add more test cases

This commit is contained in:
yaozengwei 2023-02-06 20:32:57 +08:00
parent 0526e8fcd8
commit c0804166ea

View File

@ -37,34 +37,61 @@ def test_parse_bpe_timestamps_and_texts():
sp = spm.SentencePieceProcessor() sp = spm.SentencePieceProcessor()
sp.load(str(lang_dir / "bpe.model")) sp.load(str(lang_dir / "bpe.model"))
text = "HELLO WORLD" text_1 = "HELLO WORLD"
token_ids = sp.encode(text, out_type=int) token_ids_1 = sp.encode(text_1, out_type=int)
# out_type=str: ['_HE', 'LL', 'O', '_WORLD'] # out_type=str: ['_HE', 'LL', 'O', '_WORLD']
# out_type=int: [22, 58, 24, 425] # out_type=int: [22, 58, 24, 425]
# [22, 22, 58, 24, 0, 0, 425, 425, 425, 0, 0] # [22, 22, 58, 24, 0, 0, 425, 425, 425, 0, 0]
labels = ( labels_1 = (
token_ids[0:1] * 2 + token_ids[1:3] + [0] * 2 + token_ids[3:4] * 3 + [0] * 2 token_ids_1[0:1] * 2
) + token_ids_1[1:3]
# [22, 0, 58, 24, 0, 0, 425, 0, 0, 0, 0]
aux_labels = (
token_ids[0:1]
+ [0]
+ token_ids[1:3]
+ [0] * 2 + [0] * 2
+ token_ids[3:4] + token_ids_1[3:4] * 3
+ [0] * 2
)
# [22, 0, 58, 24, 0, 0, 425, 0, 0, 0, 0, -1]
aux_labels_1 = (
token_ids_1[0:1]
+ [0]
+ token_ids_1[1:3]
+ [0] * 2
+ token_ids_1[3:4]
+ [0] * 4 + [0] * 4
+ [-1] + [-1]
) )
fsa_1 = k2.linear_fsa(labels_1)
fsa_1.aux_labels = torch.tensor(aux_labels_1).to(torch.int32)
fsa = k2.linear_fsa(labels) text_2 = "SAY GOODBYE"
fsa.aux_labels = torch.tensor(aux_labels).to(torch.int32) token_ids_2 = sp.encode(text_2, out_type=int)
# out_type=str: ['_SAY', '_GOOD', 'B', 'Y', 'E']
# out_type=int: [289, 286, 41, 16, 11]
fsa_vec = k2.create_fsa_vec([fsa]) # [289, 0, 0, 286, 286, 41, 16, 11, 0, 0]
labels_2 = (
token_ids_2[0:1] + [0] * 2 + token_ids_2[1:2] * 2 + token_ids_2[2:5] + [0] * 2
)
# [289, 0, 0, 286, 0, 41, 16, 11, 0, 0, -1]
aux_labels_2 = (
token_ids_2[0:1]
+ [0] * 2
+ token_ids_2[1:2]
+ [0]
+ token_ids_2[2:5]
+ [0] * 2
+ [-1]
)
fsa_2 = k2.linear_fsa(labels_2)
fsa_2.aux_labels = torch.tensor(aux_labels_2).to(torch.int32)
fsa_vec = k2.create_fsa_vec([fsa_1, fsa_2])
utt_index_pairs, utt_words = parse_bpe_timestamps_and_texts(fsa_vec, sp) utt_index_pairs, utt_words = parse_bpe_timestamps_and_texts(fsa_vec, sp)
assert utt_index_pairs[0] == [(0, 3), (6, 8)], utt_index_pairs[0] assert utt_index_pairs[0] == [(0, 3), (6, 8)], utt_index_pairs[0]
assert utt_words[0] == ["HELLO", "WORLD"], utt_words[0] assert utt_words[0] == ["HELLO", "WORLD"], utt_words[0]
assert utt_index_pairs[1] == [(0, 0), (3, 7)], utt_index_pairs[1]
assert utt_words[1] == ["SAY", "GOODBYE"], utt_words[1]
def test_parse_timestamps_and_texts(): def test_parse_timestamps_and_texts():
@ -77,31 +104,49 @@ def test_parse_timestamps_and_texts():
sp = spm.SentencePieceProcessor() sp = spm.SentencePieceProcessor()
sp.load(str(lang_dir / "bpe.model")) sp.load(str(lang_dir / "bpe.model"))
word_table = lexicon.word_table
text = "HELLO WORLD" text_1 = "HELLO WORLD"
token_ids = sp.encode(text, out_type=int) token_ids_1 = sp.encode(text_1, out_type=int)
# out_type=str: ['_HE', 'LL', 'O', '_WORLD'] # out_type=str: ['_HE', 'LL', 'O', '_WORLD']
# out_type=int: [22, 58, 24, 425] # out_type=int: [22, 58, 24, 425]
word_ids_1 = [word_table[s] for s in text_1.split()] # [79677, 196937]
word_table = lexicon.word_table
word_ids = [word_table[s] for s in text.split()] # [79677, 196937]
# [22, 22, 58, 24, 0, 0, 425, 425, 425, 0, 0] # [22, 22, 58, 24, 0, 0, 425, 425, 425, 0, 0]
labels = ( labels_1 = (
token_ids[0:1] * 2 + token_ids[1:3] + [0] * 2 + token_ids[3:4] * 3 + [0] * 2 token_ids_1[0:1] * 2
+ token_ids_1[1:3]
+ [0] * 2
+ token_ids_1[3:4] * 3
+ [0] * 2
) )
# [[79677], [], [], [], [], [], [196937], [], [], [], [], []] # [[79677], [], [], [], [], [], [196937], [], [], [], [], []]
aux_labels = [word_ids[0:1]] + [[]] * 5 + [word_ids[1:2]] + [[]] * 5 aux_labels_1 = [word_ids_1[0:1]] + [[]] * 5 + [word_ids_1[1:2]] + [[]] * 5
fsa = k2.linear_fsa(labels) fsa_1 = k2.linear_fsa(labels_1)
fsa.aux_labels = k2.RaggedTensor(aux_labels) fsa_1.aux_labels = k2.RaggedTensor(aux_labels_1)
fsa_vec = k2.create_fsa_vec([fsa, fsa]) text_2 = "SAY GOODBYE"
token_ids_2 = sp.encode(text_2, out_type=int)
# out_type=str: ['_SAY', '_GOOD', 'B', 'Y', 'E']
# out_type=int: [289, 286, 41, 16, 11]
word_ids_2 = [word_table[s] for s in text_2.split()] # [154967, 72079]
# [289, 0, 0, 286, 286, 41, 16, 11, 0, 0]
labels_2 = (
token_ids_2[0:1] + [0] * 2 + token_ids_2[1:2] * 2 + token_ids_2[2:5] + [0] * 2
)
# [[154967], [], [], [72079], [], [], [], [], [], [], []]
aux_labels_2 = [word_ids_2[0:1]] + [[]] * 2 + [word_ids_2[1:2]] + [[]] * 7
fsa_2 = k2.linear_fsa(labels_2)
fsa_2.aux_labels = k2.RaggedTensor(aux_labels_2)
fsa_vec = k2.create_fsa_vec([fsa_1, fsa_2])
utt_index_pairs, utt_words = parse_timestamps_and_texts(fsa_vec, word_table) utt_index_pairs, utt_words = parse_timestamps_and_texts(fsa_vec, word_table)
assert utt_index_pairs[0] == [(0, 3), (6, 8)], utt_index_pairs[0] assert utt_index_pairs[0] == [(0, 3), (6, 8)], utt_index_pairs[0]
assert utt_words[0] == ["HELLO", "WORLD"], utt_words[0] assert utt_words[0] == ["HELLO", "WORLD"], utt_words[0]
assert utt_index_pairs[1] == [(0, 0), (3, 7)], utt_index_pairs[1]
assert utt_words[1] == ["SAY", "GOODBYE"], utt_words[1]
if __name__ == "__main__": if __name__ == "__main__":