small fix

This commit is contained in:
marcoyang 2023-02-13 12:44:52 +08:00
parent 04ce87e307
commit bff0822ffa

View File

@ -108,6 +108,27 @@ def add_model_arguments(parser: argparse.ArgumentParser):
default=512,
help="Encoder output dimesion.",
)
parser.add_argument(
"--decoder-dim",
type=int,
default=512,
help="Decoder output dimension.",
)
parser.add_argument(
"--joiner-dim",
type=int,
default=512,
help="Joiner output dimension.",
)
parser.add_argument(
"--dim-feedforward",
type=int,
default=2048,
help="Dimension of feed forward.",
)
parser.add_argument(
"--rnn-hidden-size",
@ -402,11 +423,6 @@ def get_params() -> AttributeDict:
# parameters for conformer
"feature_dim": 80,
"subsampling_factor": 4,
"dim_feedforward": 2048,
# parameters for decoder
"decoder_dim": 512,
# parameters for joiner
"joiner_dim": 512,
# parameters for Noam
"model_warm_step": 3000, # arg given to model, not for lrate
"env_info": get_env_info(),
@ -426,6 +442,7 @@ def get_encoder_model(params: AttributeDict) -> nn.Module:
dim_feedforward=params.dim_feedforward,
num_encoder_layers=params.num_encoder_layers,
aux_layer_period=params.aux_layer_period,
is_pnnx=params.is_pnnx,
)
return encoder
@ -619,6 +636,7 @@ def compute_loss(
feature_lens = supervisions["num_frames"].to(device)
texts = batch["supervisions"]["text"]
#import pdb; pdb.set_trace()
y = graph_compiler.texts_to_ids_with_bpe(texts)
if type(y) == list:
y = k2.RaggedTensor(y).to(device)
@ -910,8 +928,6 @@ def run(rank, world_size, args):
"""
params = get_params()
params.update(vars(args))
if params.full_libri is False:
params.valid_interval = 800
fix_random_seed(params.seed)
if world_size > 1:
@ -930,6 +946,12 @@ def run(rank, world_size, args):
device = torch.device("cuda", rank)
logging.info(f"Device: {device}")
bpe_model = params.lang_dir + "/bpe.model"
import sentencepiece as spm
sp = spm.SentencePieceProcessor()
sp.load(bpe_model)
lexicon = Lexicon(params.lang_dir)
graph_compiler = CharCtcTrainingGraphCompiler(
lexicon=lexicon,
@ -1001,33 +1023,7 @@ def run(rank, world_size, args):
# You should use ../local/display_manifest_statistics.py to get
# an utterance duration distribution for your dataset to select
# the threshold
if c.duration < 1.0 or c.duration > 20.0:
logging.warning(
f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
)
return False
# In pruned RNN-T, we require that T >= S
# where T is the number of feature frames after subsampling
# and S is the number of tokens in the utterance
# In ./lstm.py, the conv module uses the following expression
# for subsampling
T = ((c.num_frames - 3) // 2 - 1) // 2
tokens = sp.encode(c.supervisions[0].text, out_type=str)
if T < len(tokens):
logging.warning(
f"Exclude cut with ID {c.id} from training. "
f"Number of frames (before subsampling): {c.num_frames}. "
f"Number of frames (after subsampling): {T}. "
f"Text: {c.supervisions[0].text}. "
f"Tokens: {tokens}. "
f"Number of tokens: {len(tokens)}"
)
return False
return True
return 1.0 <= c.duration <= 20.0
def text_normalize_for_cut(c: Cut):
# Text normalize for each sample
@ -1056,15 +1052,15 @@ def run(rank, world_size, args):
valid_cuts = valid_cuts.map(text_normalize_for_cut)
valid_dl = tal_csasr.valid_dataloaders(valid_cuts)
if not params.print_diagnostics:
scan_pessimistic_batches_for_oom(
model=model,
train_dl=train_dl,
optimizer=optimizer,
graph_compiler=graph_compiler,
params=params,
warmup=0.0 if params.start_epoch == 1 else 1.0,
)
# if not params.print_diagnostics:
# scan_pessimistic_batches_for_oom(
# model=model,
# train_dl=train_dl,
# optimizer=optimizer,
# graph_compiler=graph_compiler,
# params=params,
# warmup=0.0 if params.start_epoch == 1 else 1.0,
# )
scaler = GradScaler(enabled=params.use_fp16)
if checkpoints and "grad_scaler" in checkpoints: