mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 17:42:21 +00:00
Fix aishell. (#416)
This commit is contained in:
parent
dbda1644b5
commit
bfeab319c9
@ -604,21 +604,18 @@ def run(rank, world_size, args):
|
||||
train_cuts = aishell.train_cuts()
|
||||
|
||||
def remove_short_and_long_utt(c: Cut):
|
||||
# Keep only utterances with duration between 1 second and 20 seconds
|
||||
return 1.0 <= c.duration <= 20.0
|
||||
|
||||
num_in_total = len(train_cuts)
|
||||
# Keep only utterances with duration between 1 second and 12 seconds
|
||||
#
|
||||
# Caution: There is a reason to select 12.0 here. Please see
|
||||
# ../local/display_manifest_statistics.py
|
||||
#
|
||||
# You should use ../local/display_manifest_statistics.py to get
|
||||
# an utterance duration distribution for your dataset to select
|
||||
# the threshold
|
||||
return 1.0 <= c.duration <= 12.0
|
||||
|
||||
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||
|
||||
num_left = len(train_cuts)
|
||||
num_removed = num_in_total - num_left
|
||||
removed_percent = num_removed / num_in_total * 100
|
||||
|
||||
logging.info(f"Before removing short and long utterances: {num_in_total}")
|
||||
logging.info(f"After removing short and long utterances: {num_left}")
|
||||
logging.info(f"Removed {num_removed} utterances ({removed_percent:.5f}%)")
|
||||
|
||||
train_dl = aishell.train_dataloaders(train_cuts)
|
||||
valid_dl = aishell.valid_dataloaders(aishell.valid_cuts())
|
||||
|
||||
|
@ -640,7 +640,7 @@ def train_one_epoch(
|
||||
|
||||
def filter_short_and_long_utterances(cuts: CutSet) -> CutSet:
|
||||
def remove_short_and_long_utt(c: Cut):
|
||||
# Keep only utterances with duration between 1 second and 20 seconds
|
||||
# Keep only utterances with duration between 1 second and 12 seconds
|
||||
#
|
||||
# Caution: There is a reason to select 12.0 here. Please see
|
||||
# ../local/display_manifest_statistics.py
|
||||
|
@ -630,20 +630,17 @@ def run(rank, world_size, args):
|
||||
|
||||
def remove_short_and_long_utt(c: Cut):
|
||||
# Keep only utterances with duration between 1 second and 12 seconds
|
||||
#
|
||||
# Caution: There is a reason to select 12.0 here. Please see
|
||||
# ../local/display_manifest_statistics.py
|
||||
#
|
||||
# You should use ../local/display_manifest_statistics.py to get
|
||||
# an utterance duration distribution for your dataset to select
|
||||
# the threshold
|
||||
return 1.0 <= c.duration <= 12.0
|
||||
|
||||
num_in_total = len(train_cuts)
|
||||
|
||||
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||
|
||||
num_left = len(train_cuts)
|
||||
num_removed = num_in_total - num_left
|
||||
removed_percent = num_removed / num_in_total * 100
|
||||
|
||||
logging.info(f"Before removing short and long utterances: {num_in_total}")
|
||||
logging.info(f"After removing short and long utterances: {num_left}")
|
||||
logging.info(f"Removed {num_removed} utterances ({removed_percent:.5f}%)")
|
||||
|
||||
train_dl = aishell.train_dataloaders(train_cuts)
|
||||
valid_dl = aishell.valid_dataloaders(aishell.valid_cuts())
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user