mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-12 03:22:19 +00:00
add more test cases
This commit is contained in:
parent
0526e8fcd8
commit
c0804166ea
@ -37,34 +37,61 @@ def test_parse_bpe_timestamps_and_texts():
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(str(lang_dir / "bpe.model"))
|
||||
|
||||
text = "HELLO WORLD"
|
||||
token_ids = sp.encode(text, out_type=int)
|
||||
text_1 = "HELLO WORLD"
|
||||
token_ids_1 = sp.encode(text_1, out_type=int)
|
||||
# out_type=str: ['_HE', 'LL', 'O', '_WORLD']
|
||||
# out_type=int: [22, 58, 24, 425]
|
||||
|
||||
# [22, 22, 58, 24, 0, 0, 425, 425, 425, 0, 0]
|
||||
labels = (
|
||||
token_ids[0:1] * 2 + token_ids[1:3] + [0] * 2 + token_ids[3:4] * 3 + [0] * 2
|
||||
)
|
||||
# [22, 0, 58, 24, 0, 0, 425, 0, 0, 0, 0]
|
||||
aux_labels = (
|
||||
token_ids[0:1]
|
||||
+ [0]
|
||||
+ token_ids[1:3]
|
||||
labels_1 = (
|
||||
token_ids_1[0:1] * 2
|
||||
+ token_ids_1[1:3]
|
||||
+ [0] * 2
|
||||
+ token_ids[3:4]
|
||||
+ token_ids_1[3:4] * 3
|
||||
+ [0] * 2
|
||||
)
|
||||
# [22, 0, 58, 24, 0, 0, 425, 0, 0, 0, 0, -1]
|
||||
aux_labels_1 = (
|
||||
token_ids_1[0:1]
|
||||
+ [0]
|
||||
+ token_ids_1[1:3]
|
||||
+ [0] * 2
|
||||
+ token_ids_1[3:4]
|
||||
+ [0] * 4
|
||||
+ [-1]
|
||||
)
|
||||
fsa_1 = k2.linear_fsa(labels_1)
|
||||
fsa_1.aux_labels = torch.tensor(aux_labels_1).to(torch.int32)
|
||||
|
||||
fsa = k2.linear_fsa(labels)
|
||||
fsa.aux_labels = torch.tensor(aux_labels).to(torch.int32)
|
||||
text_2 = "SAY GOODBYE"
|
||||
token_ids_2 = sp.encode(text_2, out_type=int)
|
||||
# out_type=str: ['_SAY', '_GOOD', 'B', 'Y', 'E']
|
||||
# out_type=int: [289, 286, 41, 16, 11]
|
||||
|
||||
fsa_vec = k2.create_fsa_vec([fsa])
|
||||
# [289, 0, 0, 286, 286, 41, 16, 11, 0, 0]
|
||||
labels_2 = (
|
||||
token_ids_2[0:1] + [0] * 2 + token_ids_2[1:2] * 2 + token_ids_2[2:5] + [0] * 2
|
||||
)
|
||||
# [289, 0, 0, 286, 0, 41, 16, 11, 0, 0, -1]
|
||||
aux_labels_2 = (
|
||||
token_ids_2[0:1]
|
||||
+ [0] * 2
|
||||
+ token_ids_2[1:2]
|
||||
+ [0]
|
||||
+ token_ids_2[2:5]
|
||||
+ [0] * 2
|
||||
+ [-1]
|
||||
)
|
||||
fsa_2 = k2.linear_fsa(labels_2)
|
||||
fsa_2.aux_labels = torch.tensor(aux_labels_2).to(torch.int32)
|
||||
|
||||
fsa_vec = k2.create_fsa_vec([fsa_1, fsa_2])
|
||||
|
||||
utt_index_pairs, utt_words = parse_bpe_timestamps_and_texts(fsa_vec, sp)
|
||||
assert utt_index_pairs[0] == [(0, 3), (6, 8)], utt_index_pairs[0]
|
||||
assert utt_words[0] == ["HELLO", "WORLD"], utt_words[0]
|
||||
assert utt_index_pairs[1] == [(0, 0), (3, 7)], utt_index_pairs[1]
|
||||
assert utt_words[1] == ["SAY", "GOODBYE"], utt_words[1]
|
||||
|
||||
|
||||
def test_parse_timestamps_and_texts():
|
||||
@ -77,31 +104,49 @@ def test_parse_timestamps_and_texts():
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(str(lang_dir / "bpe.model"))
|
||||
word_table = lexicon.word_table
|
||||
|
||||
text = "HELLO WORLD"
|
||||
token_ids = sp.encode(text, out_type=int)
|
||||
text_1 = "HELLO WORLD"
|
||||
token_ids_1 = sp.encode(text_1, out_type=int)
|
||||
# out_type=str: ['_HE', 'LL', 'O', '_WORLD']
|
||||
# out_type=int: [22, 58, 24, 425]
|
||||
|
||||
word_table = lexicon.word_table
|
||||
word_ids = [word_table[s] for s in text.split()] # [79677, 196937]
|
||||
|
||||
word_ids_1 = [word_table[s] for s in text_1.split()] # [79677, 196937]
|
||||
# [22, 22, 58, 24, 0, 0, 425, 425, 425, 0, 0]
|
||||
labels = (
|
||||
token_ids[0:1] * 2 + token_ids[1:3] + [0] * 2 + token_ids[3:4] * 3 + [0] * 2
|
||||
labels_1 = (
|
||||
token_ids_1[0:1] * 2
|
||||
+ token_ids_1[1:3]
|
||||
+ [0] * 2
|
||||
+ token_ids_1[3:4] * 3
|
||||
+ [0] * 2
|
||||
)
|
||||
|
||||
# [[79677], [], [], [], [], [], [196937], [], [], [], [], []]
|
||||
aux_labels = [word_ids[0:1]] + [[]] * 5 + [word_ids[1:2]] + [[]] * 5
|
||||
aux_labels_1 = [word_ids_1[0:1]] + [[]] * 5 + [word_ids_1[1:2]] + [[]] * 5
|
||||
|
||||
fsa = k2.linear_fsa(labels)
|
||||
fsa.aux_labels = k2.RaggedTensor(aux_labels)
|
||||
fsa_1 = k2.linear_fsa(labels_1)
|
||||
fsa_1.aux_labels = k2.RaggedTensor(aux_labels_1)
|
||||
|
||||
fsa_vec = k2.create_fsa_vec([fsa, fsa])
|
||||
text_2 = "SAY GOODBYE"
|
||||
token_ids_2 = sp.encode(text_2, out_type=int)
|
||||
# out_type=str: ['_SAY', '_GOOD', 'B', 'Y', 'E']
|
||||
# out_type=int: [289, 286, 41, 16, 11]
|
||||
word_ids_2 = [word_table[s] for s in text_2.split()] # [154967, 72079]
|
||||
# [289, 0, 0, 286, 286, 41, 16, 11, 0, 0]
|
||||
labels_2 = (
|
||||
token_ids_2[0:1] + [0] * 2 + token_ids_2[1:2] * 2 + token_ids_2[2:5] + [0] * 2
|
||||
)
|
||||
# [[154967], [], [], [72079], [], [], [], [], [], [], []]
|
||||
aux_labels_2 = [word_ids_2[0:1]] + [[]] * 2 + [word_ids_2[1:2]] + [[]] * 7
|
||||
|
||||
fsa_2 = k2.linear_fsa(labels_2)
|
||||
fsa_2.aux_labels = k2.RaggedTensor(aux_labels_2)
|
||||
|
||||
fsa_vec = k2.create_fsa_vec([fsa_1, fsa_2])
|
||||
|
||||
utt_index_pairs, utt_words = parse_timestamps_and_texts(fsa_vec, word_table)
|
||||
assert utt_index_pairs[0] == [(0, 3), (6, 8)], utt_index_pairs[0]
|
||||
assert utt_words[0] == ["HELLO", "WORLD"], utt_words[0]
|
||||
assert utt_index_pairs[1] == [(0, 0), (3, 7)], utt_index_pairs[1]
|
||||
assert utt_words[1] == ["SAY", "GOODBYE"], utt_words[1]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
Loading…
x
Reference in New Issue
Block a user