mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-27 10:44:19 +00:00
fix for black
This commit is contained in:
parent
809bdb07f0
commit
c0a5601c3d
@ -155,8 +155,7 @@ class MultiheadAttention(nn.Module):
|
|||||||
self.encoder_decoder_attention = encoder_decoder_attention
|
self.encoder_decoder_attention = encoder_decoder_attention
|
||||||
|
|
||||||
assert not self.self_attention or self.qkv_same_dim, (
|
assert not self.self_attention or self.qkv_same_dim, (
|
||||||
"Self-attention requires query, key and "
|
"Self-attention requires query, key and value to be of the same size"
|
||||||
"value to be of the same size"
|
|
||||||
)
|
)
|
||||||
|
|
||||||
self.k_proj = quant_noise(
|
self.k_proj = quant_noise(
|
||||||
@ -219,35 +218,57 @@ class MultiheadAttention(nn.Module):
|
|||||||
end_idx = (i + 1) * self.head_dim
|
end_idx = (i + 1) * self.head_dim
|
||||||
k_proj_heads_norm.append(
|
k_proj_heads_norm.append(
|
||||||
torch.sum(
|
torch.sum(
|
||||||
torch.abs(self.k_proj.weight[start_idx:end_idx,])
|
torch.abs(
|
||||||
|
self.k_proj.weight[
|
||||||
|
start_idx:end_idx,
|
||||||
|
]
|
||||||
|
)
|
||||||
).tolist()
|
).tolist()
|
||||||
+ torch.sum(
|
+ torch.sum(
|
||||||
torch.abs(self.k_proj.bias[start_idx:end_idx])
|
torch.abs(
|
||||||
|
self.k_proj.bias[
|
||||||
|
start_idx:end_idx
|
||||||
|
]
|
||||||
|
)
|
||||||
).tolist()
|
).tolist()
|
||||||
)
|
)
|
||||||
q_proj_heads_norm.append(
|
q_proj_heads_norm.append(
|
||||||
torch.sum(
|
torch.sum(
|
||||||
torch.abs(self.q_proj.weight[start_idx:end_idx,])
|
torch.abs(
|
||||||
|
self.q_proj.weight[
|
||||||
|
start_idx:end_idx,
|
||||||
|
]
|
||||||
|
)
|
||||||
).tolist()
|
).tolist()
|
||||||
+ torch.sum(
|
+ torch.sum(
|
||||||
torch.abs(self.q_proj.bias[start_idx:end_idx])
|
torch.abs(
|
||||||
|
self.q_proj.bias[
|
||||||
|
start_idx:end_idx
|
||||||
|
]
|
||||||
|
)
|
||||||
).tolist()
|
).tolist()
|
||||||
)
|
)
|
||||||
v_proj_heads_norm.append(
|
v_proj_heads_norm.append(
|
||||||
torch.sum(
|
torch.sum(
|
||||||
torch.abs(self.v_proj.weight[start_idx:end_idx,])
|
torch.abs(
|
||||||
|
self.v_proj.weight[
|
||||||
|
start_idx:end_idx,
|
||||||
|
]
|
||||||
|
)
|
||||||
).tolist()
|
).tolist()
|
||||||
+ torch.sum(
|
+ torch.sum(
|
||||||
torch.abs(self.v_proj.bias[start_idx:end_idx])
|
torch.abs(
|
||||||
|
self.v_proj.bias[
|
||||||
|
start_idx:end_idx
|
||||||
|
]
|
||||||
|
)
|
||||||
).tolist()
|
).tolist()
|
||||||
)
|
)
|
||||||
|
|
||||||
heads_norm = []
|
heads_norm = []
|
||||||
for i in range(self.num_heads):
|
for i in range(self.num_heads):
|
||||||
heads_norm.append(
|
heads_norm.append(
|
||||||
k_proj_heads_norm[i]
|
k_proj_heads_norm[i] + q_proj_heads_norm[i] + v_proj_heads_norm[i]
|
||||||
+ q_proj_heads_norm[i]
|
|
||||||
+ v_proj_heads_norm[i]
|
|
||||||
)
|
)
|
||||||
|
|
||||||
sorted_head_index = sorted(
|
sorted_head_index = sorted(
|
||||||
@ -271,19 +292,29 @@ class MultiheadAttention(nn.Module):
|
|||||||
|
|
||||||
for ele in reserve_head_index:
|
for ele in reserve_head_index:
|
||||||
start_idx, end_idx = ele
|
start_idx, end_idx = ele
|
||||||
new_q_weight.append(self.q_proj.weight[start_idx:end_idx,])
|
new_q_weight.append(
|
||||||
|
self.q_proj.weight[
|
||||||
|
start_idx:end_idx,
|
||||||
|
]
|
||||||
|
)
|
||||||
new_q_bias.append(self.q_proj.bias[start_idx:end_idx])
|
new_q_bias.append(self.q_proj.bias[start_idx:end_idx])
|
||||||
|
|
||||||
new_k_weight.append(self.k_proj.weight[start_idx:end_idx,])
|
new_k_weight.append(
|
||||||
|
self.k_proj.weight[
|
||||||
|
start_idx:end_idx,
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
new_k_bias.append(self.k_proj.bias[start_idx:end_idx])
|
new_k_bias.append(self.k_proj.bias[start_idx:end_idx])
|
||||||
|
|
||||||
new_v_weight.append(self.v_proj.weight[start_idx:end_idx,])
|
new_v_weight.append(
|
||||||
|
self.v_proj.weight[
|
||||||
|
start_idx:end_idx,
|
||||||
|
]
|
||||||
|
)
|
||||||
new_v_bias.append(self.v_proj.bias[start_idx:end_idx])
|
new_v_bias.append(self.v_proj.bias[start_idx:end_idx])
|
||||||
|
|
||||||
new_out_proj_weight.append(
|
new_out_proj_weight.append(self.out_proj.weight[:, start_idx:end_idx])
|
||||||
self.out_proj.weight[:, start_idx:end_idx]
|
|
||||||
)
|
|
||||||
|
|
||||||
new_q_weight = torch.cat(new_q_weight).detach()
|
new_q_weight = torch.cat(new_q_weight).detach()
|
||||||
new_k_weight = torch.cat(new_k_weight).detach()
|
new_k_weight = torch.cat(new_k_weight).detach()
|
||||||
@ -330,9 +361,7 @@ class MultiheadAttention(nn.Module):
|
|||||||
) -> Tuple[Optional[Tensor], Optional[Tensor]]:
|
) -> Tuple[Optional[Tensor], Optional[Tensor]]:
|
||||||
if attn_mask is not None:
|
if attn_mask is not None:
|
||||||
shape = attn_mask.size()[:-1] + torch.Size([1])
|
shape = attn_mask.size()[:-1] + torch.Size([1])
|
||||||
attn_mask = torch.cat(
|
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(shape)], dim=-1)
|
||||||
[attn_mask, attn_mask.new_zeros(shape)], dim=-1
|
|
||||||
)
|
|
||||||
if key_padding_mask is not None:
|
if key_padding_mask is not None:
|
||||||
shape = key_padding_mask.size()[:-1] + torch.Size([1])
|
shape = key_padding_mask.size()[:-1] + torch.Size([1])
|
||||||
key_padding_mask = torch.cat(
|
key_padding_mask = torch.cat(
|
||||||
@ -388,9 +417,7 @@ class MultiheadAttention(nn.Module):
|
|||||||
key: Optional[Tensor],
|
key: Optional[Tensor],
|
||||||
value: Optional[Tensor],
|
value: Optional[Tensor],
|
||||||
key_padding_mask: Optional[Tensor] = None,
|
key_padding_mask: Optional[Tensor] = None,
|
||||||
incremental_state: Optional[
|
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
|
||||||
Dict[str, Dict[str, Optional[Tensor]]]
|
|
||||||
] = None,
|
|
||||||
need_weights: bool = True,
|
need_weights: bool = True,
|
||||||
static_kv: bool = False,
|
static_kv: bool = False,
|
||||||
attn_mask: Optional[Tensor] = None,
|
attn_mask: Optional[Tensor] = None,
|
||||||
@ -455,9 +482,7 @@ class MultiheadAttention(nn.Module):
|
|||||||
self.embed_dim,
|
self.embed_dim,
|
||||||
self.num_heads,
|
self.num_heads,
|
||||||
torch.empty([0]),
|
torch.empty([0]),
|
||||||
torch.cat(
|
torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)),
|
||||||
(self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)
|
|
||||||
),
|
|
||||||
self.bias_k,
|
self.bias_k,
|
||||||
self.bias_v,
|
self.bias_v,
|
||||||
self.add_zero_attn,
|
self.add_zero_attn,
|
||||||
@ -465,9 +490,7 @@ class MultiheadAttention(nn.Module):
|
|||||||
self.out_proj.weight,
|
self.out_proj.weight,
|
||||||
self.out_proj.bias,
|
self.out_proj.bias,
|
||||||
self.training or self.dropout_module.apply_during_inference,
|
self.training or self.dropout_module.apply_during_inference,
|
||||||
key_padding_mask.bool()
|
key_padding_mask.bool() if key_padding_mask is not None else None,
|
||||||
if key_padding_mask is not None
|
|
||||||
else None,
|
|
||||||
need_weights,
|
need_weights,
|
||||||
attn_mask,
|
attn_mask,
|
||||||
use_separate_proj_weight=True,
|
use_separate_proj_weight=True,
|
||||||
@ -482,10 +505,7 @@ class MultiheadAttention(nn.Module):
|
|||||||
# previous time steps are cached - no need to recompute
|
# previous time steps are cached - no need to recompute
|
||||||
# key and value if they are static
|
# key and value if they are static
|
||||||
if static_kv:
|
if static_kv:
|
||||||
assert (
|
assert self.encoder_decoder_attention and not self.self_attention
|
||||||
self.encoder_decoder_attention
|
|
||||||
and not self.self_attention
|
|
||||||
)
|
|
||||||
key = value = None
|
key = value = None
|
||||||
else:
|
else:
|
||||||
saved_state = None
|
saved_state = None
|
||||||
@ -503,9 +523,9 @@ class MultiheadAttention(nn.Module):
|
|||||||
else:
|
else:
|
||||||
if self.beam_size > 1 and bsz == key.size(1):
|
if self.beam_size > 1 and bsz == key.size(1):
|
||||||
# key is [T, bsz*beam_size, C], reduce to [T, bsz, C]
|
# key is [T, bsz*beam_size, C], reduce to [T, bsz, C]
|
||||||
key = key.view(
|
key = key.view(key.size(0), -1, self.beam_size, key.size(2))[
|
||||||
key.size(0), -1, self.beam_size, key.size(2)
|
:, :, 0, :
|
||||||
)[:, :, 0, :]
|
]
|
||||||
if key_padding_mask is not None:
|
if key_padding_mask is not None:
|
||||||
key_padding_mask = key_padding_mask.view(
|
key_padding_mask = key_padding_mask.view(
|
||||||
-1, self.beam_size, key_padding_mask.size(1)
|
-1, self.beam_size, key_padding_mask.size(1)
|
||||||
@ -552,9 +572,7 @@ class MultiheadAttention(nn.Module):
|
|||||||
_prev_key = saved_state["prev_key"]
|
_prev_key = saved_state["prev_key"]
|
||||||
assert _prev_key is not None
|
assert _prev_key is not None
|
||||||
kv_bsz = _prev_key.size(0)
|
kv_bsz = _prev_key.size(0)
|
||||||
prev_key = _prev_key.view(
|
prev_key = _prev_key.view(kv_bsz * self.num_heads, -1, self.head_dim)
|
||||||
kv_bsz * self.num_heads, -1, self.head_dim
|
|
||||||
)
|
|
||||||
if static_kv:
|
if static_kv:
|
||||||
k = prev_key
|
k = prev_key
|
||||||
else:
|
else:
|
||||||
@ -585,18 +603,14 @@ class MultiheadAttention(nn.Module):
|
|||||||
static_kv=static_kv,
|
static_kv=static_kv,
|
||||||
)
|
)
|
||||||
|
|
||||||
saved_state["prev_key"] = k.view(
|
saved_state["prev_key"] = k.view(kv_bsz, self.num_heads, -1, self.head_dim)
|
||||||
kv_bsz, self.num_heads, -1, self.head_dim
|
|
||||||
)
|
|
||||||
saved_state["prev_value"] = v.view(
|
saved_state["prev_value"] = v.view(
|
||||||
kv_bsz, self.num_heads, -1, self.head_dim
|
kv_bsz, self.num_heads, -1, self.head_dim
|
||||||
)
|
)
|
||||||
saved_state["prev_key_padding_mask"] = key_padding_mask
|
saved_state["prev_key_padding_mask"] = key_padding_mask
|
||||||
# In this branch incremental_state is never None
|
# In this branch incremental_state is never None
|
||||||
assert incremental_state is not None
|
assert incremental_state is not None
|
||||||
incremental_state = self._set_input_buffer(
|
incremental_state = self._set_input_buffer(incremental_state, saved_state)
|
||||||
incremental_state, saved_state
|
|
||||||
)
|
|
||||||
assert k is not None
|
assert k is not None
|
||||||
assert k.size(1) == src_len
|
assert k.size(1) == src_len
|
||||||
|
|
||||||
@ -622,14 +636,10 @@ class MultiheadAttention(nn.Module):
|
|||||||
q.view((kv_bsz, -1, self.num_heads) + q.size()[1:]),
|
q.view((kv_bsz, -1, self.num_heads) + q.size()[1:]),
|
||||||
k.view((kv_bsz, self.num_heads) + k.size()[1:]),
|
k.view((kv_bsz, self.num_heads) + k.size()[1:]),
|
||||||
)
|
)
|
||||||
attn_weights = attn_weights.reshape(
|
attn_weights = attn_weights.reshape((-1,) + attn_weights.size()[-2:])
|
||||||
(-1,) + attn_weights.size()[-2:]
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
attn_weights = torch.bmm(q, k.transpose(1, 2))
|
attn_weights = torch.bmm(q, k.transpose(1, 2))
|
||||||
attn_weights = self.apply_sparse_mask(
|
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
|
||||||
attn_weights, tgt_len, src_len, bsz
|
|
||||||
)
|
|
||||||
|
|
||||||
assert list(attn_weights.size()) == [
|
assert list(attn_weights.size()) == [
|
||||||
bsz * self.num_heads,
|
bsz * self.num_heads,
|
||||||
@ -645,9 +655,7 @@ class MultiheadAttention(nn.Module):
|
|||||||
|
|
||||||
if key_padding_mask is not None:
|
if key_padding_mask is not None:
|
||||||
# don't attend to padding symbols
|
# don't attend to padding symbols
|
||||||
attn_weights = attn_weights.view(
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
||||||
bsz, self.num_heads, tgt_len, src_len
|
|
||||||
)
|
|
||||||
if not is_tpu:
|
if not is_tpu:
|
||||||
attn_weights = attn_weights.view(
|
attn_weights = attn_weights.view(
|
||||||
kv_bsz, -1, self.num_heads, tgt_len, src_len
|
kv_bsz, -1, self.num_heads, tgt_len, src_len
|
||||||
@ -661,13 +669,9 @@ class MultiheadAttention(nn.Module):
|
|||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
attn_weights = attn_weights.transpose(0, 2)
|
attn_weights = attn_weights.transpose(0, 2)
|
||||||
attn_weights = attn_weights.masked_fill(
|
attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf"))
|
||||||
key_padding_mask, float("-inf")
|
|
||||||
)
|
|
||||||
attn_weights = attn_weights.transpose(0, 2)
|
attn_weights = attn_weights.transpose(0, 2)
|
||||||
attn_weights = attn_weights.view(
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||||||
bsz * self.num_heads, tgt_len, src_len
|
|
||||||
)
|
|
||||||
|
|
||||||
if before_softmax:
|
if before_softmax:
|
||||||
return attn_weights, v
|
return attn_weights, v
|
||||||
@ -712,11 +716,7 @@ class MultiheadAttention(nn.Module):
|
|||||||
# the transpose is a no-op copy before view, thus unnecessary
|
# the transpose is a no-op copy before view, thus unnecessary
|
||||||
attn = attn.contiguous().view(tgt_len, bsz, self.embed_dim)
|
attn = attn.contiguous().view(tgt_len, bsz, self.embed_dim)
|
||||||
else:
|
else:
|
||||||
attn = (
|
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, self.embed_dim)
|
||||||
attn.transpose(0, 1)
|
|
||||||
.contiguous()
|
|
||||||
.view(tgt_len, bsz, self.embed_dim)
|
|
||||||
)
|
|
||||||
attn = self.out_proj(attn)
|
attn = self.out_proj(attn)
|
||||||
attn_weights: Optional[Tensor] = None
|
attn_weights: Optional[Tensor] = None
|
||||||
if need_weights:
|
if need_weights:
|
||||||
@ -786,9 +786,7 @@ class MultiheadAttention(nn.Module):
|
|||||||
input_buffer_k = input_buffer[k]
|
input_buffer_k = input_buffer[k]
|
||||||
if input_buffer_k is not None:
|
if input_buffer_k is not None:
|
||||||
if self.encoder_decoder_attention:
|
if self.encoder_decoder_attention:
|
||||||
if input_buffer_k.size(
|
if input_buffer_k.size(0) * self.beam_size == new_order.size(0):
|
||||||
0
|
|
||||||
) * self.beam_size == new_order.size(0):
|
|
||||||
return incremental_state
|
return incremental_state
|
||||||
elif self.beam_size > 1:
|
elif self.beam_size > 1:
|
||||||
input_buffer[k] = input_buffer_k.index_select(
|
input_buffer[k] = input_buffer_k.index_select(
|
||||||
@ -797,16 +795,10 @@ class MultiheadAttention(nn.Module):
|
|||||||
// self.beam_size,
|
// self.beam_size,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
input_buffer[k] = input_buffer_k.index_select(
|
input_buffer[k] = input_buffer_k.index_select(0, new_order)
|
||||||
0, new_order
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
input_buffer[k] = input_buffer_k.index_select(
|
input_buffer[k] = input_buffer_k.index_select(0, new_order)
|
||||||
0, new_order
|
incremental_state = self._set_input_buffer(incremental_state, input_buffer)
|
||||||
)
|
|
||||||
incremental_state = self._set_input_buffer(
|
|
||||||
incremental_state, input_buffer
|
|
||||||
)
|
|
||||||
return incremental_state
|
return incremental_state
|
||||||
|
|
||||||
def set_beam_size(self, beam_size):
|
def set_beam_size(self, beam_size):
|
||||||
@ -829,13 +821,9 @@ class MultiheadAttention(nn.Module):
|
|||||||
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
|
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
|
||||||
buffer: Dict[str, Optional[Tensor]],
|
buffer: Dict[str, Optional[Tensor]],
|
||||||
):
|
):
|
||||||
return self.set_incremental_state(
|
return self.set_incremental_state(incremental_state, "attn_state", buffer)
|
||||||
incremental_state, "attn_state", buffer
|
|
||||||
)
|
|
||||||
|
|
||||||
def apply_sparse_mask(
|
def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int):
|
||||||
self, attn_weights, tgt_len: int, src_len: int, bsz: int
|
|
||||||
):
|
|
||||||
return attn_weights
|
return attn_weights
|
||||||
|
|
||||||
def upgrade_state_dict_named(self, state_dict, name):
|
def upgrade_state_dict_named(self, state_dict, name):
|
||||||
@ -847,27 +835,19 @@ class MultiheadAttention(nn.Module):
|
|||||||
# in_proj_weight used to be q + k + v with same dimensions
|
# in_proj_weight used to be q + k + v with same dimensions
|
||||||
dim = int(state_dict[k].shape[0] / 3)
|
dim = int(state_dict[k].shape[0] / 3)
|
||||||
items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim]
|
items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim]
|
||||||
items_to_add[prefix + "k_proj.weight"] = state_dict[k][
|
items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim]
|
||||||
dim : 2 * dim
|
items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :]
|
||||||
]
|
|
||||||
items_to_add[prefix + "v_proj.weight"] = state_dict[k][
|
|
||||||
2 * dim :
|
|
||||||
]
|
|
||||||
|
|
||||||
keys_to_remove.append(k)
|
keys_to_remove.append(k)
|
||||||
|
|
||||||
k_bias = prefix + "in_proj_bias"
|
k_bias = prefix + "in_proj_bias"
|
||||||
if k_bias in state_dict.keys():
|
if k_bias in state_dict.keys():
|
||||||
dim = int(state_dict[k].shape[0] / 3)
|
dim = int(state_dict[k].shape[0] / 3)
|
||||||
items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][
|
items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim]
|
||||||
:dim
|
|
||||||
]
|
|
||||||
items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][
|
items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][
|
||||||
dim : 2 * dim
|
dim : 2 * dim
|
||||||
]
|
]
|
||||||
items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][
|
items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :]
|
||||||
2 * dim :
|
|
||||||
]
|
|
||||||
|
|
||||||
keys_to_remove.append(prefix + "in_proj_bias")
|
keys_to_remove.append(prefix + "in_proj_bias")
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user