diff --git a/egs/aishell/ASR/RESULTS.md b/egs/aishell/ASR/RESULTS.md index 355d1516d..5bbf6342e 100644 --- a/egs/aishell/ASR/RESULTS.md +++ b/egs/aishell/ASR/RESULTS.md @@ -941,3 +941,56 @@ The best decoding results (CER) are listed below, we got this results by averagi ||test| |--|--| |CER| 10.16% | + +### Aishell training results (zipformer + CR-CTC) + +See for more details. + +[zipformer](./zipformer) + +#### Non-streaming + +##### medium-scale model, number of model parameters: 66218471, i.e., 66.2 M + +| decoding method | test | dev | comment | +|--------------------------------------|------------|------------|---------------------| +| ctc-greedy-search | 3.96 | 3.74 | --epoch 50 --avg 24 | + +The training command using 4 32G-V100 GPUs is: +```bash +export CUDA_VISIBLE_DEVICES="0,1" +./zipformer/train.py \ + --world-size 2 \ + --num-epochs 60 \ + --start-epoch 1 \ + --use-fp16 1 \ + --context-size 1 \ + --enable-musan 0 \ + --exp-dir zipformer/exp \ + --max-duration 500 \ + --base-lr 0.045 \ + --lr-batches 7500 \ + --lr-epochs 18 \ + --spec-aug-time-warp-factor 20 \ + --use-ctc 1 \ + --use-cr-ctc 1 \ + --use-transducer 0 \ + --enable-spec-aug 0 \ + --cr-loss-scale 0.2 +``` + +The decoding command is: +```bash +export CUDA_VISIBLE_DEVICES="0" +for m in ctc-greedy-search; do + ./zipformer/ctc_decode.py \ + --epoch 50 \ + --avg 24 \ + --exp-dir zipformer/exp \ + --use-cr-ctc 1 \ + --use-ctc 1 \ + --use-transducer 0 \ + --max-duration 600 \ + --decoding-method $m +done +``` \ No newline at end of file