diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp index 243f4e9ba..b375bcbab 100644 Binary files a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp and b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py index 8a678032b..3a09386a6 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py @@ -40,7 +40,7 @@ class TransformerEncoderAdapter(TransformerEncoder): self.adapters = ResidualAdapterModule() for p in self.adapters.parameters(): #p.data = nn.Parameter(torch.zeros(p.size()).to('cuda')) - p.data = nn.Parameter(torch.randn(p.size()).to('cuda')) + p.data = nn.Parameter(torch.randn(p.size()).to('cuda')/10000.) def forward(self, x, padding_mask=None, layer=None, tgt_layer=None): x, layer_results = self.extract_features_with_adapter(