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
|
||||
valid_ppl = math.exp(valid_info["loss"] / valid_info["frames"])
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, validation: {valid_info}, "
|
||||
f"ppl: {valid_ppl}"
|
||||
)
|
||||
|
||||
if tb_writer is not None:
|
||||
valid_info.write_summary(
|
||||
tb_writer, "train/valid_", params.batch_idx_train
|
||||
)
|
||||
|
||||
tb_writer.add_scalar(
|
||||
"train/valid_ppl", valid_ppl, params.batch_idx_train
|
||||
)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
params.train_loss = loss_value
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
is_distributed = world_size > 1
|
||||
|
||||
fix_random_seed(params.seed)
|
||||
if is_distributed:
|
||||
setup_dist(rank, world_size, params.master_port)
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info("Training started")
|
||||
logging.info(params)
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", rank)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
logging.info("About to create model")
|
||||
model = RnnLmModel(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.embedding_dim,
|
||||
hidden_dim=params.hidden_dim,
|
||||
num_layers=params.num_layers,
|
||||
tie_weights=params.tie_weights,
|
||||
)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||
|
||||
model.to(device)
|
||||
if is_distributed:
|
||||
model = DDP(model, device_ids=[rank])
|
||||
|
||||
model.device = device
|
||||
|
||||
optimizer = optim.Adam(
|
||||
model.parameters(),
|
||||
lr=params.lr,
|
||||
weight_decay=params.weight_decay,
|
||||
)
|
||||
if checkpoints:
|
||||
logging.info("Load optimizer state_dict from checkpoint")
|
||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||
|
||||
logging.info(f"Loading LM training data from {params.lm_data}")
|
||||
train_dl = get_dataloader(
|
||||
filename=params.lm_data,
|
||||
is_distributed=is_distributed,
|
||||
params=params,
|
||||
)
|
||||
|
||||
logging.info(f"Loading LM validation data from {params.lm_data_valid}")
|
||||
valid_dl = get_dataloader(
|
||||
filename=params.lm_data_valid,
|
||||
is_distributed=is_distributed,
|
||||
params=params,
|
||||
)
|
||||
|
||||
# Note: No learning rate scheduler is used here
|
||||
for epoch in range(params.start_epoch, params.num_epochs):
|
||||
if is_distributed:
|
||||
train_dl.sampler.set_epoch(epoch)
|
||||
|
||||
params.cur_epoch = epoch
|
||||
|
||||
train_one_epoch(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
save_checkpoint(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
if is_distributed:
|
||||
torch.distributed.barrier()
|
||||
cleanup_dist()
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
if world_size > 1:
|
||||
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||
else:
|
||||
run(rank=0, world_size=1, args=args)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1,510 +0,0 @@
|
||||
# Copyright (c) 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
|
||||
from icefall.transformer_lm.scaling import (
|
||||
ActivationBalancer,
|
||||
BasicNorm,
|
||||
DoubleSwish,
|
||||
ScaledConv1d,
|
||||
ScaledConv2d,
|
||||
ScaledLinear,
|
||||
)
|
||||
from icefall.utils import is_jit_tracing
|
||||
|
||||
|
||||
class RelPositionMultiheadAttention(nn.Module):
|
||||
r"""Multi-Head Attention layer with relative position encoding
|
||||
|
||||
See reference: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||
|
||||
Args:
|
||||
embed_dim: total dimension of the model.
|
||||
num_heads: parallel attention heads.
|
||||
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
|
||||
|
||||
Examples::
|
||||
|
||||
>>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads)
|
||||
>>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim: int,
|
||||
num_heads: int,
|
||||
dropout: float = 0.0,
|
||||
) -> None:
|
||||
super(RelPositionMultiheadAttention, self).__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.num_heads = num_heads
|
||||
self.dropout = dropout
|
||||
self.head_dim = embed_dim // num_heads
|
||||
assert (
|
||||
self.head_dim * num_heads == self.embed_dim
|
||||
), "embed_dim must be divisible by num_heads"
|
||||
|
||||
self.in_proj = ScaledLinear(embed_dim, 3 * embed_dim, bias=True)
|
||||
self.out_proj = ScaledLinear(
|
||||
embed_dim, embed_dim, bias=True, initial_scale=0.25
|
||||
)
|
||||
|
||||
# linear transformation for positional encoding.
|
||||
self.linear_pos = ScaledLinear(embed_dim, embed_dim, bias=False)
|
||||
# these two learnable bias are used in matrix c and matrix d
|
||||
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||
self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||
self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||
self.pos_bias_u_scale = nn.Parameter(torch.zeros(()).detach())
|
||||
self.pos_bias_v_scale = nn.Parameter(torch.zeros(()).detach())
|
||||
self._reset_parameters()
|
||||
|
||||
def _pos_bias_u(self):
|
||||
return self.pos_bias_u * self.pos_bias_u_scale.exp()
|
||||
|
||||
def _pos_bias_v(self):
|
||||
return self.pos_bias_v * self.pos_bias_v_scale.exp()
|
||||
|
||||
def _reset_parameters(self) -> None:
|
||||
nn.init.normal_(self.pos_bias_u, std=0.01)
|
||||
nn.init.normal_(self.pos_bias_v, std=0.01)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
pos_emb: Tensor,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = False,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
left_context: int = 0,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
r"""
|
||||
Args:
|
||||
query, key, value: map a query and a set of key-value pairs to an output.
|
||||
pos_emb: Positional embedding tensor
|
||||
key_padding_mask: if provided, specified padding elements in the key will
|
||||
be ignored by the attention. When given a binary mask and a value is True,
|
||||
the corresponding value on the attention layer will be ignored. When given
|
||||
a byte mask and a value is non-zero, the corresponding value on the attention
|
||||
layer will be ignored
|
||||
need_weights: output attn_output_weights.
|
||||
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||
left_context (int): left context (in frames) used during streaming decoding.
|
||||
this is used only in real streaming decoding, in other circumstances,
|
||||
it MUST be 0.
|
||||
|
||||
Shape:
|
||||
- Inputs:
|
||||
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||
If a ByteTensor is provided, the non-zero positions will be ignored while the position
|
||||
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
|
||||
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
|
||||
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
||||
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
||||
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||
is provided, it will be added to the attention weight.
|
||||
|
||||
- Outputs:
|
||||
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||
E is the embedding dimension.
|
||||
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
||||
L is the target sequence length, S is the source sequence length.
|
||||
"""
|
||||
return self.multi_head_attention_forward(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
pos_emb,
|
||||
self.embed_dim,
|
||||
self.num_heads,
|
||||
self.in_proj.get_weight(),
|
||||
self.in_proj.get_bias(),
|
||||
self.dropout,
|
||||
self.out_proj.get_weight(),
|
||||
self.out_proj.get_bias(),
|
||||
training=self.training,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=need_weights,
|
||||
attn_mask=attn_mask,
|
||||
left_context=left_context,
|
||||
)
|
||||
|
||||
def rel_shift(self, x: Tensor, left_context: int = 0) -> Tensor:
|
||||
"""Compute relative positional encoding.
|
||||
|
||||
Args:
|
||||
x: Input tensor (batch, head, time1, 2*time1-1+left_context).
|
||||
time1 means the length of query vector.
|
||||
left_context (int): left context (in frames) used during streaming decoding.
|
||||
this is used only in real streaming decoding, in other circumstances,
|
||||
it MUST be 0.
|
||||
|
||||
Returns:
|
||||
Tensor: tensor of shape (batch, head, time1, time2)
|
||||
(note: time2 has the same value as time1, but it is for
|
||||
the key, while time1 is for the query).
|
||||
"""
|
||||
(batch_size, num_heads, time1, n) = x.shape
|
||||
|
||||
time2 = time1 + left_context
|
||||
if not is_jit_tracing():
|
||||
assert (
|
||||
n == left_context + 2 * time1 - 1
|
||||
), f"{n} == {left_context} + 2 * {time1} - 1"
|
||||
|
||||
if is_jit_tracing():
|
||||
rows = torch.arange(start=time1 - 1, end=-1, step=-1)
|
||||
cols = torch.arange(time2)
|
||||
rows = rows.repeat(batch_size * num_heads).unsqueeze(-1)
|
||||
indexes = rows + cols
|
||||
|
||||
x = x.reshape(-1, n)
|
||||
x = torch.gather(x, dim=1, index=indexes)
|
||||
x = x.reshape(batch_size, num_heads, time1, time2)
|
||||
return x
|
||||
else:
|
||||
# Note: TorchScript requires explicit arg for stride()
|
||||
batch_stride = x.stride(0)
|
||||
head_stride = x.stride(1)
|
||||
time1_stride = x.stride(2)
|
||||
n_stride = x.stride(3)
|
||||
return x.as_strided(
|
||||
(batch_size, num_heads, time1, time2),
|
||||
(batch_stride, head_stride, time1_stride - n_stride, n_stride),
|
||||
storage_offset=n_stride * (time1 - 1),
|
||||
)
|
||||
|
||||
def multi_head_attention_forward(
|
||||
self,
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
pos_emb: Tensor,
|
||||
embed_dim_to_check: int,
|
||||
num_heads: int,
|
||||
in_proj_weight: Tensor,
|
||||
in_proj_bias: Tensor,
|
||||
dropout_p: float,
|
||||
out_proj_weight: Tensor,
|
||||
out_proj_bias: Tensor,
|
||||
training: bool = True,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = False,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
left_context: int = 0,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
r"""
|
||||
Args:
|
||||
query, key, value: map a query and a set of key-value pairs to an output.
|
||||
pos_emb: Positional embedding tensor
|
||||
embed_dim_to_check: total dimension of the model.
|
||||
num_heads: parallel attention heads.
|
||||
in_proj_weight, in_proj_bias: input projection weight and bias.
|
||||
dropout_p: probability of an element to be zeroed.
|
||||
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
||||
training: apply dropout if is ``True``.
|
||||
key_padding_mask: if provided, specified padding elements in the key will
|
||||
be ignored by the attention. This is an binary mask. When the value is True,
|
||||
the corresponding value on the attention layer will be filled with -inf.
|
||||
need_weights: output attn_output_weights.
|
||||
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||
left_context (int): left context (in frames) used during streaming decoding.
|
||||
this is used only in real streaming decoding, in other circumstances,
|
||||
it MUST be 0.
|
||||
|
||||
Shape:
|
||||
Inputs:
|
||||
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- pos_emb: :math:`(N, 2*L-1, E)` or :math:`(1, 2*L-1, E)` where L is the target sequence
|
||||
length, N is the batch size, E is the embedding dimension.
|
||||
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
|
||||
will be unchanged. If a BoolTensor is provided, the positions with the
|
||||
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
||||
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
||||
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
||||
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||
is provided, it will be added to the attention weight.
|
||||
|
||||
Outputs:
|
||||
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||
E is the embedding dimension.
|
||||
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
||||
L is the target sequence length, S is the source sequence length.
|
||||
"""
|
||||
|
||||
tgt_len, bsz, embed_dim = query.size()
|
||||
if not is_jit_tracing():
|
||||
assert embed_dim == embed_dim_to_check
|
||||
assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
|
||||
|
||||
head_dim = embed_dim // num_heads
|
||||
if not is_jit_tracing():
|
||||
assert (
|
||||
head_dim * num_heads == embed_dim
|
||||
), "embed_dim must be divisible by num_heads"
|
||||
|
||||
scaling = float(head_dim) ** -0.5
|
||||
|
||||
if torch.equal(query, key) and torch.equal(key, value):
|
||||
# self-attention
|
||||
q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk(
|
||||
3, dim=-1
|
||||
)
|
||||
|
||||
elif torch.equal(key, value):
|
||||
# encoder-decoder attention
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = 0
|
||||
_end = embed_dim
|
||||
_w = in_proj_weight[_start:_end, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:_end]
|
||||
q = nn.functional.linear(query, _w, _b)
|
||||
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = embed_dim
|
||||
_end = None
|
||||
_w = in_proj_weight[_start:, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:]
|
||||
k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1)
|
||||
|
||||
else:
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = 0
|
||||
_end = embed_dim
|
||||
_w = in_proj_weight[_start:_end, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:_end]
|
||||
q = nn.functional.linear(query, _w, _b)
|
||||
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = embed_dim
|
||||
_end = embed_dim * 2
|
||||
_w = in_proj_weight[_start:_end, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:_end]
|
||||
k = nn.functional.linear(key, _w, _b)
|
||||
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = embed_dim * 2
|
||||
_end = None
|
||||
_w = in_proj_weight[_start:, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:]
|
||||
v = nn.functional.linear(value, _w, _b)
|
||||
|
||||
if attn_mask is not None:
|
||||
assert (
|
||||
attn_mask.dtype == torch.float32
|
||||
or attn_mask.dtype == torch.float64
|
||||
or attn_mask.dtype == torch.float16
|
||||
or attn_mask.dtype == torch.uint8
|
||||
or attn_mask.dtype == torch.bool
|
||||
), "Only float, byte, and bool types are supported for attn_mask, not {}".format(
|
||||
attn_mask.dtype
|
||||
)
|
||||
if attn_mask.dtype == torch.uint8:
|
||||
warnings.warn(
|
||||
"Byte tensor for attn_mask is deprecated. Use bool tensor instead."
|
||||
)
|
||||
attn_mask = attn_mask.to(torch.bool)
|
||||
|
||||
if attn_mask.dim() == 2:
|
||||
attn_mask = attn_mask.unsqueeze(0)
|
||||
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
||||
raise RuntimeError("The size of the 2D attn_mask is not correct.")
|
||||
elif attn_mask.dim() == 3:
|
||||
if list(attn_mask.size()) != [
|
||||
bsz * num_heads,
|
||||
query.size(0),
|
||||
key.size(0),
|
||||
]:
|
||||
raise RuntimeError("The size of the 3D attn_mask is not correct.")
|
||||
else:
|
||||
raise RuntimeError(
|
||||
"attn_mask's dimension {} is not supported".format(attn_mask.dim())
|
||||
)
|
||||
# attn_mask's dim is 3 now.
|
||||
|
||||
# convert ByteTensor key_padding_mask to bool
|
||||
if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
|
||||
warnings.warn(
|
||||
"Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
|
||||
)
|
||||
key_padding_mask = key_padding_mask.to(torch.bool)
|
||||
|
||||
q = (q * scaling).contiguous().view(tgt_len, bsz, num_heads, head_dim)
|
||||
k = k.contiguous().view(-1, bsz, num_heads, head_dim)
|
||||
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
||||
|
||||
src_len = k.size(0)
|
||||
|
||||
if key_padding_mask is not None and not is_jit_tracing():
|
||||
assert key_padding_mask.size(0) == bsz, "{} == {}".format(
|
||||
key_padding_mask.size(0), bsz
|
||||
)
|
||||
assert key_padding_mask.size(1) == src_len, "{} == {}".format(
|
||||
key_padding_mask.size(1), src_len
|
||||
)
|
||||
|
||||
q = q.transpose(0, 1) # (batch, time1, head, d_k)
|
||||
|
||||
pos_emb_bsz = pos_emb.size(0)
|
||||
if not is_jit_tracing():
|
||||
assert pos_emb_bsz in (1, bsz) # actually it is 1
|
||||
|
||||
p = self.linear_pos(pos_emb).view(pos_emb_bsz, -1, num_heads, head_dim)
|
||||
# (batch, 2*time1, head, d_k) --> (batch, head, d_k, 2*time -1)
|
||||
p = p.permute(0, 2, 3, 1)
|
||||
|
||||
q_with_bias_u = (q + self._pos_bias_u()).transpose(
|
||||
1, 2
|
||||
) # (batch, head, time1, d_k)
|
||||
|
||||
q_with_bias_v = (q + self._pos_bias_v()).transpose(
|
||||
1, 2
|
||||
) # (batch, head, time1, d_k)
|
||||
|
||||
# compute attention score
|
||||
# first compute matrix a and matrix c
|
||||
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||
k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2)
|
||||
matrix_ac = torch.matmul(q_with_bias_u, k) # (batch, head, time1, time2)
|
||||
|
||||
# compute matrix b and matrix d
|
||||
matrix_bd = torch.matmul(q_with_bias_v, p) # (batch, head, time1, 2*time1-1)
|
||||
matrix_bd = self.rel_shift(matrix_bd, left_context)
|
||||
|
||||
attn_output_weights = matrix_ac + matrix_bd # (batch, head, time1, time2)
|
||||
|
||||
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1)
|
||||
|
||||
if not is_jit_tracing():
|
||||
assert list(attn_output_weights.size()) == [
|
||||
bsz * num_heads,
|
||||
tgt_len,
|
||||
src_len,
|
||||
]
|
||||
|
||||
if attn_mask is not None:
|
||||
if attn_mask.dtype == torch.bool:
|
||||
attn_output_weights.masked_fill_(attn_mask, float("-inf"))
|
||||
else:
|
||||
attn_output_weights += attn_mask
|
||||
|
||||
if key_padding_mask is not None:
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz, num_heads, tgt_len, src_len
|
||||
)
|
||||
attn_output_weights = attn_output_weights.masked_fill(
|
||||
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
||||
float("-inf"),
|
||||
)
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz * num_heads, tgt_len, src_len
|
||||
)
|
||||
|
||||
attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1)
|
||||
|
||||
# If we are using dynamic_chunk_training and setting a limited
|
||||
# num_left_chunks, the attention may only see the padding values which
|
||||
# will also be masked out by `key_padding_mask`, at this circumstances,
|
||||
# the whole column of `attn_output_weights` will be `-inf`
|
||||
# (i.e. be `nan` after softmax), so, we fill `0.0` at the masking
|
||||
# positions to avoid invalid loss value below.
|
||||
if (
|
||||
attn_mask is not None
|
||||
and attn_mask.dtype == torch.bool
|
||||
and key_padding_mask is not None
|
||||
):
|
||||
if attn_mask.size(0) != 1:
|
||||
attn_mask = attn_mask.view(bsz, num_heads, tgt_len, src_len)
|
||||
combined_mask = attn_mask | key_padding_mask.unsqueeze(1).unsqueeze(2)
|
||||
else:
|
||||
# attn_mask.shape == (1, tgt_len, src_len)
|
||||
combined_mask = attn_mask.unsqueeze(0) | key_padding_mask.unsqueeze(
|
||||
1
|
||||
).unsqueeze(2)
|
||||
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz, num_heads, tgt_len, src_len
|
||||
)
|
||||
attn_output_weights = attn_output_weights.masked_fill(combined_mask, 0.0)
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz * num_heads, tgt_len, src_len
|
||||
)
|
||||
|
||||
attn_output_weights = nn.functional.dropout(
|
||||
attn_output_weights, p=dropout_p, training=training
|
||||
)
|
||||
|
||||
attn_output = torch.bmm(attn_output_weights, v)
|
||||
|
||||
if not is_jit_tracing():
|
||||
assert list(attn_output.size()) == [
|
||||
bsz * num_heads,
|
||||
tgt_len,
|
||||
head_dim,
|
||||
]
|
||||
|
||||
attn_output = (
|
||||
attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
||||
)
|
||||
attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias)
|
||||
|
||||
if need_weights:
|
||||
# average attention weights over heads
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz, num_heads, tgt_len, src_len
|
||||
)
|
||||
return attn_output, attn_output_weights.sum(dim=1) / num_heads
|
||||
else:
|
||||
return attn_output, None
|
@ -1,195 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
|
||||
# Xiaoyu Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from dataset import get_dataloader
|
||||
from train import get_params
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.transformer_lm.model import TransformerLM
|
||||
from icefall.utils import AttributeDict, setup_logger, str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=7,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="transformer_lm/exp_full_libri_16layer_maxlen200_8gpu",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-data",
|
||||
type=str,
|
||||
help="Path to the LM test data for computing perplexity",
|
||||
default="transformer_lm/libri_lm_training_bpe500/sorted_lm_data-test.pt",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--vocab-size",
|
||||
type=int,
|
||||
default=500,
|
||||
help="Vocabulary size of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-layers",
|
||||
type=int,
|
||||
default=16,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tie-weights",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to share the weights between the input embedding layer and the
|
||||
last output linear layer
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--batch-size",
|
||||
type=int,
|
||||
default=50,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-sent-len",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lm_data = Path(args.lm_data)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log-ppl/")
|
||||
logging.info("Computing perplexity started")
|
||||
logging.info(params)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
logging.info("About to create model")
|
||||
model = TransformerLM(
|
||||
vocab_size=params.vocab_size,
|
||||
d_model=params.encoder_dim,
|
||||
embedding_dim=params.embedding_dim,
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
nhead=params.nhead,
|
||||
num_layers=params.num_layers,
|
||||
tie_weights=params.tie_weights,
|
||||
params=params,
|
||||
)
|
||||
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
model.to(device)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
model.eval()
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
num_param_requires_grad = sum(
|
||||
[p.numel() for p in model.parameters() if p.requires_grad]
|
||||
)
|
||||
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
logging.info(
|
||||
f"Number of model parameters (requires_grad): "
|
||||
f"{num_param_requires_grad} "
|
||||
f"({num_param_requires_grad/num_param_requires_grad*100}%)"
|
||||
)
|
||||
|
||||
logging.info(f"Loading LM test data from {params.lm_data}")
|
||||
test_dl = get_dataloader(
|
||||
filename=params.lm_data,
|
||||
is_distributed=False,
|
||||
params=params,
|
||||
)
|
||||
|
||||
tot_loss = 0.0
|
||||
num_tokens = 0
|
||||
num_sentences = 0
|
||||
for batch_idx, batch in enumerate(test_dl):
|
||||
x, y, sentence_lengths = batch
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
sentence_lengths = sentence_lengths.to(device)
|
||||
|
||||
nll = model(x, y, sentence_lengths)
|
||||
loss = nll.sum().cpu().item()
|
||||
|
||||
tot_loss += loss
|
||||
num_tokens += sentence_lengths.sum().cpu().item()
|
||||
num_sentences += x.size(0)
|
||||
|
||||
ppl = math.exp(tot_loss / num_tokens)
|
||||
logging.info(
|
||||
f"total nll: {tot_loss}, num tokens: {num_tokens}, "
|
||||
f"num sentences: {num_sentences}, ppl: {ppl:.3f}"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1 +0,0 @@
|
||||
../rnn_lm/dataset.py
|
@ -1,329 +0,0 @@
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Xiaoyu Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import copy
|
||||
import math
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import Tensor, nn
|
||||
|
||||
from icefall.transformer_lm.attention import RelPositionMultiheadAttention
|
||||
from icefall.transformer_lm.scaling import (
|
||||
ActivationBalancer,
|
||||
BasicNorm,
|
||||
DoubleSwish,
|
||||
ScaledConv1d,
|
||||
ScaledConv2d,
|
||||
ScaledLinear,
|
||||
)
|
||||
from icefall.utils import is_jit_tracing, make_pad_mask
|
||||
|
||||
|
||||
class Transformer(torch.nn.Module):
|
||||
"""_summary_
|
||||
|
||||
Args:
|
||||
input_dim (int): Input feature dimension
|
||||
d_mode (int): The dimension of the transformer
|
||||
dim_feedforward (int ): The dimension of the ffw module
|
||||
nhead (int): The number of attention heads
|
||||
dropout_rate (float): dropout rate
|
||||
att_dropout (float): dropout rate in attention module
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_dim: int,
|
||||
d_model: int,
|
||||
dim_feedforward: int,
|
||||
nhead: int = 4,
|
||||
num_layers: int = 6,
|
||||
dropout_rate: float = 0.1,
|
||||
att_dropout: float = 0.0,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.encoder_layers = num_layers
|
||||
self.d_model = d_model
|
||||
|
||||
self.embed = ScaledLinear(input_dim, d_model)
|
||||
self.norm_before = BasicNorm(d_model, learn_eps=False)
|
||||
|
||||
self.encoder_pos = RelPositionalEncoding(d_model, dropout_rate)
|
||||
|
||||
encoder_layer = TransformerEncoderLayer(
|
||||
d_model=d_model,
|
||||
dim_feedforward=dim_feedforward,
|
||||
nhead=nhead,
|
||||
dropout_rate=dropout_rate,
|
||||
)
|
||||
|
||||
self.encoder = TransformerEncoder(encoder_layer, num_layers)
|
||||
|
||||
def _create_attention_mask(self, x_lens: torch.Tensor):
|
||||
# create a 2D attention mask to mask out
|
||||
# the upper right half of the attention matrix
|
||||
max_len = max(x_lens)
|
||||
ones = torch.ones(max_len, max_len, device=x_lens.device, dtype=torch.bool)
|
||||
return torch.triu(ones, diagonal=1)
|
||||
|
||||
def forward(
|
||||
self, x: torch.Tensor, x_lens: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Transformer forward
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (B,T,input_dim)
|
||||
x_lens (torch.Tensor): The length of input tensors before padding (B,)
|
||||
|
||||
Returns:
|
||||
Return a tuple of 2 tensors:
|
||||
- x: output feature of the transformer (B,T,d_model)
|
||||
- x_lens: output feature lens of the transformer
|
||||
"""
|
||||
|
||||
attention_mask = self._create_attention_mask(x_lens)
|
||||
src_key_padding_mask = make_pad_mask(x_lens)
|
||||
|
||||
x = self.norm_before(self.embed(x))
|
||||
|
||||
x, pos_emb = self.encoder_pos(x)
|
||||
x = x.permute(1, 0, 2)
|
||||
|
||||
x = self.encoder(
|
||||
x,
|
||||
pos_emb,
|
||||
mask=attention_mask, # pass the attention mast
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
) # (T, N, C)
|
||||
|
||||
x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
return x, x_lens
|
||||
|
||||
|
||||
class TransformerEncoder(torch.nn.Module):
|
||||
def __init__(self, encoder_layer: torch.nn.Module, num_layers: int) -> None:
|
||||
"""TransformerEncoder is a stack of N encoder layers
|
||||
|
||||
Args:
|
||||
encoder_layer (torch.nn.Module): an instance of the TransformerEncoderLayer()
|
||||
num_layers (int): Number of layers to be stacked
|
||||
"""
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList(
|
||||
[copy.deepcopy(encoder_layer) for i in range(num_layers)]
|
||||
)
|
||||
self.num_layers = num_layers
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: torch.Tensor,
|
||||
pos_emb: torch.Tensor,
|
||||
src_key_padding_mask: Optional[torch.Tensor] = None,
|
||||
mask: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
"""_summary_
|
||||
|
||||
Args:
|
||||
src: the sequence to the encoder (required).
|
||||
pos_emb: Positional embedding tensor (required).
|
||||
mask: the mask for the src sequence (optional).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
|
||||
Returns:
|
||||
output: transformer encoded features
|
||||
"""
|
||||
output = src
|
||||
|
||||
for layer_index, mod in enumerate(self.layers):
|
||||
output = mod(
|
||||
output,
|
||||
pos_emb,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
src_mask=mask,
|
||||
)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class TransformerEncoderLayer(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
dim_feedforward: int,
|
||||
nhead: int,
|
||||
dropout_rate: float,
|
||||
):
|
||||
"""TransformerEncoderLayer is made up of self-attn and feedforward module
|
||||
|
||||
Args:
|
||||
d_model (int): The model size
|
||||
dim_feedforward (int): Dimension of ffw module
|
||||
nhead (int): Number of heads
|
||||
dropout_rate (float): Dropout rate
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.d_model = d_model
|
||||
|
||||
self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0)
|
||||
self.feed_forward = nn.Sequential(
|
||||
ScaledLinear(d_model, dim_feedforward),
|
||||
ActivationBalancer(channel_dim=-1),
|
||||
DoubleSwish(),
|
||||
nn.Dropout(dropout_rate),
|
||||
ScaledLinear(dim_feedforward, d_model, initial_scale=0.25),
|
||||
)
|
||||
|
||||
self.norm_final = BasicNorm(d_model)
|
||||
|
||||
self.balancer = ActivationBalancer(
|
||||
channel_dim=-1, min_positive=0.45, max_positive=0.55, max_abs=6.0
|
||||
)
|
||||
|
||||
self.dropout = nn.Dropout(dropout_rate)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: torch.Tensor,
|
||||
pos_emb: torch.Tensor,
|
||||
src_key_padding_mask: Optional[torch.Tensor] = None,
|
||||
src_mask: Optional[torch.Tensor] = None,
|
||||
cache=None,
|
||||
):
|
||||
"""
|
||||
Pass the input through the encoder layer.
|
||||
|
||||
Args:
|
||||
src: the sequence to the encoder layer (required).
|
||||
pos_emb: Positional embedding tensor (required).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
src_mask: the mask for the src sequence (optional).
|
||||
"""
|
||||
src_orig = src
|
||||
|
||||
src_att = self.self_attn(
|
||||
src,
|
||||
src,
|
||||
src,
|
||||
pos_emb=pos_emb,
|
||||
attn_mask=src_mask,
|
||||
key_padding_mask=src_key_padding_mask,
|
||||
)[0]
|
||||
|
||||
src = src + self.dropout(src_att)
|
||||
|
||||
# feed forward module
|
||||
src = src + self.dropout(self.feed_forward(src))
|
||||
|
||||
src = self.norm_final(self.balancer(src))
|
||||
|
||||
return src
|
||||
|
||||
|
||||
class RelPositionalEncoding(torch.nn.Module):
|
||||
"""Relative positional encoding module.
|
||||
|
||||
See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py
|
||||
|
||||
Args:
|
||||
d_model: Embedding dimension.
|
||||
dropout_rate: Dropout rate.
|
||||
max_len: Maximum input length.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None:
|
||||
"""Construct an PositionalEncoding object."""
|
||||
super(RelPositionalEncoding, self).__init__()
|
||||
if is_jit_tracing():
|
||||
# 10k frames correspond to ~100k ms, e.g., 100 seconds, i.e.,
|
||||
# It assumes that the maximum input won't have more than
|
||||
# 10k frames.
|
||||
#
|
||||
# TODO(fangjun): Use torch.jit.script() for this module
|
||||
max_len = 10000
|
||||
|
||||
self.d_model = d_model
|
||||
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
||||
self.pe = None
|
||||
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
||||
|
||||
def extend_pe(self, x: torch.Tensor, left_context: int = 0) -> None:
|
||||
"""Reset the positional encodings."""
|
||||
x_size_1 = x.size(1) + left_context
|
||||
if self.pe is not None:
|
||||
# self.pe contains both positive and negative parts
|
||||
# the length of self.pe is 2 * input_len - 1
|
||||
if self.pe.size(1) >= x_size_1 * 2 - 1:
|
||||
# Note: TorchScript doesn't implement operator== for torch.Device
|
||||
if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device):
|
||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||
return
|
||||
# Suppose `i` means to the position of query vector and `j` means the
|
||||
# position of key vector. We use position relative positions when keys
|
||||
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
||||
pe_positive = torch.zeros(x_size_1, self.d_model)
|
||||
pe_negative = torch.zeros(x_size_1, self.d_model)
|
||||
position = torch.arange(0, x_size_1, dtype=torch.float32).unsqueeze(1)
|
||||
div_term = torch.exp(
|
||||
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
||||
* -(math.log(10000.0) / self.d_model)
|
||||
)
|
||||
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
||||
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
||||
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
||||
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
||||
|
||||
# Reserve the order of positive indices and concat both positive and
|
||||
# negative indices. This is used to support the shifting trick
|
||||
# as in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
||||
pe_negative = pe_negative[1:].unsqueeze(0)
|
||||
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
||||
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
left_context: int = 0,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Add positional encoding.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (batch, time, `*`).
|
||||
left_context (int): left context (in frames) used during streaming decoding.
|
||||
this is used only in real streaming decoding, in other circumstances,
|
||||
it MUST be 0.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Encoded tensor (batch, time, `*`).
|
||||
torch.Tensor: Encoded tensor (batch, 2*time-1, `*`).
|
||||
|
||||
"""
|
||||
self.extend_pe(x, left_context)
|
||||
x_size_1 = x.size(1) + left_context
|
||||
pos_emb = self.pe[
|
||||
:,
|
||||
self.pe.size(1) // 2
|
||||
- x_size_1
|
||||
+ 1 : self.pe.size(1) // 2 # noqa E203
|
||||
+ x.size(1),
|
||||
]
|
||||
return self.dropout(x), self.dropout(pos_emb)
|
@ -1,186 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright (c) 2022 Xiaomi Corporation (authors: Xiaoyu Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This script converts several saved checkpoints
|
||||
# to a single one using model averaging.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from model import TransformerLM
|
||||
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.utils import AttributeDict, load_averaged_model, str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=11,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=5,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--vocab-size",
|
||||
type=int,
|
||||
default=500,
|
||||
help="Vocabulary size of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--embedding-dim",
|
||||
type=int,
|
||||
default=768,
|
||||
help="Embedding dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--encoder-dim",
|
||||
type=int,
|
||||
default=768,
|
||||
help="Encoder dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--dim_feedforward",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Hidden dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nhead",
|
||||
type=int,
|
||||
default=8,
|
||||
help="Number of attention heads",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-layers",
|
||||
type=int,
|
||||
default=16,
|
||||
help="Number of Transformer layers",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tie-weights",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="""True to share the weights between the input embedding layer and the
|
||||
last output linear layer
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="rnn_lm/exp",
|
||||
help="""It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="""True to save a model after applying torch.jit.script.
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = AttributeDict({})
|
||||
params.update(vars(args))
|
||||
|
||||
logging.info(params)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
logging.info("About to create model")
|
||||
model = TransformerLM(
|
||||
vocab_size=params.vocab_size,
|
||||
d_model=params.encoder_dim,
|
||||
embedding_dim=params.embedding_dim,
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
nhead=params.nhead,
|
||||
num_layers=params.num_layers,
|
||||
tie_weights=params.tie_weights,
|
||||
params=params,
|
||||
)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
model.to(device)
|
||||
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
model = load_averaged_model(
|
||||
params.exp_dir, model, params.epoch, params.avg, device
|
||||
)
|
||||
|
||||
model.to("cpu")
|
||||
model.eval()
|
||||
|
||||
if params.jit:
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
filename = params.exp_dir / "cpu_jit.pt"
|
||||
model.save(str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
else:
|
||||
logging.info("Not using torch.jit.script")
|
||||
# Save it using a format so that it can be loaded
|
||||
# by :func:`load_checkpoint`
|
||||
filename = params.exp_dir / "pretrained.pt"
|
||||
torch.save({"model": model.state_dict()}, str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
@ -1,114 +0,0 @@
|
||||
# Copyright (c) 2022 Xiaomi Corporation (authors: Xiaoyu Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from icefall.transformer_lm.encoder import Transformer
|
||||
from icefall.utils import AttributeDict, add_eos, add_sos, make_pad_mask
|
||||
|
||||
|
||||
class TransformerLM(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int,
|
||||
embedding_dim: int,
|
||||
d_model: int,
|
||||
dim_feedforward: int,
|
||||
nhead: int = 8,
|
||||
num_layers: int = 16,
|
||||
tie_weights: bool = True,
|
||||
dropout: float = 0.1,
|
||||
emb_dropout_rate: float = 0.0,
|
||||
params: AttributeDict = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.vocab_size = vocab_size
|
||||
self.params = params
|
||||
|
||||
self.input_embedding = torch.nn.Embedding(
|
||||
num_embeddings=vocab_size,
|
||||
embedding_dim=embedding_dim,
|
||||
)
|
||||
|
||||
self.encoder = Transformer(
|
||||
input_dim=embedding_dim,
|
||||
d_model=d_model,
|
||||
dim_feedforward=dim_feedforward,
|
||||
nhead=nhead,
|
||||
num_layers=num_layers,
|
||||
dropout_rate=dropout,
|
||||
)
|
||||
|
||||
self.output_linear = torch.nn.Linear(
|
||||
in_features=d_model, out_features=vocab_size
|
||||
)
|
||||
if tie_weights:
|
||||
logging.info("Tying weights")
|
||||
assert d_model == embedding_dim, (d_model, embedding_dim)
|
||||
self.output_linear.weight = self.input_embedding.weight
|
||||
else:
|
||||
logging.info("Not tying weights")
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
y: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
return_logits: bool = False,
|
||||
):
|
||||
"""Forward transformer language model
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tokens (B,L)
|
||||
y (torch.Tensor): Output tokens (with EOS appended) (B,L)
|
||||
x_lens (torch.Tensor): Length of input tokens before padding (B,)
|
||||
return_logits (bool, optional): Return logits instead of NLL
|
||||
|
||||
"""
|
||||
|
||||
x = self.input_embedding(x)
|
||||
|
||||
x, x_lens = self.encoder(x, x_lens)
|
||||
|
||||
logits = self.output_linear(x)
|
||||
|
||||
if return_logits:
|
||||
return logits
|
||||
|
||||
nll_loss = F.cross_entropy(
|
||||
logits.reshape(-1, self.vocab_size), y.reshape(-1), reduction="none"
|
||||
)
|
||||
|
||||
mask = make_pad_mask(x_lens).reshape(-1)
|
||||
nll_loss.masked_fill_(mask, 0)
|
||||
|
||||
return nll_loss
|
||||
|
||||
def score_token(self, x: torch.Tensor, x_lens: torch.Tensor, state=None):
|
||||
bs = x.size(0)
|
||||
|
||||
state = None
|
||||
logits = self.forward(x, x, x_lens, return_logits=True)
|
||||
index = torch.arange(bs)
|
||||
|
||||
last_logits = logits[index, x_lens - 1, :]
|
||||
|
||||
return last_logits.log_softmax(-1), state
|
@ -1 +0,0 @@
|
||||
../../egs/librispeech/ASR/pruned_transducer_stateless2/scaling.py
|
@ -1,609 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Xiaoyu Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
Usage:
|
||||
./transformer_lm/train.py \
|
||||
--start-epoch 0 \
|
||||
--world-size 2 \
|
||||
--num-epochs 1 \
|
||||
--use-fp16 0 \
|
||||
--num-layers 12 \
|
||||
--batch-size 400
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from dataset import get_dataloader
|
||||
from lhotse.utils import fix_random_seed
|
||||
from model import TransformerLM
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.dist import cleanup_dist, setup_dist
|
||||
from icefall.env import get_env_info
|
||||
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--world-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of GPUs for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--master-port",
|
||||
type=int,
|
||||
default=12354,
|
||||
help="Master port to use for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=30,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""Resume training from from this epoch.
|
||||
If it is positive, it will load checkpoint from
|
||||
exp_dir/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="transformer_lm/exp",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, logs, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-fp16",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to use half precision training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--batch-size",
|
||||
type=int,
|
||||
default=400,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-data",
|
||||
type=str,
|
||||
default="data/lm_training_bpe_500/sorted_lm_data.pt",
|
||||
help="LM training data",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-data-valid",
|
||||
type=str,
|
||||
default="data/lm_training_bpe_500/sorted_lm_data-valid.pt",
|
||||
help="LM validation data",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--vocab-size",
|
||||
type=int,
|
||||
default=500,
|
||||
help="Vocabulary size of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-layers",
|
||||
type=int,
|
||||
default=12,
|
||||
help="Number of Transformer layers in the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tie-weights",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="""True to share the weights between the input embedding layer and the
|
||||
last output linear layer
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--seed",
|
||||
type=int,
|
||||
default=42,
|
||||
help="The seed for random generators intended for reproducibility",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters."""
|
||||
|
||||
params = AttributeDict(
|
||||
{
|
||||
"max_sent_len": 200,
|
||||
"sos_id": 1,
|
||||
"eos_id": 1,
|
||||
"blank_id": 0,
|
||||
"lr": 1e-3,
|
||||
"weight_decay": 1e-6,
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 200,
|
||||
"reset_interval": 2000,
|
||||
"valid_interval": 1000,
|
||||
"nhead": 8,
|
||||
"embedding_dim": 768,
|
||||
"encoder_dim": 768,
|
||||
"dim_feedforward": 2048,
|
||||
"dropout": 0.1,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def load_checkpoint_if_available(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
) -> None:
|
||||
"""Load checkpoint from file.
|
||||
|
||||
If params.start_epoch is positive, it will load the checkpoint from
|
||||
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||
|
||||
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||
and `best_valid_loss` in `params`.
|
||||
|
||||
Args:
|
||||
params:
|
||||
The return value of :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
optimizer:
|
||||
The optimizer that we are using.
|
||||
scheduler:
|
||||
The learning rate scheduler we are using.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if params.start_epoch <= 0:
|
||||
return
|
||||
|
||||
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||
logging.info(f"Loading checkpoint: {filename}")
|
||||
saved_params = load_checkpoint(
|
||||
filename,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
keys = [
|
||||
"best_train_epoch",
|
||||
"best_valid_epoch",
|
||||
"batch_idx_train",
|
||||
"best_train_loss",
|
||||
"best_valid_loss",
|
||||
]
|
||||
for k in keys:
|
||||
params[k] = saved_params[k]
|
||||
|
||||
return saved_params
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save model, optimizer, scheduler and training stats to file.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||
save_checkpoint_impl(
|
||||
filename=filename,
|
||||
model=model,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.best_train_epoch == params.cur_epoch:
|
||||
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||
copyfile(src=filename, dst=best_train_filename)
|
||||
|
||||
if params.best_valid_epoch == params.cur_epoch:
|
||||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
|
||||
def compute_loss(
|
||||
model: nn.Module,
|
||||
x: torch.Tensor,
|
||||
y: torch.Tensor,
|
||||
sentence_lengths: torch.Tensor,
|
||||
is_training: bool,
|
||||
) -> Tuple[torch.Tensor, MetricsTracker]:
|
||||
"""Compute the negative log-likelihood loss given a model and its input.
|
||||
Args:
|
||||
model:
|
||||
The NN model,
|
||||
x:
|
||||
A 2-D tensor. Each row contains BPE token IDs for a sentence. Also,
|
||||
each row starts with SOS ID.
|
||||
y:
|
||||
A 2-D tensor. Each row is a shifted version of the corresponding row
|
||||
in `x` but ends with an EOS ID (before padding).
|
||||
sentence_lengths:
|
||||
A 1-D tensor containing number of tokens of each sentence
|
||||
before padding.
|
||||
is_training:
|
||||
True for training. False for validation.
|
||||
"""
|
||||
with torch.set_grad_enabled(is_training):
|
||||
device = model.device
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
sentence_lengths = sentence_lengths.to(device)
|
||||
|
||||
nll = model(x, y, sentence_lengths)
|
||||
loss = nll.sum()
|
||||
|
||||
num_tokens = sentence_lengths.sum().item()
|
||||
|
||||
loss_info = MetricsTracker()
|
||||
# Note: Due to how MetricsTracker() is designed,
|
||||
# we use "frames" instead of "num_tokens" as a key here
|
||||
loss_info["frames"] = num_tokens
|
||||
loss_info["loss"] = loss.detach().item()
|
||||
return loss, loss_info
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> MetricsTracker:
|
||||
"""Run the validation process. The validation loss
|
||||
is saved in `params.valid_loss`.
|
||||
"""
|
||||
model.eval()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
x, y, sentence_lengths = batch
|
||||
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||
loss, loss_info = compute_loss(
|
||||
model=model,
|
||||
x=x,
|
||||
y=y,
|
||||
sentence_lengths=sentence_lengths,
|
||||
is_training=False,
|
||||
)
|
||||
|
||||
assert loss.requires_grad is False
|
||||
tot_loss = tot_loss + loss_info
|
||||
|
||||
if world_size > 1:
|
||||
tot_loss.reduce(loss.device)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
if loss_value < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = loss_value
|
||||
|
||||
return tot_loss
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
The training loss from the mean of all sentences is saved in
|
||||
`params.train_loss`. It runs the validation process every
|
||||
`params.valid_interval` batches.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer we are using.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
"""
|
||||
model.train()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
x, y, sentence_lengths = batch
|
||||
batch_size = x.size(0)
|
||||
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||
loss, loss_info = compute_loss(
|
||||
model=model,
|
||||
x=x,
|
||||
y=y,
|
||||
sentence_lengths=sentence_lengths,
|
||||
is_training=True,
|
||||
)
|
||||
|
||||
# summary stats
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
# Note: "frames" here means "num_tokens"
|
||||
this_batch_ppl = math.exp(loss_info["loss"] / loss_info["frames"])
|
||||
tot_ppl = math.exp(tot_loss["loss"] / tot_loss["frames"])
|
||||
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}, ppl: {this_batch_ppl}] "
|
||||
f"tot_loss[{tot_loss}, ppl: {tot_ppl}], "
|
||||
f"batch size: {batch_size}"
|
||||
)
|
||||
|
||||
if tb_writer is not None:
|
||||
loss_info.write_summary(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
)
|
||||
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||
|
||||
tb_writer.add_scalar(
|
||||
"train/current_ppl", this_batch_ppl, params.batch_idx_train
|
||||
)
|
||||
|
||||
tb_writer.add_scalar("train/tot_ppl", tot_ppl, params.batch_idx_train)
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||
logging.info("Computing validation loss")
|
||||
|
||||
valid_info = compute_validation_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
|
||||
valid_ppl = math.exp(valid_info["loss"] / valid_info["frames"])
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, validation: {valid_info}, "
|
||||
f"ppl: {valid_ppl}"
|
||||
)
|
||||
|
||||
if tb_writer is not None:
|
||||
valid_info.write_summary(
|
||||
tb_writer, "train/valid_", params.batch_idx_train
|
||||
)
|
||||
|
||||
tb_writer.add_scalar(
|
||||
"train/valid_ppl", valid_ppl, params.batch_idx_train
|
||||
)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
params.train_loss = loss_value
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
is_distributed = world_size > 1
|
||||
|
||||
fix_random_seed(params.seed)
|
||||
if is_distributed:
|
||||
setup_dist(rank, world_size, params.master_port)
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info("Training started")
|
||||
logging.info(params)
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", rank)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
logging.info("About to create model")
|
||||
model = TransformerLM(
|
||||
vocab_size=params.vocab_size,
|
||||
d_model=params.encoder_dim,
|
||||
embedding_dim=params.embedding_dim,
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
nhead=params.nhead,
|
||||
num_layers=params.num_layers,
|
||||
tie_weights=params.tie_weights,
|
||||
params=params,
|
||||
)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||
|
||||
model.to(device)
|
||||
if is_distributed:
|
||||
model = DDP(model, device_ids=[rank])
|
||||
|
||||
model.device = device
|
||||
|
||||
optimizer = optim.Adam(
|
||||
model.parameters(),
|
||||
lr=params.lr,
|
||||
weight_decay=params.weight_decay,
|
||||
)
|
||||
if checkpoints:
|
||||
logging.info("Load optimizer state_dict from checkpoint")
|
||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||
|
||||
logging.info(f"Loading LM training data from {params.lm_data}")
|
||||
train_dl = get_dataloader(
|
||||
filename=params.lm_data,
|
||||
is_distributed=is_distributed,
|
||||
params=params,
|
||||
)
|
||||
|
||||
logging.info(f"Loading LM validation data from {params.lm_data_valid}")
|
||||
valid_dl = get_dataloader(
|
||||
filename=params.lm_data_valid,
|
||||
is_distributed=is_distributed,
|
||||
params=params,
|
||||
)
|
||||
|
||||
# Note: No learning rate scheduler is used here
|
||||
for epoch in range(params.start_epoch, params.num_epochs):
|
||||
if is_distributed:
|
||||
train_dl.sampler.set_epoch(epoch)
|
||||
|
||||
params.cur_epoch = epoch
|
||||
|
||||
train_one_epoch(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
)
|
||||
|
||||
save_checkpoint(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
if is_distributed:
|
||||
torch.distributed.barrier()
|
||||
cleanup_dist()
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
if world_size > 1:
|
||||
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||
else:
|
||||
run(rank=0, world_size=1, args=args)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user