Merging upstream/master

This commit is contained in:
Daniel Povey 2022-10-27 21:04:48 +08:00
commit be5c687fbd
562 changed files with 79256 additions and 2975 deletions

14
.flake8
View File

@ -4,11 +4,15 @@ statistics=true
max-line-length = 80
per-file-ignores =
# line too long
icefall/diagnostics.py: E501
icefall/diagnostics.py: E501,
egs/*/ASR/*/conformer.py: E501,
egs/*/ASR/pruned_transducer_stateless*/*.py: E501,
egs/*/ASR/*/optim.py: E501,
egs/*/ASR/*/scaling.py: E501,
egs/librispeech/ASR/lstm_transducer_stateless*/*.py: E501, E203
egs/librispeech/ASR/conv_emformer_transducer_stateless*/*.py: E501, E203
egs/librispeech/ASR/conformer_ctc2/*py: E501,
egs/librispeech/ASR/RESULTS.md: E999,
# invalid escape sequence (cause by tex formular), W605
icefall/utils.py: E501, W605
@ -18,3 +22,11 @@ exclude =
**/data/**,
icefall/shared/make_kn_lm.py,
icefall/__init__.py
ignore =
# E203 white space before ":"
E203,
# W503 line break before binary operator
W503,
# E226 missing whitespace around arithmetic operator
E226,

View File

@ -4,6 +4,8 @@
# The computed features are saved to ~/tmp/fbank-libri and are
# cached for later runs
set -e
export PYTHONPATH=$PWD:$PYTHONPATH
echo $PYTHONPATH

View File

@ -6,6 +6,8 @@
# You will find directories `~/tmp/giga-dev-dataset-fbank` after running
# this script.
set -e
mkdir -p ~/tmp
cd ~/tmp

View File

@ -7,6 +7,8 @@
# You will find directories ~/tmp/download/LibriSpeech after running
# this script.
set -e
mkdir ~/tmp/download
cd egs/librispeech/ASR
ln -s ~/tmp/download .

View File

@ -3,6 +3,8 @@
# This script installs kaldifeat into the directory ~/tmp/kaldifeat
# which is cached by GitHub actions for later runs.
set -e
mkdir -p ~/tmp
cd ~/tmp
git clone https://github.com/csukuangfj/kaldifeat

View File

@ -4,6 +4,8 @@
# to egs/librispeech/ASR/download/LibriSpeech and generates manifest
# files in egs/librispeech/ASR/data/manifests
set -e
cd egs/librispeech/ASR
[ ! -e download ] && ln -s ~/tmp/download .
mkdir -p data/manifests

View File

@ -0,0 +1,88 @@
#!/usr/bin/env bash
set -e
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
cd egs/aishell/ASR
git lfs install
fbank_url=https://huggingface.co/csukuangfj/aishell-test-dev-manifests
log "Downloading pre-commputed fbank from $fbank_url"
git clone https://huggingface.co/csukuangfj/aishell-test-dev-manifests
ln -s $PWD/aishell-test-dev-manifests/data .
log "Downloading pre-trained model from $repo_url"
repo_url=https://huggingface.co/csukuangfj/icefall-aishell-pruned-transducer-stateless3-2022-06-20
git clone $repo_url
repo=$(basename $repo_url)
log "Display test files"
tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav
pushd $repo/exp
ln -s pretrained-epoch-29-avg-5-torch-1.10.0.pt pretrained.pt
popd
for sym in 1 2 3; do
log "Greedy search with --max-sym-per-frame $sym"
./pruned_transducer_stateless3/pretrained.py \
--method greedy_search \
--max-sym-per-frame $sym \
--checkpoint $repo/exp/pretrained.pt \
--lang-dir $repo/data/lang_char \
$repo/test_wavs/BAC009S0764W0121.wav \
$repo/test_wavs/BAC009S0764W0122.wav \
$repo/test_wavs/BAC009S0764W0123.wav
done
for method in modified_beam_search beam_search fast_beam_search; do
log "$method"
./pruned_transducer_stateless3/pretrained.py \
--method $method \
--beam-size 4 \
--checkpoint $repo/exp/pretrained.pt \
--lang-dir $repo/data/lang_char \
$repo/test_wavs/BAC009S0764W0121.wav \
$repo/test_wavs/BAC009S0764W0122.wav \
$repo/test_wavs/BAC009S0764W0123.wav
done
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
mkdir -p pruned_transducer_stateless3/exp
ln -s $PWD/$repo/exp/pretrained.pt pruned_transducer_stateless3/exp/epoch-999.pt
ln -s $PWD/$repo/data/lang_char data/
ls -lh data
ls -lh pruned_transducer_stateless3/exp
log "Decoding test and dev"
# use a small value for decoding with CPU
max_duration=100
for method in greedy_search fast_beam_search modified_beam_search; do
log "Decoding with $method"
./pruned_transducer_stateless3/decode.py \
--decoding-method $method \
--epoch 999 \
--avg 1 \
--max-duration $max_duration \
--exp-dir pruned_transducer_stateless3/exp
done
rm pruned_transducer_stateless3/exp/*.pt
fi

View File

@ -1,5 +1,7 @@
#!/usr/bin/env bash
set -e
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}

View File

@ -0,0 +1,203 @@
#!/usr/bin/env bash
#
set -e
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
cd egs/librispeech/ASR
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03
log "Downloading pre-trained model from $repo_url"
git lfs install
git clone $repo_url
repo=$(basename $repo_url)
log "Display test files"
tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav
pushd $repo/exp
ln -s pretrained-iter-468000-avg-16.pt pretrained.pt
ln -s pretrained-iter-468000-avg-16.pt epoch-99.pt
popd
log "Install ncnn and pnnx"
# We are using a modified ncnn here. Will try to merge it to the official repo
# of ncnn
git clone https://github.com/csukuangfj/ncnn
pushd ncnn
git submodule init
git submodule update python/pybind11
python3 setup.py bdist_wheel
ls -lh dist/
pip install dist/*.whl
cd tools/pnnx
mkdir build
cd build
cmake ..
make -j4 pnnx
./src/pnnx || echo "pass"
popd
log "Test exporting to pnnx format"
./lstm_transducer_stateless2/export.py \
--exp-dir $repo/exp \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--epoch 99 \
--avg 1 \
--use-averaged-model 0 \
--pnnx 1
./ncnn/tools/pnnx/build/src/pnnx $repo/exp/encoder_jit_trace-pnnx.pt
./ncnn/tools/pnnx/build/src/pnnx $repo/exp/decoder_jit_trace-pnnx.pt
./ncnn/tools/pnnx/build/src/pnnx $repo/exp/joiner_jit_trace-pnnx.pt
./lstm_transducer_stateless2/ncnn-decode.py \
--bpe-model-filename $repo/data/lang_bpe_500/bpe.model \
--encoder-param-filename $repo/exp/encoder_jit_trace-pnnx.ncnn.param \
--encoder-bin-filename $repo/exp/encoder_jit_trace-pnnx.ncnn.bin \
--decoder-param-filename $repo/exp/decoder_jit_trace-pnnx.ncnn.param \
--decoder-bin-filename $repo/exp/decoder_jit_trace-pnnx.ncnn.bin \
--joiner-param-filename $repo/exp/joiner_jit_trace-pnnx.ncnn.param \
--joiner-bin-filename $repo/exp/joiner_jit_trace-pnnx.ncnn.bin \
$repo/test_wavs/1089-134686-0001.wav
./lstm_transducer_stateless2/streaming-ncnn-decode.py \
--bpe-model-filename $repo/data/lang_bpe_500/bpe.model \
--encoder-param-filename $repo/exp/encoder_jit_trace-pnnx.ncnn.param \
--encoder-bin-filename $repo/exp/encoder_jit_trace-pnnx.ncnn.bin \
--decoder-param-filename $repo/exp/decoder_jit_trace-pnnx.ncnn.param \
--decoder-bin-filename $repo/exp/decoder_jit_trace-pnnx.ncnn.bin \
--joiner-param-filename $repo/exp/joiner_jit_trace-pnnx.ncnn.param \
--joiner-bin-filename $repo/exp/joiner_jit_trace-pnnx.ncnn.bin \
$repo/test_wavs/1089-134686-0001.wav
log "Test exporting with torch.jit.trace()"
./lstm_transducer_stateless2/export.py \
--exp-dir $repo/exp \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--epoch 99 \
--avg 1 \
--use-averaged-model 0 \
--jit-trace 1
log "Decode with models exported by torch.jit.trace()"
./lstm_transducer_stateless2/jit_pretrained.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--encoder-model-filename $repo/exp/encoder_jit_trace.pt \
--decoder-model-filename $repo/exp/decoder_jit_trace.pt \
--joiner-model-filename $repo/exp/joiner_jit_trace.pt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
log "Test exporting to ONNX"
./lstm_transducer_stateless2/export.py \
--exp-dir $repo/exp \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--epoch 99 \
--avg 1 \
--use-averaged-model 0 \
--onnx 1
log "Decode with ONNX models "
./lstm_transducer_stateless2/streaming-onnx-decode.py \
--bpe-model-filename $repo/data/lang_bpe_500/bpe.model \
--encoder-model-filename $repo//exp/encoder.onnx \
--decoder-model-filename $repo/exp/decoder.onnx \
--joiner-model-filename $repo/exp/joiner.onnx \
--joiner-encoder-proj-model-filename $repo/exp/joiner_encoder_proj.onnx \
--joiner-decoder-proj-model-filename $repo/exp/joiner_decoder_proj.onnx \
$repo/test_wavs/1089-134686-0001.wav
./lstm_transducer_stateless2/streaming-onnx-decode.py \
--bpe-model-filename $repo/data/lang_bpe_500/bpe.model \
--encoder-model-filename $repo//exp/encoder.onnx \
--decoder-model-filename $repo/exp/decoder.onnx \
--joiner-model-filename $repo/exp/joiner.onnx \
--joiner-encoder-proj-model-filename $repo/exp/joiner_encoder_proj.onnx \
--joiner-decoder-proj-model-filename $repo/exp/joiner_decoder_proj.onnx \
$repo/test_wavs/1221-135766-0001.wav
./lstm_transducer_stateless2/streaming-onnx-decode.py \
--bpe-model-filename $repo/data/lang_bpe_500/bpe.model \
--encoder-model-filename $repo//exp/encoder.onnx \
--decoder-model-filename $repo/exp/decoder.onnx \
--joiner-model-filename $repo/exp/joiner.onnx \
--joiner-encoder-proj-model-filename $repo/exp/joiner_encoder_proj.onnx \
--joiner-decoder-proj-model-filename $repo/exp/joiner_decoder_proj.onnx \
$repo/test_wavs/1221-135766-0002.wav
for sym in 1 2 3; do
log "Greedy search with --max-sym-per-frame $sym"
./lstm_transducer_stateless2/pretrained.py \
--method greedy_search \
--max-sym-per-frame $sym \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
done
for method in modified_beam_search beam_search fast_beam_search; do
log "$method"
./lstm_transducer_stateless2/pretrained.py \
--method $method \
--beam-size 4 \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
done
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" ]]; then
mkdir -p lstm_transducer_stateless2/exp
ln -s $PWD/$repo/exp/pretrained.pt lstm_transducer_stateless2/exp/epoch-999.pt
ln -s $PWD/$repo/data/lang_bpe_500 data/
ls -lh data
ls -lh lstm_transducer_stateless2/exp
log "Decoding test-clean and test-other"
# use a small value for decoding with CPU
max_duration=100
for method in greedy_search fast_beam_search modified_beam_search; do
log "Decoding with $method"
./lstm_transducer_stateless2/decode.py \
--decoding-method $method \
--epoch 999 \
--avg 1 \
--use-averaged-model 0 \
--max-duration $max_duration \
--exp-dir lstm_transducer_stateless2/exp
done
rm lstm_transducer_stateless2/exp/*.pt
fi

View File

@ -1,5 +1,7 @@
#!/usr/bin/env bash
set -e
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}

View File

@ -1,5 +1,7 @@
#!/usr/bin/env bash
set -e
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
@ -11,10 +13,14 @@ cd egs/librispeech/ASR
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless2-2022-04-29
log "Downloading pre-trained model from $repo_url"
git lfs install
git clone $repo_url
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "data/lang_bpe_500/bpe.model"
git lfs pull --include "exp/pretrained-epoch-38-avg-10.pt"
popd
log "Display test files"
tree $repo/
soxi $repo/test_wavs/*.wav

View File

@ -1,5 +1,7 @@
#!/usr/bin/env bash
set -e
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
@ -11,9 +13,12 @@ cd egs/librispeech/ASR
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-04-29
log "Downloading pre-trained model from $repo_url"
git lfs install
git clone $repo_url
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "data/lang_bpe_500/bpe.model"
git lfs pull --include "exp/pretrained-epoch-25-avg-6.pt"
popd
log "Display test files"
tree $repo/

View File

@ -1,5 +1,7 @@
#!/usr/bin/env bash
set -e
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
@ -22,8 +24,80 @@ ls -lh $repo/test_wavs/*.wav
pushd $repo/exp
ln -s pretrained-iter-1224000-avg-14.pt pretrained.pt
ln -s pretrained-iter-1224000-avg-14.pt epoch-99.pt
popd
log "Test exporting to ONNX format"
./pruned_transducer_stateless3/export.py \
--exp-dir $repo/exp \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--epoch 99 \
--avg 1 \
--onnx 1
log "Export to torchscript model"
./pruned_transducer_stateless3/export.py \
--exp-dir $repo/exp \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--epoch 99 \
--avg 1 \
--jit 1
./pruned_transducer_stateless3/export.py \
--exp-dir $repo/exp \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--epoch 99 \
--avg 1 \
--jit-trace 1
ls -lh $repo/exp/*.onnx
ls -lh $repo/exp/*.pt
log "Decode with ONNX models"
./pruned_transducer_stateless3/onnx_check.py \
--jit-filename $repo/exp/cpu_jit.pt \
--onnx-encoder-filename $repo/exp/encoder.onnx \
--onnx-decoder-filename $repo/exp/decoder.onnx \
--onnx-joiner-filename $repo/exp/joiner.onnx \
--onnx-joiner-encoder-proj-filename $repo/exp/joiner_encoder_proj.onnx \
--onnx-joiner-decoder-proj-filename $repo/exp/joiner_decoder_proj.onnx
./pruned_transducer_stateless3/onnx_pretrained.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--encoder-model-filename $repo/exp/encoder.onnx \
--decoder-model-filename $repo/exp/decoder.onnx \
--joiner-model-filename $repo/exp/joiner.onnx \
--joiner-encoder-proj-model-filename $repo/exp/joiner_encoder_proj.onnx \
--joiner-decoder-proj-model-filename $repo/exp/joiner_decoder_proj.onnx \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
log "Decode with models exported by torch.jit.trace()"
./pruned_transducer_stateless3/jit_pretrained.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--encoder-model-filename $repo/exp/encoder_jit_trace.pt \
--decoder-model-filename $repo/exp/decoder_jit_trace.pt \
--joiner-model-filename $repo/exp/joiner_jit_trace.pt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
log "Decode with models exported by torch.jit.script()"
./pruned_transducer_stateless3/jit_pretrained.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--encoder-model-filename $repo/exp/encoder_jit_script.pt \
--decoder-model-filename $repo/exp/decoder_jit_script.pt \
--joiner-model-filename $repo/exp/joiner_jit_script.pt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
for sym in 1 2 3; do
log "Greedy search with --max-sym-per-frame $sym"

View File

@ -1,5 +1,7 @@
#!/usr/bin/env bash
set -e
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
@ -32,6 +34,12 @@ for sym in 1 2 3; do
--max-sym-per-frame $sym \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--num-encoder-layers 18 \
--dim-feedforward 2048 \
--nhead 8 \
--encoder-dim 512 \
--decoder-dim 512 \
--joiner-dim 512 \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
@ -76,6 +84,7 @@ if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" ==
./pruned_transducer_stateless5/decode.py \
--decoding-method $method \
--use-averaged-model 0 \
--epoch 999 \
--avg 1 \
--max-duration $max_duration \

View File

@ -0,0 +1,102 @@
#!/usr/bin/env bash
set -e
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
cd egs/librispeech/ASR
repo_url=https://huggingface.co/pkufool/icefall_librispeech_streaming_pruned_transducer_stateless2_20220625
log "Downloading pre-trained model from $repo_url"
git lfs install
git clone $repo_url
repo=$(basename $repo_url)
log "Display test files"
tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav
pushd $repo/exp
ln -s pretrained-epoch-24-avg-10.pt pretrained.pt
popd
for sym in 1 2 3; do
log "Greedy search with --max-sym-per-frame $sym"
./pruned_transducer_stateless2/pretrained.py \
--method greedy_search \
--max-sym-per-frame $sym \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--simulate-streaming 1 \
--causal-convolution 1 \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
done
for method in modified_beam_search beam_search fast_beam_search; do
log "$method"
./pruned_transducer_stateless2/pretrained.py \
--method $method \
--beam-size 4 \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--simulate-streaming 1 \
--causal-convolution 1 \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
done
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
mkdir -p pruned_transducer_stateless2/exp
ln -s $PWD/$repo/exp/pretrained-epoch-24-avg-10.pt pruned_transducer_stateless2/exp/epoch-999.pt
ln -s $PWD/$repo/data/lang_bpe_500 data/
ls -lh data
ls -lh pruned_transducer_stateless2/exp
log "Decoding test-clean and test-other"
# use a small value for decoding with CPU
max_duration=100
for method in greedy_search fast_beam_search modified_beam_search; do
log "Simulate streaming decoding with $method"
./pruned_transducer_stateless2/decode.py \
--decoding-method $method \
--epoch 999 \
--avg 1 \
--max-duration $max_duration \
--exp-dir pruned_transducer_stateless2/exp \
--simulate-streaming 1 \
--causal-convolution 1
done
for method in greedy_search fast_beam_search modified_beam_search; do
log "Real streaming decoding with $method"
./pruned_transducer_stateless2/streaming_decode.py \
--decoding-method $method \
--epoch 999 \
--avg 1 \
--num-decode-streams 100 \
--exp-dir pruned_transducer_stateless2/exp \
--left-context 32 \
--decode-chunk-size 8 \
--right-context 0
done
rm pruned_transducer_stateless2/exp/*.pt
fi

View File

@ -1,5 +1,7 @@
#!/usr/bin/env bash
set -e
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}

View File

@ -1,5 +1,7 @@
#!/usr/bin/env bash
set -e
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
@ -10,7 +12,6 @@ cd egs/librispeech/ASR
repo_url=https://github.com/csukuangfj/icefall-asr-conformer-ctc-bpe-500
git lfs install
git clone $repo
log "Downloading pre-trained model from $repo_url"
git clone $repo_url

View File

@ -1,5 +1,7 @@
#!/usr/bin/env bash
set -e
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}

View File

@ -1,5 +1,7 @@
#!/usr/bin/env bash
set -e
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}

View File

@ -1,5 +1,7 @@
#!/usr/bin/env bash
set -e
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}

View File

@ -1,5 +1,7 @@
#!/usr/bin/env bash
set -e
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}

View File

@ -1,5 +1,7 @@
#!/usr/bin/env bash
set -e
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}

View File

@ -1,5 +1,7 @@
#!/usr/bin/env bash
set -e
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}

View File

@ -0,0 +1,124 @@
#!/usr/bin/env bash
set -e
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
cd egs/wenetspeech/ASR
repo_url=https://huggingface.co/luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2
log "Downloading pre-trained model from $repo_url"
git lfs install
git clone $repo_url
repo=$(basename $repo_url)
log "Display test files"
tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav
pushd $repo/exp
ln -s pretrained_epoch_10_avg_2.pt pretrained.pt
ln -s pretrained_epoch_10_avg_2.pt epoch-99.pt
popd
log "Test exporting to ONNX format"
./pruned_transducer_stateless2/export.py \
--exp-dir $repo/exp \
--lang-dir $repo/data/lang_char \
--epoch 99 \
--avg 1 \
--onnx 1
log "Export to torchscript model"
./pruned_transducer_stateless2/export.py \
--exp-dir $repo/exp \
--lang-dir $repo/data/lang_char \
--epoch 99 \
--avg 1 \
--jit 1
./pruned_transducer_stateless2/export.py \
--exp-dir $repo/exp \
--lang-dir $repo/data/lang_char \
--epoch 99 \
--avg 1 \
--jit-trace 1
ls -lh $repo/exp/*.onnx
ls -lh $repo/exp/*.pt
log "Decode with ONNX models"
./pruned_transducer_stateless2/onnx_check.py \
--jit-filename $repo/exp/cpu_jit.pt \
--onnx-encoder-filename $repo/exp/encoder.onnx \
--onnx-decoder-filename $repo/exp/decoder.onnx \
--onnx-joiner-filename $repo/exp/joiner.onnx \
--onnx-joiner-encoder-proj-filename $repo/exp/joiner_encoder_proj.onnx \
--onnx-joiner-decoder-proj-filename $repo/exp/joiner_decoder_proj.onnx
./pruned_transducer_stateless2/onnx_pretrained.py \
--tokens $repo/data/lang_char/tokens.txt \
--encoder-model-filename $repo/exp/encoder.onnx \
--decoder-model-filename $repo/exp/decoder.onnx \
--joiner-model-filename $repo/exp/joiner.onnx \
--joiner-encoder-proj-model-filename $repo/exp/joiner_encoder_proj.onnx \
--joiner-decoder-proj-model-filename $repo/exp/joiner_decoder_proj.onnx \
$repo/test_wavs/DEV_T0000000000.wav \
$repo/test_wavs/DEV_T0000000001.wav \
$repo/test_wavs/DEV_T0000000002.wav
log "Decode with models exported by torch.jit.trace()"
./pruned_transducer_stateless2/jit_pretrained.py \
--tokens $repo/data/lang_char/tokens.txt \
--encoder-model-filename $repo/exp/encoder_jit_trace.pt \
--decoder-model-filename $repo/exp/decoder_jit_trace.pt \
--joiner-model-filename $repo/exp/joiner_jit_trace.pt \
$repo/test_wavs/DEV_T0000000000.wav \
$repo/test_wavs/DEV_T0000000001.wav \
$repo/test_wavs/DEV_T0000000002.wav
./pruned_transducer_stateless2/jit_pretrained.py \
--tokens $repo/data/lang_char/tokens.txt \
--encoder-model-filename $repo/exp/encoder_jit_script.pt \
--decoder-model-filename $repo/exp/decoder_jit_script.pt \
--joiner-model-filename $repo/exp/joiner_jit_script.pt \
$repo/test_wavs/DEV_T0000000000.wav \
$repo/test_wavs/DEV_T0000000001.wav \
$repo/test_wavs/DEV_T0000000002.wav
for sym in 1 2 3; do
log "Greedy search with --max-sym-per-frame $sym"
./pruned_transducer_stateless2/pretrained.py \
--checkpoint $repo/exp/epoch-99.pt \
--lang-dir $repo/data/lang_char \
--decoding-method greedy_search \
--max-sym-per-frame $sym \
$repo/test_wavs/DEV_T0000000000.wav \
$repo/test_wavs/DEV_T0000000001.wav \
$repo/test_wavs/DEV_T0000000002.wav
done
for method in modified_beam_search beam_search fast_beam_search; do
log "$method"
./pruned_transducer_stateless2/pretrained.py \
--decoding-method $method \
--beam-size 4 \
--checkpoint $repo/exp/epoch-99.pt \
--lang-dir $repo/data/lang_char \
$repo/test_wavs/DEV_T0000000000.wav \
$repo/test_wavs/DEV_T0000000001.wav \
$repo/test_wavs/DEV_T0000000002.wav
done

65
.github/workflows/build-doc.yml vendored Normal file
View File

@ -0,0 +1,65 @@
# Copyright 2022 Xiaomi Corp. (author: Fangjun Kuang)
# See ../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# refer to https://github.com/actions/starter-workflows/pull/47/files
# You can access it at https://k2-fsa.github.io/icefall/
name: Generate doc
on:
push:
branches:
- master
- doc
pull_request:
types: [labeled]
jobs:
build-doc:
if: github.event.label.name == 'doc' || github.event_name == 'push'
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest]
python-version: ["3.8"]
steps:
# refer to https://github.com/actions/checkout
- uses: actions/checkout@v2
with:
fetch-depth: 0
- name: Setup Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Display Python version
run: python -c "import sys; print(sys.version)"
- name: Build doc
shell: bash
run: |
cd docs
python3 -m pip install -r ./requirements.txt
make html
touch build/html/.nojekyll
- name: Deploy
uses: peaceiris/actions-gh-pages@v3
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
publish_dir: ./docs/build/html
publish_branch: gh-pages

View File

@ -0,0 +1,119 @@
# Copyright 2022 Fangjun Kuang (csukuangfj@gmail.com)
# See ../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: run-aishell-2022-06-20
# pruned RNN-T + reworked model with random combiner
# https://huggingface.co/csukuangfj/icefall-aishell-pruned-transducer-stateless3-2022-06-20
on:
push:
branches:
- master
pull_request:
types: [labeled]
schedule:
# minute (0-59)
# hour (0-23)
# day of the month (1-31)
# month (1-12)
# day of the week (0-6)
# nightly build at 15:50 UTC time every day
- cron: "50 15 * * *"
jobs:
run_aishell_2022_06_20:
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ubuntu-18.04]
python-version: [3.7, 3.8, 3.9]
fail-fast: false
steps:
- uses: actions/checkout@v2
with:
fetch-depth: 0
- name: Setup Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
cache: 'pip'
cache-dependency-path: '**/requirements-ci.txt'
- name: Install Python dependencies
run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf
pip install --no-binary protobuf protobuf
- name: Cache kaldifeat
id: my-cache
uses: actions/cache@v2
with:
path: |
~/tmp/kaldifeat
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
- name: Install kaldifeat
if: steps.my-cache.outputs.cache-hit != 'true'
shell: bash
run: |
.github/scripts/install-kaldifeat.sh
- name: Inference with pre-trained model
shell: bash
env:
GITHUB_EVENT_NAME: ${{ github.event_name }}
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
run: |
sudo apt-get -qq install git-lfs tree sox
export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
.github/scripts/run-aishell-pruned-transducer-stateless3-2022-06-20.sh
- name: Display decoding results for aishell pruned_transducer_stateless3
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
shell: bash
run: |
cd egs/aishell/ASR/
tree ./pruned_transducer_stateless3/exp
cd pruned_transducer_stateless3
echo "results for pruned_transducer_stateless3"
echo "===greedy search==="
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test" {} + | sort -n -k2
find exp/greedy_search -name "log-*" -exec grep -n --color "best for dev" {} + | sort -n -k2
echo "===fast_beam_search==="
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test" {} + | sort -n -k2
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for dev" {} + | sort -n -k2
echo "===modified beam search==="
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test" {} + | sort -n -k2
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for dev" {} + | sort -n -k2
- name: Upload decoding results for aishell pruned_transducer_stateless3
uses: actions/upload-artifact@v2
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
with:
name: aishell-torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-pruned_transducer_stateless3-2022-06-20
path: egs/aishell/ASR/pruned_transducer_stateless3/exp/

View File

@ -59,6 +59,8 @@ jobs:
- name: Install Python dependencies
run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf
pip install --no-binary protobuf protobuf
- name: Cache kaldifeat
id: my-cache
@ -66,7 +68,7 @@ jobs:
with:
path: |
~/tmp/kaldifeat
key: cache-tmp-${{ matrix.python-version }}
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
- name: Install kaldifeat
if: steps.my-cache.outputs.cache-hit != 'true'

View File

@ -59,6 +59,8 @@ jobs:
- name: Install Python dependencies
run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf
pip install --no-binary protobuf protobuf
- name: Cache kaldifeat
id: my-cache
@ -66,7 +68,7 @@ jobs:
with:
path: |
~/tmp/kaldifeat
key: cache-tmp-${{ matrix.python-version }}
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
- name: Install kaldifeat
if: steps.my-cache.outputs.cache-hit != 'true'
@ -99,7 +101,7 @@ jobs:
with:
path: |
~/tmp/fbank-libri
key: cache-libri-fbank-test-clean-and-test-other
key: cache-libri-fbank-test-clean-and-test-other-v2
- name: Compute fbank for LibriSpeech test-clean and test-other
if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true'

View File

@ -59,6 +59,8 @@ jobs:
- name: Install Python dependencies
run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf
pip install --no-binary protobuf protobuf
- name: Cache kaldifeat
id: my-cache
@ -66,7 +68,7 @@ jobs:
with:
path: |
~/tmp/kaldifeat
key: cache-tmp-${{ matrix.python-version }}
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
- name: Install kaldifeat
if: steps.my-cache.outputs.cache-hit != 'true'
@ -99,7 +101,7 @@ jobs:
with:
path: |
~/tmp/fbank-libri
key: cache-libri-fbank-test-clean-and-test-other
key: cache-libri-fbank-test-clean-and-test-other-v2
- name: Compute fbank for LibriSpeech test-clean and test-other
if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true'

View File

@ -59,6 +59,8 @@ jobs:
- name: Install Python dependencies
run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf
pip install --no-binary protobuf protobuf
- name: Cache kaldifeat
id: my-cache
@ -66,7 +68,7 @@ jobs:
with:
path: |
~/tmp/kaldifeat
key: cache-tmp-${{ matrix.python-version }}
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
- name: Install kaldifeat
if: steps.my-cache.outputs.cache-hit != 'true'
@ -99,7 +101,7 @@ jobs:
with:
path: |
~/tmp/fbank-libri
key: cache-libri-fbank-test-clean-and-test-other
key: cache-libri-fbank-test-clean-and-test-other-v2
- name: Compute fbank for LibriSpeech test-clean and test-other
if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true'

View File

@ -0,0 +1,136 @@
name: run-librispeech-lstm-transducer2-2022-09-03
on:
push:
branches:
- master
pull_request:
types: [labeled]
schedule:
# minute (0-59)
# hour (0-23)
# day of the month (1-31)
# month (1-12)
# day of the week (0-6)
# nightly build at 15:50 UTC time every day
- cron: "50 15 * * *"
jobs:
run_librispeech_lstm_transducer_stateless2_2022_09_03:
if: github.event.label.name == 'ready' || github.event.label.name == 'ncnn' || github.event.label.name == 'onnx' || github.event_name == 'push' || github.event_name == 'schedule'
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ubuntu-18.04]
python-version: [3.8]
fail-fast: false
steps:
- uses: actions/checkout@v2
with:
fetch-depth: 0
- name: Setup Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
cache: 'pip'
cache-dependency-path: '**/requirements-ci.txt'
- name: Install Python dependencies
run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf
pip install --no-binary protobuf protobuf
- name: Cache kaldifeat
id: my-cache
uses: actions/cache@v2
with:
path: |
~/tmp/kaldifeat
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
- name: Install kaldifeat
if: steps.my-cache.outputs.cache-hit != 'true'
shell: bash
run: |
.github/scripts/install-kaldifeat.sh
- name: Cache LibriSpeech test-clean and test-other datasets
id: libri-test-clean-and-test-other-data
uses: actions/cache@v2
with:
path: |
~/tmp/download
key: cache-libri-test-clean-and-test-other
- name: Download LibriSpeech test-clean and test-other
if: steps.libri-test-clean-and-test-other-data.outputs.cache-hit != 'true'
shell: bash
run: |
.github/scripts/download-librispeech-test-clean-and-test-other-dataset.sh
- name: Prepare manifests for LibriSpeech test-clean and test-other
shell: bash
run: |
.github/scripts/prepare-librispeech-test-clean-and-test-other-manifests.sh
- name: Cache LibriSpeech test-clean and test-other fbank features
id: libri-test-clean-and-test-other-fbank
uses: actions/cache@v2
with:
path: |
~/tmp/fbank-libri
key: cache-libri-fbank-test-clean-and-test-other-v2
- name: Compute fbank for LibriSpeech test-clean and test-other
if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true'
shell: bash
run: |
.github/scripts/compute-fbank-librispeech-test-clean-and-test-other.sh
- name: Inference with pre-trained model
shell: bash
env:
GITHUB_EVENT_NAME: ${{ github.event_name }}
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
run: |
mkdir -p egs/librispeech/ASR/data
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
ls -lh egs/librispeech/ASR/data/*
sudo apt-get -qq install git-lfs tree sox
export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
.github/scripts/run-librispeech-lstm-transducer-stateless2-2022-09-03.yml
- name: Display decoding results for lstm_transducer_stateless2
if: github.event_name == 'schedule'
shell: bash
run: |
cd egs/librispeech/ASR
tree lstm_transducer_stateless2/exp
cd lstm_transducer_stateless2/exp
echo "===greedy search==="
find greedy_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
find greedy_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
echo "===fast_beam_search==="
find fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
find fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
echo "===modified beam search==="
find modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
find modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
- name: Upload decoding results for lstm_transducer_stateless2
uses: actions/upload-artifact@v2
if: github.event_name == 'schedule'
with:
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-lstm_transducer_stateless2-2022-09-03
path: egs/librispeech/ASR/lstm_transducer_stateless2/exp/

View File

@ -35,7 +35,7 @@ on:
jobs:
run_librispeech_pruned_transducer_stateless3_2022_05_13:
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
if: github.event.label.name == 'onnx' || github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
runs-on: ${{ matrix.os }}
strategy:
matrix:
@ -59,6 +59,8 @@ jobs:
- name: Install Python dependencies
run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf
pip install --no-binary protobuf protobuf
- name: Cache kaldifeat
id: my-cache
@ -66,7 +68,7 @@ jobs:
with:
path: |
~/tmp/kaldifeat
key: cache-tmp-${{ matrix.python-version }}
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
- name: Install kaldifeat
if: steps.my-cache.outputs.cache-hit != 'true'
@ -99,7 +101,7 @@ jobs:
with:
path: |
~/tmp/fbank-libri
key: cache-libri-fbank-test-clean-and-test-other
key: cache-libri-fbank-test-clean-and-test-other-v2
- name: Compute fbank for LibriSpeech test-clean and test-other
if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true'

View File

@ -0,0 +1,155 @@
# Copyright 2021 Fangjun Kuang (csukuangfj@gmail.com)
# See ../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: run-librispeech-streaming-2022-06-26
# streaming conformer stateless transducer2
on:
push:
branches:
- master
pull_request:
types: [labeled]
schedule:
# minute (0-59)
# hour (0-23)
# day of the month (1-31)
# month (1-12)
# day of the week (0-6)
# nightly build at 15:50 UTC time every day
- cron: "50 15 * * *"
jobs:
run_librispeech_streaming_2022_06_26:
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ubuntu-18.04]
python-version: [3.7, 3.8, 3.9]
fail-fast: false
steps:
- uses: actions/checkout@v2
with:
fetch-depth: 0
- name: Setup Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
cache: 'pip'
cache-dependency-path: '**/requirements-ci.txt'
- name: Install Python dependencies
run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf
pip install --no-binary protobuf protobuf
- name: Cache kaldifeat
id: my-cache
uses: actions/cache@v2
with:
path: |
~/tmp/kaldifeat
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
- name: Install kaldifeat
if: steps.my-cache.outputs.cache-hit != 'true'
shell: bash
run: |
.github/scripts/install-kaldifeat.sh
- name: Cache LibriSpeech test-clean and test-other datasets
id: libri-test-clean-and-test-other-data
uses: actions/cache@v2
with:
path: |
~/tmp/download
key: cache-libri-test-clean-and-test-other
- name: Download LibriSpeech test-clean and test-other
if: steps.libri-test-clean-and-test-other-data.outputs.cache-hit != 'true'
shell: bash
run: |
.github/scripts/download-librispeech-test-clean-and-test-other-dataset.sh
- name: Prepare manifests for LibriSpeech test-clean and test-other
shell: bash
run: |
.github/scripts/prepare-librispeech-test-clean-and-test-other-manifests.sh
- name: Cache LibriSpeech test-clean and test-other fbank features
id: libri-test-clean-and-test-other-fbank
uses: actions/cache@v2
with:
path: |
~/tmp/fbank-libri
key: cache-libri-fbank-test-clean-and-test-other-v2
- name: Compute fbank for LibriSpeech test-clean and test-other
if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true'
shell: bash
run: |
.github/scripts/compute-fbank-librispeech-test-clean-and-test-other.sh
- name: Inference with pre-trained model
shell: bash
env:
GITHUB_EVENT_NAME: ${{ github.event_name }}
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
run: |
mkdir -p egs/librispeech/ASR/data
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
ls -lh egs/librispeech/ASR/data/*
sudo apt-get -qq install git-lfs tree sox
export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
.github/scripts/run-librispeech-streaming-pruned-transducer-stateless2-2022-06-26.sh
- name: Display decoding results
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
shell: bash
run: |
cd egs/librispeech/ASR/
tree ./pruned_transducer_stateless2/exp
cd pruned_transducer_stateless2
echo "results for pruned_transducer_stateless2"
echo "===greedy search==="
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
echo "===fast_beam_search==="
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
echo "===modified_beam_search==="
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
- name: Upload decoding results for pruned_transducer_stateless2
uses: actions/upload-artifact@v2
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
with:
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-pruned_transducer_stateless2-2022-06-26
path: egs/librispeech/ASR/pruned_transducer_stateless2/exp/

View File

@ -59,6 +59,8 @@ jobs:
- name: Install Python dependencies
run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf
pip install --no-binary protobuf protobuf
- name: Cache kaldifeat
id: my-cache
@ -66,7 +68,7 @@ jobs:
with:
path: |
~/tmp/kaldifeat
key: cache-tmp-${{ matrix.python-version }}
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
- name: Install kaldifeat
if: steps.my-cache.outputs.cache-hit != 'true'
@ -99,7 +101,7 @@ jobs:
with:
path: |
~/tmp/fbank-libri
key: cache-libri-fbank-test-clean-and-test-other
key: cache-libri-fbank-test-clean-and-test-other-v2
- name: Compute fbank for LibriSpeech test-clean and test-other
if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true'

View File

@ -58,7 +58,7 @@ jobs:
with:
path: |
~/tmp/kaldifeat
key: cache-tmp-${{ matrix.python-version }}
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
- name: Install kaldifeat
if: steps.my-cache.outputs.cache-hit != 'true'

View File

@ -58,6 +58,8 @@ jobs:
- name: Install Python dependencies
run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf
pip install --no-binary protobuf protobuf
- name: Cache kaldifeat
id: my-cache
@ -65,7 +67,7 @@ jobs:
with:
path: |
~/tmp/kaldifeat
key: cache-tmp-${{ matrix.python-version }}
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
- name: Install kaldifeat
if: steps.my-cache.outputs.cache-hit != 'true'
@ -98,7 +100,7 @@ jobs:
with:
path: |
~/tmp/fbank-libri
key: cache-libri-fbank-test-clean-and-test-other
key: cache-libri-fbank-test-clean-and-test-other-v2
- name: Compute fbank for LibriSpeech test-clean and test-other
if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true'

View File

@ -58,6 +58,8 @@ jobs:
- name: Install Python dependencies
run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf
pip install --no-binary protobuf protobuf
- name: Cache kaldifeat
id: my-cache
@ -65,7 +67,7 @@ jobs:
with:
path: |
~/tmp/kaldifeat
key: cache-tmp-${{ matrix.python-version }}
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
- name: Install kaldifeat
if: steps.my-cache.outputs.cache-hit != 'true'
@ -98,7 +100,7 @@ jobs:
with:
path: |
~/tmp/fbank-libri
key: cache-libri-fbank-test-clean-and-test-other
key: cache-libri-fbank-test-clean-and-test-other-v2
- name: Compute fbank for LibriSpeech test-clean and test-other
if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true'

View File

@ -58,7 +58,7 @@ jobs:
with:
path: |
~/tmp/kaldifeat
key: cache-tmp-${{ matrix.python-version }}
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
- name: Install kaldifeat
if: steps.my-cache.outputs.cache-hit != 'true'

View File

@ -58,7 +58,7 @@ jobs:
with:
path: |
~/tmp/kaldifeat
key: cache-tmp-${{ matrix.python-version }}
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
- name: Install kaldifeat
if: steps.my-cache.outputs.cache-hit != 'true'

View File

@ -58,6 +58,8 @@ jobs:
- name: Install Python dependencies
run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf
pip install --no-binary protobuf protobuf
- name: Cache kaldifeat
id: my-cache
@ -65,7 +67,7 @@ jobs:
with:
path: |
~/tmp/kaldifeat
key: cache-tmp-${{ matrix.python-version }}
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
- name: Install kaldifeat
if: steps.my-cache.outputs.cache-hit != 'true'
@ -98,7 +100,7 @@ jobs:
with:
path: |
~/tmp/fbank-libri
key: cache-libri-fbank-test-clean-and-test-other
key: cache-libri-fbank-test-clean-and-test-other-v2
- name: Compute fbank for LibriSpeech test-clean and test-other
if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true'

View File

@ -58,7 +58,7 @@ jobs:
with:
path: |
~/tmp/kaldifeat
key: cache-tmp-${{ matrix.python-version }}
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
- name: Install kaldifeat
if: steps.my-cache.outputs.cache-hit != 'true'

View File

@ -0,0 +1,80 @@
# Copyright 2021 Fangjun Kuang (csukuangfj@gmail.com)
# See ../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: run-wenetspeech-pruned-transducer-stateless2
on:
push:
branches:
- master
pull_request:
types: [labeled]
jobs:
run_librispeech_pruned_transducer_stateless3_2022_05_13:
if: github.event.label.name == 'onnx' || github.event.label.name == 'ready' || github.event_name == 'push' || github.event.label.name == 'wenetspeech'
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ubuntu-18.04]
python-version: [3.8]
fail-fast: false
steps:
- uses: actions/checkout@v2
with:
fetch-depth: 0
- name: Setup Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
cache: 'pip'
cache-dependency-path: '**/requirements-ci.txt'
- name: Install Python dependencies
run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf
pip install --no-binary protobuf protobuf
- name: Cache kaldifeat
id: my-cache
uses: actions/cache@v2
with:
path: |
~/tmp/kaldifeat
key: cache-tmp-${{ matrix.python-version }}-2022-09-25
- name: Install kaldifeat
if: steps.my-cache.outputs.cache-hit != 'true'
shell: bash
run: |
.github/scripts/install-kaldifeat.sh
- name: Inference with pre-trained model
shell: bash
env:
GITHUB_EVENT_NAME: ${{ github.event_name }}
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
run: |
sudo apt-get -qq install git-lfs tree sox
export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
.github/scripts/run-wenetspeech-pruned-transducer-stateless2.sh

View File

@ -29,8 +29,8 @@ jobs:
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ubuntu-18.04, macos-10.15]
python-version: [3.7, 3.9]
os: [ubuntu-latest]
python-version: [3.8]
fail-fast: false
steps:

View File

@ -33,13 +33,13 @@ jobs:
# disable macOS test for now.
os: [ubuntu-18.04]
python-version: [3.7, 3.8]
torch: ["1.8.0", "1.10.0"]
torchaudio: ["0.8.0", "0.10.0"]
k2-version: ["1.9.dev20211101"]
torch: ["1.8.0", "1.11.0"]
torchaudio: ["0.8.0", "0.11.0"]
k2-version: ["1.15.1.dev20220427"]
exclude:
- torch: "1.8.0"
torchaudio: "0.10.0"
- torch: "1.10.0"
torchaudio: "0.11.0"
- torch: "1.11.0"
torchaudio: "0.8.0"
fail-fast: false
@ -67,7 +67,7 @@ jobs:
# numpy 1.20.x does not support python 3.6
pip install numpy==1.19
pip install torch==${{ matrix.torch }}+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html
if [[ ${{ matrix.torchaudio }} == "0.10.0" ]]; then
if [[ ${{ matrix.torchaudio }} == "0.11.0" ]]; then
pip install torchaudio==${{ matrix.torchaudio }}+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html
else
pip install torchaudio==${{ matrix.torchaudio }}

2
.gitignore vendored
View File

@ -11,3 +11,5 @@ log
*.bak
*-bak
*bak.py
*.param
*.bin

View File

@ -2,6 +2,18 @@
<img src="https://raw.githubusercontent.com/k2-fsa/icefall/master/docs/source/_static/logo.png" width=168>
</div>
## Introduction
icefall contains ASR recipes for various datasets
using <https://github.com/k2-fsa/k2>.
You can use <https://github.com/k2-fsa/sherpa> to deploy models
trained with icefall.
You can try pre-trained models from within your browser without the need
to download or install anything by visiting <https://huggingface.co/spaces/k2-fsa/automatic-speech-recognition>
See <https://k2-fsa.github.io/icefall/huggingface/spaces.html> for more details.
## Installation
Please refer to <https://icefall.readthedocs.io/en/latest/installation/index.html>
@ -23,6 +35,8 @@ We provide the following recipes:
- [Aidatatang_200zh][aidatatang_200zh]
- [WenetSpeech][wenetspeech]
- [Alimeeting][alimeeting]
- [Aishell4][aishell4]
- [TAL_CSASR][tal_csasr]
### yesno
@ -236,17 +250,25 @@ We provide a Colab notebook to run a pre-trained Pruned Transducer Stateless mod
### WenetSpeech
We provide one model for this recipe: [Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss][WenetSpeech_pruned_transducer_stateless2].
We provide some models for this recipe: [Pruned stateless RNN-T_2: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss][WenetSpeech_pruned_transducer_stateless2] and [Pruned stateless RNN-T_5: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss][WenetSpeech_pruned_transducer_stateless5].
#### Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss (trained with L subset)
#### Pruned stateless RNN-T_2: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss (trained with L subset, offline ASR)
| | Dev | Test-Net | Test-Meeting |
|----------------------|-------|----------|--------------|
| greedy search | 7.80 | 8.75 | 13.49 |
| fast beam search | 7.94 | 8.74 | 13.80 |
| modified beam search| 7.76 | 8.71 | 13.41 |
| fast beam search | 7.94 | 8.74 | 13.80 |
We provide a Colab notebook to run a pre-trained Pruned Transducer Stateless model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1EV4e1CHa1GZgEF-bZgizqI9RyFFehIiN?usp=sharing)
#### Pruned stateless RNN-T_5: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss (trained with L subset)
**Streaming**:
| | Dev | Test-Net | Test-Meeting |
|----------------------|-------|----------|--------------|
| greedy_search | 8.78 | 10.12 | 16.16 |
| modified_beam_search | 8.53| 9.95 | 15.81 |
| fast_beam_search| 9.01 | 10.47 | 16.28 |
We provide a Colab notebook to run a pre-trained Pruned Transducer Stateless2 model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1EV4e1CHa1GZgEF-bZgizqI9RyFFehIiN?usp=sharing)
### Alimeeting
@ -262,6 +284,36 @@ We provide one model for this recipe: [Pruned stateless RNN-T: Conformer encoder
We provide a Colab notebook to run a pre-trained Pruned Transducer Stateless model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1tKr3f0mL17uO_ljdHGKtR7HOmthYHwJG?usp=sharing)
### Aishell4
We provide one model for this recipe: [Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss][Aishell4_pruned_transducer_stateless5].
#### Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss (trained with all subsets)
The best CER(%) results:
| | test |
|----------------------|--------|
| greedy search | 29.89 |
| fast beam search | 28.91 |
| modified beam search | 29.08 |
We provide a Colab notebook to run a pre-trained Pruned Transducer Stateless model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1z3lkURVv9M7uTiIgf3Np9IntMHEknaks?usp=sharing)
### TAL_CSASR
We provide one model for this recipe: [Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss][TAL_CSASR_pruned_transducer_stateless5].
#### Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss
The best results for Chinese CER(%) and English WER(%) respectivly (zh: Chinese, en: English):
|decoding-method | dev | dev_zh | dev_en | test | test_zh | test_en |
|--|--|--|--|--|--|--|
|greedy_search| 7.30 | 6.48 | 19.19 |7.39| 6.66 | 19.13|
|modified_beam_search| 7.15 | 6.35 | 18.95 | 7.22| 6.50 | 18.70 |
|fast_beam_search| 7.18 | 6.39| 18.90 | 7.27| 6.55 | 18.77|
We provide a Colab notebook to run a pre-trained Pruned Transducer Stateless model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1DmIx-NloI1CMU5GdZrlse7TRu4y3Dpf8?usp=sharing)
## Deployment with C++
Once you have trained a model in icefall, you may want to deploy it with C++,
@ -289,7 +341,10 @@ Please see: [![Open In Colab](https://colab.research.google.com/assets/colab-bad
[GigaSpeech_pruned_transducer_stateless2]: egs/gigaspeech/ASR/pruned_transducer_stateless2
[Aidatatang_200zh_pruned_transducer_stateless2]: egs/aidatatang_200zh/ASR/pruned_transducer_stateless2
[WenetSpeech_pruned_transducer_stateless2]: egs/wenetspeech/ASR/pruned_transducer_stateless2
[WenetSpeech_pruned_transducer_stateless5]: egs/wenetspeech/ASR/pruned_transducer_stateless5
[Alimeeting_pruned_transducer_stateless2]: egs/alimeeting/ASR/pruned_transducer_stateless2
[Aishell4_pruned_transducer_stateless5]: egs/aishell4/ASR/pruned_transducer_stateless5
[TAL_CSASR_pruned_transducer_stateless5]: egs/tal_csasr/ASR/pruned_transducer_stateless5
[yesno]: egs/yesno/ASR
[librispeech]: egs/librispeech/ASR
[aishell]: egs/aishell/ASR
@ -299,5 +354,6 @@ Please see: [![Open In Colab](https://colab.research.google.com/assets/colab-bad
[aidatatang_200zh]: egs/aidatatang_200zh/ASR
[wenetspeech]: egs/wenetspeech/ASR
[alimeeting]: egs/alimeeting/ASR
[aishell4]: egs/aishell4/ASR
[tal_csasr]: egs/tal_csasr/ASR
[k2]: https://github.com/k2-fsa/k2
)

View File

@ -1,24 +1,114 @@
# icefall dockerfile
We provide a dockerfile for some users, the configuration of dockerfile is : Ubuntu18.04-pytorch1.7.1-cuda11.0-cudnn8-python3.8. You can use the dockerfile by following the steps:
2 sets of configuration are provided - (a) Ubuntu18.04-pytorch1.12.1-cuda11.3-cudnn8, and (b) Ubuntu18.04-pytorch1.7.1-cuda11.0-cudnn8.
## Building images locally
If your NVIDIA driver supports CUDA Version: 11.3, please go for case (a) Ubuntu18.04-pytorch1.12.1-cuda11.3-cudnn8.
Otherwise, since the older PyTorch images are not updated with the [apt-key rotation by NVIDIA](https://developer.nvidia.com/blog/updating-the-cuda-linux-gpg-repository-key), you have to go for case (b) Ubuntu18.04-pytorch1.7.1-cuda11.0-cudnn8. Ensure that your NVDIA driver supports at least CUDA 11.0.
You can check the highest CUDA version within your NVIDIA driver's support with the `nvidia-smi` command below. In this example, the highest CUDA version is 11.0, i.e. case (b) Ubuntu18.04-pytorch1.7.1-cuda11.0-cudnn8.
```bash
cd docker/Ubuntu18.04-pytorch1.7.1-cuda11.0-cudnn8
docker build -t icefall/pytorch1.7.1:latest -f ./Dockerfile ./
$ nvidia-smi
Tue Sep 20 00:26:13 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.119.03 Driver Version: 450.119.03 CUDA Version: 11.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 TITAN RTX On | 00000000:03:00.0 Off | N/A |
| 41% 31C P8 4W / 280W | 16MiB / 24219MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 1 TITAN RTX On | 00000000:04:00.0 Off | N/A |
| 41% 30C P8 11W / 280W | 6MiB / 24220MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 2085 G /usr/lib/xorg/Xorg 9MiB |
| 0 N/A N/A 2240 G /usr/bin/gnome-shell 4MiB |
| 1 N/A N/A 2085 G /usr/lib/xorg/Xorg 4MiB |
+-----------------------------------------------------------------------------+
```
## Using built images
Sample usage of the GPU based images:
## Building images locally
If your environment requires a proxy to access the Internet, remember to add those information into the Dockerfile directly.
For most cases, you can uncomment these lines in the Dockerfile and add in your proxy details.
```dockerfile
ENV http_proxy=http://aaa.bb.cc.net:8080 \
https_proxy=http://aaa.bb.cc.net:8080
```
Then, proceed with these commands.
### If you are case (a), i.e. your NVIDIA driver supports CUDA version >= 11.3:
```bash
cd docker/Ubuntu18.04-pytorch1.12.1-cuda11.3-cudnn8
docker build -t icefall/pytorch1.12.1 .
```
### If you are case (b), i.e. your NVIDIA driver can only support CUDA versions 11.0 <= x < 11.3:
```bash
cd docker/Ubuntu18.04-pytorch1.7.1-cuda11.0-cudnn8
docker build -t icefall/pytorch1.7.1 .
```
## Running your built local image
Sample usage of the GPU based images. These commands are written with case (a) in mind, so please make the necessary changes to your image name if you are case (b).
Note: use [nvidia-docker](https://github.com/NVIDIA/nvidia-docker) to run the GPU images.
```bash
docker run -it --runtime=nvidia --name=icefall_username --gpus all icefall/pytorch1.7.1:latest
docker run -it --runtime=nvidia --shm-size=2gb --name=icefall --gpus all icefall/pytorch1.12.1
```
Sample usage of the CPU based images:
### Tips:
1. Since your data and models most probably won't be in the docker, you must use the -v flag to access the host machine. Do this by specifying `-v {/path/in/docker}:{/path/in/host/machine}`.
2. Also, if your environment requires a proxy, this would be a good time to add it in too: `-e http_proxy=http://aaa.bb.cc.net:8080 -e https_proxy=http://aaa.bb.cc.net:8080`.
Overall, your docker run command should look like this.
```bash
docker run -it icefall/pytorch1.7.1:latest /bin/bash
docker run -it --runtime=nvidia --shm-size=2gb --name=icefall --gpus all -v {/path/in/docker}:{/path/in/host/machine} -e http_proxy=http://aaa.bb.cc.net:8080 -e https_proxy=http://aaa.bb.cc.net:8080 icefall/pytorch1.12.1
```
You can explore more docker run options [here](https://docs.docker.com/engine/reference/commandline/run/) to suit your environment.
### Linking to icefall in your host machine
If you already have icefall downloaded onto your host machine, you can use that repository instead so that changes in your code are visible inside and outside of the container.
Note: Remember to set the -v flag above during the first run of the container, as that is the only way for your container to access your host machine.
Warning: Check that the icefall in your host machine is visible from within your container before proceeding to the commands below.
Use these commands once you are inside the container.
```bash
rm -r /workspace/icefall
ln -s {/path/in/docker/to/icefall} /workspace/icefall
```
## Starting another session in the same running container.
```bash
docker exec -it icefall /bin/bash
```
## Restarting a killed container that has been run before.
```bash
docker start -ai icefall
```
## Sample usage of the CPU based images:
```bash
docker run -it icefall /bin/bash
```

View File

@ -0,0 +1,72 @@
FROM pytorch/pytorch:1.12.1-cuda11.3-cudnn8-devel
# ENV http_proxy=http://aaa.bbb.cc.net:8080 \
# https_proxy=http://aaa.bbb.cc.net:8080
# install normal source
RUN apt-get update && \
apt-get install -y --no-install-recommends \
g++ \
make \
automake \
autoconf \
bzip2 \
unzip \
wget \
sox \
libtool \
git \
subversion \
zlib1g-dev \
gfortran \
ca-certificates \
patch \
ffmpeg \
valgrind \
libssl-dev \
vim \
curl
# cmake
RUN wget -P /opt https://cmake.org/files/v3.18/cmake-3.18.0.tar.gz && \
cd /opt && \
tar -zxvf cmake-3.18.0.tar.gz && \
cd cmake-3.18.0 && \
./bootstrap && \
make && \
make install && \
rm -rf cmake-3.18.0.tar.gz && \
find /opt/cmake-3.18.0 -type f \( -name "*.o" -o -name "*.la" -o -name "*.a" \) -exec rm {} \; && \
cd -
# flac
RUN wget -P /opt https://downloads.xiph.org/releases/flac/flac-1.3.2.tar.xz && \
cd /opt && \
xz -d flac-1.3.2.tar.xz && \
tar -xvf flac-1.3.2.tar && \
cd flac-1.3.2 && \
./configure && \
make && make install && \
rm -rf flac-1.3.2.tar && \
find /opt/flac-1.3.2 -type f \( -name "*.o" -o -name "*.la" -o -name "*.a" \) -exec rm {} \; && \
cd -
RUN pip install kaldiio graphviz && \
conda install -y -c pytorch torchaudio
#install k2 from source
RUN git clone https://github.com/k2-fsa/k2.git /opt/k2 && \
cd /opt/k2 && \
python3 setup.py install && \
cd -
# install lhotse
RUN pip install git+https://github.com/lhotse-speech/lhotse
RUN git clone https://github.com/k2-fsa/icefall /workspace/icefall && \
cd /workspace/icefall && \
pip install -r requirements.txt
ENV PYTHONPATH /workspace/icefall:$PYTHONPATH
WORKDIR /workspace/icefall

View File

@ -1,7 +1,13 @@
FROM pytorch/pytorch:1.7.1-cuda11.0-cudnn8-devel
# install normal source
# ENV http_proxy=http://aaa.bbb.cc.net:8080 \
# https_proxy=http://aaa.bbb.cc.net:8080
RUN rm /etc/apt/sources.list.d/cuda.list && \
rm /etc/apt/sources.list.d/nvidia-ml.list && \
apt-key del 7fa2af80
# install normal source
RUN apt-get update && \
apt-get install -y --no-install-recommends \
g++ \
@ -22,19 +28,24 @@ RUN apt-get update && \
ffmpeg \
valgrind \
libssl-dev \
vim && \
rm -rf /var/lib/apt/lists/*
vim \
curl
RUN mv /opt/conda/lib/libcufft.so.10 /opt/libcufft.so.10.bak && \
# Add new keys and reupdate
RUN curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub | apt-key add - && \
curl -fsSL https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/7fa2af80.pub | apt-key add - && \
echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 /" > /etc/apt/sources.list.d/cuda.list && \
echo "deb https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64 /" > /etc/apt/sources.list.d/nvidia-ml.list && \
rm -rf /var/lib/apt/lists/* && \
mv /opt/conda/lib/libcufft.so.10 /opt/libcufft.so.10.bak && \
mv /opt/conda/lib/libcurand.so.10 /opt/libcurand.so.10.bak && \
mv /opt/conda/lib/libcublas.so.11 /opt/libcublas.so.11.bak && \
mv /opt/conda/lib/libnvrtc.so.11.0 /opt/libnvrtc.so.11.1.bak && \
mv /opt/conda/lib/libnvToolsExt.so.1 /opt/libnvToolsExt.so.1.bak && \
mv /opt/conda/lib/libcudart.so.11.0 /opt/libcudart.so.11.0.bak
# mv /opt/conda/lib/libnvToolsExt.so.1 /opt/libnvToolsExt.so.1.bak && \
mv /opt/conda/lib/libcudart.so.11.0 /opt/libcudart.so.11.0.bak && \
apt-get update && apt-get -y upgrade
# cmake
RUN wget -P /opt https://cmake.org/files/v3.18/cmake-3.18.0.tar.gz && \
cd /opt && \
tar -zxvf cmake-3.18.0.tar.gz && \
@ -46,10 +57,6 @@ RUN wget -P /opt https://cmake.org/files/v3.18/cmake-3.18.0.tar.gz && \
find /opt/cmake-3.18.0 -type f \( -name "*.o" -o -name "*.la" -o -name "*.a" \) -exec rm {} \; && \
cd -
#kaldiio
RUN pip install kaldiio
# flac
RUN wget -P /opt https://downloads.xiph.org/releases/flac/flac-1.3.2.tar.xz && \
cd /opt && \
@ -62,15 +69,8 @@ RUN wget -P /opt https://downloads.xiph.org/releases/flac/flac-1.3.2.tar.xz &&
find /opt/flac-1.3.2 -type f \( -name "*.o" -o -name "*.la" -o -name "*.a" \) -exec rm {} \; && \
cd -
# graphviz
RUN pip install graphviz
# kaldifeat
RUN git clone https://github.com/csukuangfj/kaldifeat.git /opt/kaldifeat && \
cd /opt/kaldifeat && \
python setup.py install && \
cd -
RUN pip install kaldiio graphviz && \
conda install -y -c pytorch torchaudio=0.7.1
#install k2 from source
RUN git clone https://github.com/k2-fsa/k2.git /opt/k2 && \
@ -80,12 +80,12 @@ RUN git clone https://github.com/k2-fsa/k2.git /opt/k2 && \
# install lhotse
RUN pip install git+https://github.com/lhotse-speech/lhotse
#RUN pip install lhotse
# install icefall
RUN git clone https://github.com/k2-fsa/icefall && \
cd icefall && \
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
RUN git clone https://github.com/k2-fsa/icefall /workspace/icefall && \
cd /workspace/icefall && \
pip install -r requirements.txt
ENV PYTHONPATH /workspace/icefall:$PYTHONPATH
WORKDIR /workspace/icefall

View File

@ -1,2 +1,3 @@
sphinx_rtd_theme
sphinx
sphinxcontrib-youtube==1.1.0

View File

@ -32,8 +32,9 @@ release = "0.1"
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [
"sphinx_rtd_theme",
"sphinx.ext.todo",
"sphinx_rtd_theme",
"sphinxcontrib.youtube",
]
# Add any paths that contain templates here, relative to this directory.
@ -73,7 +74,7 @@ html_context = {
"github_user": "k2-fsa",
"github_repo": "icefall",
"github_version": "master",
"conf_py_path": "/icefall/docs/source/",
"conf_py_path": "/docs/source/",
}
todo_include_todos = True

View File

@ -0,0 +1,13 @@
Huggingface
===========
This section describes how to find pre-trained models.
It also demonstrates how to try them from within your browser
without installing anything by using
`Huggingface spaces <https://huggingface.co/spaces/k2-fsa/automatic-speech-recognition>`_.
.. toctree::
:maxdepth: 2
pretrained-models
spaces

Binary file not shown.

After

Width:  |  Height:  |  Size: 455 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 392 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 426 KiB

View File

@ -0,0 +1,17 @@
Pre-trained models
==================
We have uploaded pre-trained models for all recipes in ``icefall``
to `<https://huggingface.co/>`_.
You can find them by visiting the following link:
`<https://huggingface.co/models?search=icefall>`_.
You can also find links of pre-trained models for a specific recipe
by looking at the corresponding ``RESULTS.md``. For instance:
- `<https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/RESULTS.md>`_
- `<https://github.com/k2-fsa/icefall/blob/master/egs/aishell/ASR/RESULTS.md>`_
- `<https://github.com/k2-fsa/icefall/blob/master/egs/gigaspeech/ASR/RESULTS.md>`_
- `<https://github.com/k2-fsa/icefall/blob/master/egs/wenetspeech/ASR/RESULTS.md>`_

View File

@ -0,0 +1,65 @@
Huggingface spaces
==================
We have integrated the server framework
`sherpa <http://github.com/k2-fsa/sherpa>`_
with `Huggingface spaces <https://huggingface.co/spaces/k2-fsa/automatic-speech-recognition>`_
so that you can try pre-trained models from within your browser
without the need to download or install anything.
All you need is a browser, which can be run on Windows, macOS, Linux, or even on your
iPad and your phone.
Start your browser and visit the following address:
`<https://huggingface.co/spaces/k2-fsa/automatic-speech-recognition>`_
and you will see a page like the following screenshot:
.. image:: ./pic/hugging-face-sherpa.png
:alt: screenshot of `<https://huggingface.co/spaces/k2-fsa/automatic-speech-recognition>`_
:target: https://huggingface.co/spaces/k2-fsa/automatic-speech-recognition
You can:
1. Select a language for recognition. Currently, we provide pre-trained models
from ``icefall`` for the following languages: ``Chinese``, ``English``, and
``Chinese+English``.
2. After selecting the target language, you can select a pre-trained model
corresponding to the language.
3. Select the decoding method. Currently, it provides ``greedy search``
and ``modified_beam_search``.
4. If you selected ``modified_beam_search``, you can choose the number of
active paths during the search.
5. Either upload a file or record your speech for recognition.
6. Click the button ``Submit for recognition``.
7. Wait for a moment and you will get the recognition results.
The following screenshot shows an example when selecting ``Chinese+English``:
.. image:: ./pic/hugging-face-sherpa-3.png
:alt: screenshot of `<https://huggingface.co/spaces/k2-fsa/automatic-speech-recognition>`_
:target: https://huggingface.co/spaces/k2-fsa/automatic-speech-recognition
In the bottom part of the page, you can find a table of examples. You can click
one of them and then click ``Submit for recognition``.
.. image:: ./pic/hugging-face-sherpa-2.png
:alt: screenshot of `<https://huggingface.co/spaces/k2-fsa/automatic-speech-recognition>`_
:target: https://huggingface.co/spaces/k2-fsa/automatic-speech-recognition
YouTube Video
-------------
We provide the following YouTube video demonstrating how to use
`<https://huggingface.co/spaces/k2-fsa/automatic-speech-recognition>`_.
.. note::
To get the latest news of `next-gen Kaldi <https://github.com/k2-fsa>`_, please subscribe
the following YouTube channel by `Nadira Povey <https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_:
`<https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_
.. youtube:: ElN3r9dkKE4

View File

@ -21,5 +21,7 @@ speech recognition recipes using `k2 <https://github.com/k2-fsa/k2>`_.
:caption: Contents:
installation/index
model-export/index
recipes/index
contributing/index
huggingface/index

View File

@ -474,3 +474,19 @@ The decoding log is:
**Congratulations!** You have successfully setup the environment and have run the first recipe in ``icefall``.
Have fun with ``icefall``!
YouTube Video
-------------
We provide the following YouTube video showing how to install ``icefall``.
It also shows how to debug various problems that you may encounter while
using ``icefall``.
.. note::
To get the latest news of `next-gen Kaldi <https://github.com/k2-fsa>`_, please subscribe
the following YouTube channel by `Nadira Povey <https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_:
`<https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_
.. youtube:: LVmrBD0tLfE

View File

@ -0,0 +1,21 @@
2022-10-13 19:09:02,233 INFO [pretrained.py:265] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'encoder_dim': 512, 'nhead': 8, 'dim_feedforward': 2048, 'num_encoder_layers': 12, 'decoder_dim': 512, 'joiner_dim': 512, 'model_warm_step': 3000, 'env_info': {'k2-version': '1.21', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '4810e00d8738f1a21278b0156a42ff396a2d40ac', 'k2-git-date': 'Fri Oct 7 19:35:03 2022', 'lhotse-version': '1.3.0.dev+missing.version.file', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': False, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'onnx-doc-1013', 'icefall-git-sha1': 'c39cba5-dirty', 'icefall-git-date': 'Thu Oct 13 15:17:20 2022', 'icefall-path': '/k2-dev/fangjun/open-source/icefall-master', 'k2-path': '/k2-dev/fangjun/open-source/k2-master/k2/python/k2/__init__.py', 'lhotse-path': '/ceph-fj/fangjun/open-source-2/lhotse-jsonl/lhotse/__init__.py', 'hostname': 'de-74279-k2-test-4-0324160024-65bfd8b584-jjlbn', 'IP address': '10.177.74.203'}, 'checkpoint': './icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/exp/pretrained-iter-1224000-avg-14.pt', 'bpe_model': './icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/data/lang_bpe_500/bpe.model', 'method': 'greedy_search', 'sound_files': ['./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1089-134686-0001.wav', './icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1221-135766-0001.wav', './icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1221-135766-0002.wav'], 'sample_rate': 16000, 'beam_size': 4, 'beam': 4, 'max_contexts': 4, 'max_states': 8, 'context_size': 2, 'max_sym_per_frame': 1, 'simulate_streaming': False, 'decode_chunk_size': 16, 'left_context': 64, 'dynamic_chunk_training': False, 'causal_convolution': False, 'short_chunk_size': 25, 'num_left_chunks': 4, 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
2022-10-13 19:09:02,233 INFO [pretrained.py:271] device: cpu
2022-10-13 19:09:02,233 INFO [pretrained.py:273] Creating model
2022-10-13 19:09:02,612 INFO [train.py:458] Disable giga
2022-10-13 19:09:02,623 INFO [pretrained.py:277] Number of model parameters: 78648040
2022-10-13 19:09:02,951 INFO [pretrained.py:285] Constructing Fbank computer
2022-10-13 19:09:02,952 INFO [pretrained.py:295] Reading sound files: ['./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1089-134686-0001.wav', './icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1221-135766-0001.wav', './icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1221-135766-0002.wav']
2022-10-13 19:09:02,957 INFO [pretrained.py:301] Decoding started
2022-10-13 19:09:06,700 INFO [pretrained.py:329] Using greedy_search
2022-10-13 19:09:06,912 INFO [pretrained.py:388]
./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1089-134686-0001.wav:
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1221-135766-0001.wav:
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1221-135766-0002.wav:
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
2022-10-13 19:09:06,912 INFO [pretrained.py:390] Decoding Done

View File

@ -0,0 +1,135 @@
Export model.state_dict()
=========================
When to use it
--------------
During model training, we save checkpoints periodically to disk.
A checkpoint contains the following information:
- ``model.state_dict()``
- ``optimizer.state_dict()``
- and some other information related to training
When we need to resume the training process from some point, we need a checkpoint.
However, if we want to publish the model for inference, then only
``model.state_dict()`` is needed. In this case, we need to strip all other information
except ``model.state_dict()`` to reduce the file size of the published model.
How to export
-------------
Every recipe contains a file ``export.py`` that you can use to
export ``model.state_dict()`` by taking some checkpoints as inputs.
.. hint::
Each ``export.py`` contains well-documented usage information.
In the following, we use
`<https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/pruned_transducer_stateless3/export.py>`_
as an example.
.. note::
The steps for other recipes are almost the same.
.. code-block:: bash
cd egs/librispeech/ASR
./pruned_transducer_stateless3/export.py \
--exp-dir ./pruned_transducer_stateless3/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 20 \
--avg 10
will generate a file ``pruned_transducer_stateless3/exp/pretrained.pt``, which
is a dict containing ``{"model": model.state_dict()}`` saved by ``torch.save()``.
How to use the exported model
-----------------------------
For each recipe, we provide pretrained models hosted on huggingface.
You can find links to pretrained models in ``RESULTS.md`` of each dataset.
In the following, we demonstrate how to use the pretrained model from
`<https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13>`_.
.. code-block:: bash
cd egs/librispeech/ASR
git lfs install
git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13
After cloning the repo with ``git lfs``, you will find several files in the folder
``icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/exp``
that have a prefix ``pretrained-``. Those files contain ``model.state_dict()``
exported by the above ``export.py``.
In each recipe, there is also a file ``pretrained.py``, which can use
``pretrained-xxx.pt`` to decode waves. The following is an example:
.. code-block:: bash
cd egs/librispeech/ASR
./pruned_transducer_stateless3/pretrained.py \
--checkpoint ./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/exp/pretrained-iter-1224000-avg-14.pt \
--bpe-model ./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/data/lang_bpe_500/bpe.model \
--method greedy_search \
./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1089-134686-0001.wav \
./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1221-135766-0001.wav \
./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1221-135766-0002.wav
The above commands show how to use the exported model with ``pretrained.py`` to
decode multiple sound files. Its output is given as follows for reference:
.. literalinclude:: ./code/export-model-state-dict-pretrained-out.txt
Use the exported model to run decode.py
---------------------------------------
When we publish the model, we always note down its WERs on some test
dataset in ``RESULTS.md``. This section describes how to use the
pretrained model to reproduce the WER.
.. code-block:: bash
cd egs/librispeech/ASR
git lfs install
git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13
cd icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/exp
ln -s pretrained-iter-1224000-avg-14.pt epoch-9999.pt
cd ../..
We create a symlink with name ``epoch-9999.pt`` to ``pretrained-iter-1224000-avg-14.pt``,
so that we can pass ``--epoch 9999 --avg 1`` to ``decode.py`` in the following
command:
.. code-block:: bash
./pruned_transducer_stateless3/decode.py \
--epoch 9999 \
--avg 1 \
--exp-dir ./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/exp \
--lang-dir ./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/data/lang_bpe_500 \
--max-duration 600 \
--decoding-method greedy_search
You will find the decoding results in
``./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/exp/greedy_search``.
.. caution::
For some recipes, you also need to pass ``--use-averaged-model False``
to ``decode.py``. The reason is that the exported pretrained model is already
the averaged one.
.. hint::
Before running ``decode.py``, we assume that you have already run
``prepare.sh`` to prepare the test dataset.

View File

@ -0,0 +1,12 @@
Export to ncnn
==============
We support exporting LSTM transducer models to `ncnn <https://github.com/tencent/ncnn>`_.
Please refer to :ref:`export-model-for-ncnn` for details.
We also provide `<https://github.com/k2-fsa/sherpa-ncnn>`_
performing speech recognition using ``ncnn`` with exported models.
It has been tested on Linux, macOS, Windows, and Raspberry Pi. The project is
self-contained and can be statically linked to produce a binary containing
everything needed.

View File

@ -0,0 +1,69 @@
Export to ONNX
==============
In this section, we describe how to export models to ONNX.
.. hint::
Only non-streaming conformer transducer models are tested.
When to use it
--------------
It you want to use an inference framework that supports ONNX
to run the pretrained model.
How to export
-------------
We use
`<https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless3>`_
as an example in the following.
.. code-block:: bash
cd egs/librispeech/ASR
epoch=14
avg=2
./pruned_transducer_stateless3/export.py \
--exp-dir ./pruned_transducer_stateless3/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch $epoch \
--avg $avg \
--onnx 1
It will generate the following files inside ``pruned_transducer_stateless3/exp``:
- ``encoder.onnx``
- ``decoder.onnx``
- ``joiner.onnx``
- ``joiner_encoder_proj.onnx``
- ``joiner_decoder_proj.onnx``
You can use ``./pruned_transducer_stateless3/exp/onnx_pretrained.py`` to decode
waves with the generated files:
.. code-block:: bash
./pruned_transducer_stateless3/onnx_pretrained.py \
--bpe-model ./data/lang_bpe_500/bpe.model \
--encoder-model-filename ./pruned_transducer_stateless3/exp/encoder.onnx \
--decoder-model-filename ./pruned_transducer_stateless3/exp/decoder.onnx \
--joiner-model-filename ./pruned_transducer_stateless3/exp/joiner.onnx \
--joiner-encoder-proj-model-filename ./pruned_transducer_stateless3/exp/joiner_encoder_proj.onnx \
--joiner-decoder-proj-model-filename ./pruned_transducer_stateless3/exp/joiner_decoder_proj.onnx \
/path/to/foo.wav \
/path/to/bar.wav \
/path/to/baz.wav
How to use the exported model
-----------------------------
We also provide `<https://github.com/k2-fsa/sherpa-onnx>`_
performing speech recognition using `onnxruntime <https://github.com/microsoft/onnxruntime>`_
with exported models.
It has been tested on Linux, macOS, and Windows.

View File

@ -0,0 +1,58 @@
.. _export-model-with-torch-jit-script:
Export model with torch.jit.script()
===================================
In this section, we describe how to export a model via
``torch.jit.script()``.
When to use it
--------------
If we want to use our trained model with torchscript,
we can use ``torch.jit.script()``.
.. hint::
See :ref:`export-model-with-torch-jit-trace`
if you want to use ``torch.jit.trace()``.
How to export
-------------
We use
`<https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/pruned_transducer_stateless3>`_
as an example in the following.
.. code-block:: bash
cd egs/librispeech/ASR
epoch=14
avg=1
./pruned_transducer_stateless3/export.py \
--exp-dir ./pruned_transducer_stateless3/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch $epoch \
--avg $avg \
--jit 1
It will generate a file ``cpu_jit.pt`` in ``pruned_transducer_stateless3/exp``.
.. caution::
Don't be confused by ``cpu`` in ``cpu_jit.pt``. We move all parameters
to CPU before saving it into a ``pt`` file; that's why we use ``cpu``
in the filename.
How to use the exported model
-----------------------------
Please refer to the following pages for usage:
- `<https://k2-fsa.github.io/sherpa/python/streaming_asr/emformer/index.html>`_
- `<https://k2-fsa.github.io/sherpa/python/streaming_asr/conv_emformer/index.html>`_
- `<https://k2-fsa.github.io/sherpa/python/streaming_asr/conformer/index.html>`_
- `<https://k2-fsa.github.io/sherpa/python/offline_asr/conformer/index.html>`_
- `<https://k2-fsa.github.io/sherpa/cpp/offline_asr/gigaspeech.html>`_
- `<https://k2-fsa.github.io/sherpa/cpp/offline_asr/wenetspeech.html>`_

View File

@ -0,0 +1,69 @@
.. _export-model-with-torch-jit-trace:
Export model with torch.jit.trace()
===================================
In this section, we describe how to export a model via
``torch.jit.trace()``.
When to use it
--------------
If we want to use our trained model with torchscript,
we can use ``torch.jit.trace()``.
.. hint::
See :ref:`export-model-with-torch-jit-script`
if you want to use ``torch.jit.script()``.
How to export
-------------
We use
`<https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/lstm_transducer_stateless2>`_
as an example in the following.
.. code-block:: bash
iter=468000
avg=16
cd egs/librispeech/ASR
./lstm_transducer_stateless2/export.py \
--exp-dir ./lstm_transducer_stateless2/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--iter $iter \
--avg $avg \
--jit-trace 1
It will generate three files inside ``lstm_transducer_stateless2/exp``:
- ``encoder_jit_trace.pt``
- ``decoder_jit_trace.pt``
- ``joiner_jit_trace.pt``
You can use
`<https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/lstm_transducer_stateless2/jit_pretrained.py>`_
to decode sound files with the following commands:
.. code-block:: bash
cd egs/librispeech/ASR
./lstm_transducer_stateless2/jit_pretrained.py \
--bpe-model ./data/lang_bpe_500/bpe.model \
--encoder-model-filename ./lstm_transducer_stateless2/exp/encoder_jit_trace.pt \
--decoder-model-filename ./lstm_transducer_stateless2/exp/decoder_jit_trace.pt \
--joiner-model-filename ./lstm_transducer_stateless2/exp/joiner_jit_trace.pt \
/path/to/foo.wav \
/path/to/bar.wav \
/path/to/baz.wav
How to use the exported models
------------------------------
Please refer to
`<https://k2-fsa.github.io/sherpa/python/streaming_asr/lstm/index.html>`_
for its usage in `sherpa <https://k2-fsa.github.io/sherpa/python/streaming_asr/lstm/index.html>`_.
You can also find pretrained models there.

View File

@ -0,0 +1,14 @@
Model export
============
In this section, we describe various ways to export models.
.. toctree::
export-model-state-dict
export-with-torch-jit-trace
export-with-torch-jit-script
export-onnx
export-ncnn

View File

@ -422,7 +422,7 @@ The information of the test sound files is listed below:
.. code-block:: bash
$ soxi tmp/icefall_asr_aishell_conformer_ctc/test_wavs/*.wav
$ soxi tmp/icefall_asr_aishell_conformer_ctc/test_waves/*.wav
Input File : 'tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0121.wav'
Channels : 1
@ -485,9 +485,9 @@ The command to run CTC decoding is:
--checkpoint ./tmp/icefall_asr_aishell_conformer_ctc/exp/pretrained.pt \
--tokens-file ./tmp/icefall_asr_aishell_conformer_ctc/data/lang_char/tokens.txt \
--method ctc-decoding \
./tmp/icefall_asr_aishell_conformer_ctc/test_wavs/BAC009S0764W0121.wav \
./tmp/icefall_asr_aishell_conformer_ctc/test_wavs/BAC009S0764W0122.wav \
./tmp/icefall_asr_aishell_conformer_ctc/test_wavs/BAC009S0764W0123.wav
./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0121.wav \
./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0122.wav \
./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0123.wav
The output is given below:
@ -529,9 +529,9 @@ The command to run HLG decoding is:
--words-file ./tmp/icefall_asr_aishell_conformer_ctc/data/lang_char/words.txt \
--HLG ./tmp/icefall_asr_aishell_conformer_ctc/data/lang_char/HLG.pt \
--method 1best \
./tmp/icefall_asr_aishell_conformer_ctc/test_wavs/BAC009S0764W0121.wav \
./tmp/icefall_asr_aishell_conformer_ctc/test_wavs/BAC009S0764W0122.wav \
./tmp/icefall_asr_aishell_conformer_ctc/test_wavs/BAC009S0764W0123.wav
./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0121.wav \
./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0122.wav \
./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0123.wav
The output is given below:
@ -575,9 +575,9 @@ The command to run HLG decoding + attention decoder rescoring is:
--words-file ./tmp/icefall_asr_aishell_conformer_ctc/data/lang_char/words.txt \
--HLG ./tmp/icefall_asr_aishell_conformer_ctc/data/lang_char/HLG.pt \
--method attention-decoder \
./tmp/icefall_asr_aishell_conformer_ctc/test_wavs/BAC009S0764W0121.wav \
./tmp/icefall_asr_aishell_conformer_ctc/test_wavs/BAC009S0764W0122.wav \
./tmp/icefall_asr_aishell_conformer_ctc/test_wavs/BAC009S0764W0123.wav
./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0121.wav \
./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0122.wav \
./tmp/icefall_asr_aishell_conformer_ctc/test_waves/BAC009S0764W0123.wav
The output is below:

View File

@ -402,7 +402,7 @@ The information of the test sound files is listed below:
.. code-block:: bash
$ soxi tmp/icefall_asr_aishell_tdnn_lstm_ctc/test_wavs/*.wav
$ soxi tmp/icefall_asr_aishell_tdnn_lstm_ctc/test_waves/*.wav
Input File : 'tmp/icefall_asr_aishell_tdnn_lstm_ctc/test_waves/BAC009S0764W0121.wav'
Channels : 1
@ -461,9 +461,9 @@ The command to run HLG decoding is:
--words-file ./tmp/icefall_asr_aishell_tdnn_lstm_ctc/data/lang_phone/words.txt \
--HLG ./tmp/icefall_asr_aishell_tdnn_lstm_ctc/data/lang_phone/HLG.pt \
--method 1best \
./tmp/icefall_asr_aishell_tdnn_lstm_ctc/test_wavs/BAC009S0764W0121.wav \
./tmp/icefall_asr_aishell_tdnn_lstm_ctc/test_wavs/BAC009S0764W0122.wav \
./tmp/icefall_asr_aishell_tdnn_lstm_ctc/test_wavs/BAC009S0764W0123.wav
./tmp/icefall_asr_aishell_tdnn_lstm_ctc/test_waves/BAC009S0764W0121.wav \
./tmp/icefall_asr_aishell_tdnn_lstm_ctc/test_waves/BAC009S0764W0122.wav \
./tmp/icefall_asr_aishell_tdnn_lstm_ctc/test_waves/BAC009S0764W0123.wav
The output is given below:

View File

@ -70,6 +70,17 @@ To run stage 2 to stage 5, use:
All generated files by ``./prepare.sh``, e.g., features, lexicon, etc,
are saved in ``./data`` directory.
We provide the following YouTube video showing how to run ``./prepare.sh``.
.. note::
To get the latest news of `next-gen Kaldi <https://github.com/k2-fsa>`_, please subscribe
the following YouTube channel by `Nadira Povey <https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_:
`<https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_
.. youtube:: ofEIoJL-mGM
Training
--------

Binary file not shown.

After

Width:  |  Height:  |  Size: 413 KiB

View File

@ -6,3 +6,4 @@ LibriSpeech
tdnn_lstm_ctc
conformer_ctc
lstm_pruned_stateless_transducer

View File

@ -0,0 +1,636 @@
LSTM Transducer
===============
.. hint::
Please scroll down to the bottom of this page to find download links
for pretrained models if you don't want to train a model from scratch.
This tutorial shows you how to train an LSTM transducer model
with the `LibriSpeech <https://www.openslr.org/12>`_ dataset.
We use pruned RNN-T to compute the loss.
.. note::
You can find the paper about pruned RNN-T at the following address:
`<https://arxiv.org/abs/2206.13236>`_
The transducer model consists of 3 parts:
- Encoder, a.k.a, the transcription network. We use an LSTM model
- Decoder, a.k.a, the prediction network. We use a stateless model consisting of
``nn.Embedding`` and ``nn.Conv1d``
- Joiner, a.k.a, the joint network.
.. caution::
Contrary to the conventional RNN-T models, we use a stateless decoder.
That is, it has no recurrent connections.
.. hint::
Since the encoder model is an LSTM, not Transformer/Conformer, the
resulting model is suitable for streaming/online ASR.
Which model to use
------------------
Currently, there are two folders about LSTM stateless transducer training:
- ``(1)`` `<https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/lstm_transducer_stateless>`_
This recipe uses only LibriSpeech during training.
- ``(2)`` `<https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/lstm_transducer_stateless2>`_
This recipe uses GigaSpeech + LibriSpeech during training.
``(1)`` and ``(2)`` use the same model architecture. The only difference is that ``(2)`` supports
multi-dataset. Since ``(2)`` uses more data, it has a lower WER than ``(1)`` but it needs
more training time.
We use ``lstm_transducer_stateless2`` as an example below.
.. note::
You need to download the `GigaSpeech <https://github.com/SpeechColab/GigaSpeech>`_ dataset
to run ``(2)``. If you have only ``LibriSpeech`` dataset available, feel free to use ``(1)``.
Data preparation
----------------
.. code-block:: bash
$ cd egs/librispeech/ASR
$ ./prepare.sh
# If you use (1), you can **skip** the following command
$ ./prepare_giga_speech.sh
The script ``./prepare.sh`` handles the data preparation for you, **automagically**.
All you need to do is to run it.
.. note::
We encourage you to read ``./prepare.sh``.
The data preparation contains several stages. You can use the following two
options:
- ``--stage``
- ``--stop-stage``
to control which stage(s) should be run. By default, all stages are executed.
For example,
.. code-block:: bash
$ cd egs/librispeech/ASR
$ ./prepare.sh --stage 0 --stop-stage 0
means to run only stage 0.
To run stage 2 to stage 5, use:
.. code-block:: bash
$ ./prepare.sh --stage 2 --stop-stage 5
.. hint::
If you have pre-downloaded the `LibriSpeech <https://www.openslr.org/12>`_
dataset and the `musan <http://www.openslr.org/17/>`_ dataset, say,
they are saved in ``/tmp/LibriSpeech`` and ``/tmp/musan``, you can modify
the ``dl_dir`` variable in ``./prepare.sh`` to point to ``/tmp`` so that
``./prepare.sh`` won't re-download them.
.. note::
All generated files by ``./prepare.sh``, e.g., features, lexicon, etc,
are saved in ``./data`` directory.
We provide the following YouTube video showing how to run ``./prepare.sh``.
.. note::
To get the latest news of `next-gen Kaldi <https://github.com/k2-fsa>`_, please subscribe
the following YouTube channel by `Nadira Povey <https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_:
`<https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_
.. youtube:: ofEIoJL-mGM
Training
--------
Configurable options
~~~~~~~~~~~~~~~~~~~~
.. code-block:: bash
$ cd egs/librispeech/ASR
$ ./lstm_transducer_stateless2/train.py --help
shows you the training options that can be passed from the commandline.
The following options are used quite often:
- ``--full-libri``
If it's True, the training part uses all the training data, i.e.,
960 hours. Otherwise, the training part uses only the subset
``train-clean-100``, which has 100 hours of training data.
.. CAUTION::
The training set is perturbed by speed with two factors: 0.9 and 1.1.
If ``--full-libri`` is True, each epoch actually processes
``3x960 == 2880`` hours of data.
- ``--num-epochs``
It is the number of epochs to train. For instance,
``./lstm_transducer_stateless2/train.py --num-epochs 30`` trains for 30 epochs
and generates ``epoch-1.pt``, ``epoch-2.pt``, ..., ``epoch-30.pt``
in the folder ``./lstm_transducer_stateless2/exp``.
- ``--start-epoch``
It's used to resume training.
``./lstm_transducer_stateless2/train.py --start-epoch 10`` loads the
checkpoint ``./lstm_transducer_stateless2/exp/epoch-9.pt`` and starts
training from epoch 10, based on the state from epoch 9.
- ``--world-size``
It is used for multi-GPU single-machine DDP training.
- (a) If it is 1, then no DDP training is used.
- (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training.
The following shows some use cases with it.
**Use case 1**: You have 4 GPUs, but you only want to use GPU 0 and
GPU 2 for training. You can do the following:
.. code-block:: bash
$ cd egs/librispeech/ASR
$ export CUDA_VISIBLE_DEVICES="0,2"
$ ./lstm_transducer_stateless2/train.py --world-size 2
**Use case 2**: You have 4 GPUs and you want to use all of them
for training. You can do the following:
.. code-block:: bash
$ cd egs/librispeech/ASR
$ ./lstm_transducer_stateless2/train.py --world-size 4
**Use case 3**: You have 4 GPUs but you only want to use GPU 3
for training. You can do the following:
.. code-block:: bash
$ cd egs/librispeech/ASR
$ export CUDA_VISIBLE_DEVICES="3"
$ ./lstm_transducer_stateless2/train.py --world-size 1
.. caution::
Only multi-GPU single-machine DDP training is implemented at present.
Multi-GPU multi-machine DDP training will be added later.
- ``--max-duration``
It specifies the number of seconds over all utterances in a
batch, before **padding**.
If you encounter CUDA OOM, please reduce it.
.. HINT::
Due to padding, the number of seconds of all utterances in a
batch will usually be larger than ``--max-duration``.
A larger value for ``--max-duration`` may cause OOM during training,
while a smaller value may increase the training time. You have to
tune it.
- ``--giga-prob``
The probability to select a batch from the ``GigaSpeech`` dataset.
Note: It is available only for ``(2)``.
Pre-configured options
~~~~~~~~~~~~~~~~~~~~~~
There are some training options, e.g., weight decay,
number of warmup steps, results dir, etc,
that are not passed from the commandline.
They are pre-configured by the function ``get_params()`` in
`lstm_transducer_stateless2/train.py <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/lstm_transducer_stateless2/train.py>`_
You don't need to change these pre-configured parameters. If you really need to change
them, please modify ``./lstm_transducer_stateless2/train.py`` directly.
Training logs
~~~~~~~~~~~~~
Training logs and checkpoints are saved in ``lstm_transducer_stateless2/exp``.
You will find the following files in that directory:
- ``epoch-1.pt``, ``epoch-2.pt``, ...
These are checkpoint files saved at the end of each epoch, containing model
``state_dict`` and optimizer ``state_dict``.
To resume training from some checkpoint, say ``epoch-10.pt``, you can use:
.. code-block:: bash
$ ./lstm_transducer_stateless2/train.py --start-epoch 11
- ``checkpoint-436000.pt``, ``checkpoint-438000.pt``, ...
These are checkpoint files saved every ``--save-every-n`` batches,
containing model ``state_dict`` and optimizer ``state_dict``.
To resume training from some checkpoint, say ``checkpoint-436000``, you can use:
.. code-block:: bash
$ ./lstm_transducer_stateless2/train.py --start-batch 436000
- ``tensorboard/``
This folder contains tensorBoard logs. Training loss, validation loss, learning
rate, etc, are recorded in these logs. You can visualize them by:
.. code-block:: bash
$ cd lstm_transducer_stateless2/exp/tensorboard
$ tensorboard dev upload --logdir . --description "LSTM transducer training for LibriSpeech with icefall"
It will print something like below:
.. code-block::
TensorFlow installation not found - running with reduced feature set.
Upload started and will continue reading any new data as it's added to the logdir.
To stop uploading, press Ctrl-C.
New experiment created. View your TensorBoard at: https://tensorboard.dev/experiment/cj2vtPiwQHKN9Q1tx6PTpg/
[2022-09-20T15:50:50] Started scanning logdir.
Uploading 4468 scalars...
[2022-09-20T15:53:02] Total uploaded: 210171 scalars, 0 tensors, 0 binary objects
Listening for new data in logdir...
Note there is a URL in the above output. Click it and you will see
the following screenshot:
.. figure:: images/librispeech-lstm-transducer-tensorboard-log.png
:width: 600
:alt: TensorBoard screenshot
:align: center
:target: https://tensorboard.dev/experiment/lzGnETjwRxC3yghNMd4kPw/
TensorBoard screenshot.
.. hint::
If you don't have access to google, you can use the following command
to view the tensorboard log locally:
.. code-block:: bash
cd lstm_transducer_stateless2/exp/tensorboard
tensorboard --logdir . --port 6008
It will print the following message:
.. code-block::
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
TensorBoard 2.8.0 at http://localhost:6008/ (Press CTRL+C to quit)
Now start your browser and go to `<http://localhost:6008>`_ to view the tensorboard
logs.
- ``log/log-train-xxxx``
It is the detailed training log in text format, same as the one
you saw printed to the console during training.
Usage example
~~~~~~~~~~~~~
You can use the following command to start the training using 8 GPUs:
.. code-block:: bash
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
./lstm_transducer_stateless2/train.py \
--world-size 8 \
--num-epochs 35 \
--start-epoch 1 \
--full-libri 1 \
--exp-dir lstm_transducer_stateless2/exp \
--max-duration 500 \
--use-fp16 0 \
--lr-epochs 10 \
--num-workers 2 \
--giga-prob 0.9
Decoding
--------
The decoding part uses checkpoints saved by the training part, so you have
to run the training part first.
.. hint::
There are two kinds of checkpoints:
- (1) ``epoch-1.pt``, ``epoch-2.pt``, ..., which are saved at the end
of each epoch. You can pass ``--epoch`` to
``lstm_transducer_stateless2/decode.py`` to use them.
- (2) ``checkpoints-436000.pt``, ``epoch-438000.pt``, ..., which are saved
every ``--save-every-n`` batches. You can pass ``--iter`` to
``lstm_transducer_stateless2/decode.py`` to use them.
We suggest that you try both types of checkpoints and choose the one
that produces the lowest WERs.
.. code-block:: bash
$ cd egs/librispeech/ASR
$ ./lstm_transducer_stateless2/decode.py --help
shows the options for decoding.
The following shows two examples:
.. code-block:: bash
for m in greedy_search fast_beam_search modified_beam_search; do
for epoch in 17; do
for avg in 1 2; do
./lstm_transducer_stateless2/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir lstm_transducer_stateless2/exp \
--max-duration 600 \
--num-encoder-layers 12 \
--rnn-hidden-size 1024 \
--decoding-method $m \
--use-averaged-model True \
--beam 4 \
--max-contexts 4 \
--max-states 8 \
--beam-size 4
done
done
done
.. code-block:: bash
for m in greedy_search fast_beam_search modified_beam_search; do
for iter in 474000; do
for avg in 8 10 12 14 16 18; do
./lstm_transducer_stateless2/decode.py \
--iter $iter \
--avg $avg \
--exp-dir lstm_transducer_stateless2/exp \
--max-duration 600 \
--num-encoder-layers 12 \
--rnn-hidden-size 1024 \
--decoding-method $m \
--use-averaged-model True \
--beam 4 \
--max-contexts 4 \
--max-states 8 \
--beam-size 4
done
done
done
Export models
-------------
`lstm_transducer_stateless2/export.py <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/lstm_transducer_stateless2/export.py>`_ supports exporting checkpoints from ``lstm_transducer_stateless2/exp`` in the following ways.
Export ``model.state_dict()``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Checkpoints saved by ``lstm_transducer_stateless2/train.py`` also include
``optimizer.state_dict()``. It is useful for resuming training. But after training,
we are interested only in ``model.state_dict()``. You can use the following
command to extract ``model.state_dict()``.
.. code-block:: bash
# Assume that --iter 468000 --avg 16 produces the smallest WER
# (You can get such information after running ./lstm_transducer_stateless2/decode.py)
iter=468000
avg=16
./lstm_transducer_stateless2/export.py \
--exp-dir ./lstm_transducer_stateless2/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--iter $iter \
--avg $avg
It will generate a file ``./lstm_transducer_stateless2/exp/pretrained.pt``.
.. hint::
To use the generated ``pretrained.pt`` for ``lstm_transducer_stateless2/decode.py``,
you can run:
.. code-block:: bash
cd lstm_transducer_stateless2/exp
ln -s pretrained epoch-9999.pt
And then pass ``--epoch 9999 --avg 1 --use-averaged-model 0`` to
``./lstm_transducer_stateless2/decode.py``.
To use the exported model with ``./lstm_transducer_stateless2/pretrained.py``, you
can run:
.. code-block:: bash
./lstm_transducer_stateless2/pretrained.py \
--checkpoint ./lstm_transducer_stateless2/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method greedy_search \
/path/to/foo.wav \
/path/to/bar.wav
Export model using ``torch.jit.trace()``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code-block:: bash
iter=468000
avg=16
./lstm_transducer_stateless2/export.py \
--exp-dir ./lstm_transducer_stateless2/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--iter $iter \
--avg $avg \
--jit-trace 1
It will generate 3 files:
- ``./lstm_transducer_stateless2/exp/encoder_jit_trace.pt``
- ``./lstm_transducer_stateless2/exp/decoder_jit_trace.pt``
- ``./lstm_transducer_stateless2/exp/joiner_jit_trace.pt``
To use the generated files with ``./lstm_transducer_stateless2/jit_pretrained``:
.. code-block:: bash
./lstm_transducer_stateless2/jit_pretrained.py \
--bpe-model ./data/lang_bpe_500/bpe.model \
--encoder-model-filename ./lstm_transducer_stateless2/exp/encoder_jit_trace.pt \
--decoder-model-filename ./lstm_transducer_stateless2/exp/decoder_jit_trace.pt \
--joiner-model-filename ./lstm_transducer_stateless2/exp/joiner_jit_trace.pt \
/path/to/foo.wav \
/path/to/bar.wav
.. hint::
Please see `<https://k2-fsa.github.io/sherpa/python/streaming_asr/lstm/english/server.html>`_
for how to use the exported models in ``sherpa``.
.. _export-model-for-ncnn:
Export model for ncnn
~~~~~~~~~~~~~~~~~~~~~
We support exporting pretrained LSTM transducer models to
`ncnn <https://github.com/tencent/ncnn>`_ using
`pnnx <https://github.com/Tencent/ncnn/tree/master/tools/pnnx>`_.
First, let us install a modified version of ``ncnn``:
.. code-block:: bash
git clone https://github.com/csukuangfj/ncnn
cd ncnn
git submodule update --recursive --init
python3 setup.py bdist_wheel
ls -lh dist/
pip install ./dist/*.whl
# now build pnnx
cd tools/pnnx
mkdir build
cd build
make -j4
export PATH=$PWD/src:$PATH
./src/pnnx
.. note::
We assume that you have added the path to the binary ``pnnx`` to the
environment variable ``PATH``.
Second, let us export the model using ``torch.jit.trace()`` that is suitable
for ``pnnx``:
.. code-block:: bash
iter=468000
avg=16
./lstm_transducer_stateless2/export.py \
--exp-dir ./lstm_transducer_stateless2/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--iter $iter \
--avg $avg \
--pnnx 1
It will generate 3 files:
- ``./lstm_transducer_stateless2/exp/encoder_jit_trace-pnnx.pt``
- ``./lstm_transducer_stateless2/exp/decoder_jit_trace-pnnx.pt``
- ``./lstm_transducer_stateless2/exp/joiner_jit_trace-pnnx.pt``
Third, convert torchscript model to ``ncnn`` format:
.. code-block::
pnnx ./lstm_transducer_stateless2/exp/encoder_jit_trace-pnnx.pt
pnnx ./lstm_transducer_stateless2/exp/decoder_jit_trace-pnnx.pt
pnnx ./lstm_transducer_stateless2/exp/joiner_jit_trace-pnnx.pt
It will generate the following files:
- ``./lstm_transducer_stateless2/exp/encoder_jit_trace-pnnx.ncnn.param``
- ``./lstm_transducer_stateless2/exp/encoder_jit_trace-pnnx.ncnn.bin``
- ``./lstm_transducer_stateless2/exp/decoder_jit_trace-pnnx.ncnn.param``
- ``./lstm_transducer_stateless2/exp/decoder_jit_trace-pnnx.ncnn.bin``
- ``./lstm_transducer_stateless2/exp/joiner_jit_trace-pnnx.ncnn.param``
- ``./lstm_transducer_stateless2/exp/joiner_jit_trace-pnnx.ncnn.bin``
To use the above generated files, run:
.. code-block:: bash
./lstm_transducer_stateless2/ncnn-decode.py \
--bpe-model-filename ./data/lang_bpe_500/bpe.model \
--encoder-param-filename ./lstm_transducer_stateless2/exp/encoder_jit_trace-pnnx.ncnn.param \
--encoder-bin-filename ./lstm_transducer_stateless2/exp/encoder_jit_trace-pnnx.ncnn.bin \
--decoder-param-filename ./lstm_transducer_stateless2/exp/decoder_jit_trace-pnnx.ncnn.param \
--decoder-bin-filename ./lstm_transducer_stateless2/exp/decoder_jit_trace-pnnx.ncnn.bin \
--joiner-param-filename ./lstm_transducer_stateless2/exp/joiner_jit_trace-pnnx.ncnn.param \
--joiner-bin-filename ./lstm_transducer_stateless2/exp/joiner_jit_trace-pnnx.ncnn.bin \
/path/to/foo.wav
.. code-block:: bash
./lstm_transducer_stateless2/streaming-ncnn-decode.py \
--bpe-model-filename ./data/lang_bpe_500/bpe.model \
--encoder-param-filename ./lstm_transducer_stateless2/exp/encoder_jit_trace-pnnx.ncnn.param \
--encoder-bin-filename ./lstm_transducer_stateless2/exp/encoder_jit_trace-pnnx.ncnn.bin \
--decoder-param-filename ./lstm_transducer_stateless2/exp/decoder_jit_trace-pnnx.ncnn.param \
--decoder-bin-filename ./lstm_transducer_stateless2/exp/decoder_jit_trace-pnnx.ncnn.bin \
--joiner-param-filename ./lstm_transducer_stateless2/exp/joiner_jit_trace-pnnx.ncnn.param \
--joiner-bin-filename ./lstm_transducer_stateless2/exp/joiner_jit_trace-pnnx.ncnn.bin \
/path/to/foo.wav
To use the above generated files in C++, please see
`<https://github.com/k2-fsa/sherpa-ncnn>`_
It is able to generate a static linked executable that can be run on Linux, Windows,
macOS, Raspberry Pi, etc, without external dependencies.
Download pretrained models
--------------------------
If you don't want to train from scratch, you can download the pretrained models
by visiting the following links:
- `<https://huggingface.co/csukuangfj/icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03>`_
- `<https://huggingface.co/Zengwei/icefall-asr-librispeech-lstm-transducer-stateless-2022-08-18>`_
See `<https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/RESULTS.md>`_
for the details of the above pretrained models
You can find more usages of the pretrained models in
`<https://k2-fsa.github.io/sherpa/python/streaming_asr/lstm/index.html>`_

View File

@ -45,6 +45,16 @@ To run stage 2 to stage 5, use:
$ ./prepare.sh --stage 2 --stop-stage 5
We provide the following YouTube video showing how to run ``./prepare.sh``.
.. note::
To get the latest news of `next-gen Kaldi <https://github.com/k2-fsa>`_, please subscribe
the following YouTube channel by `Nadira Povey <https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_:
`<https://www.youtube.com/channel/UC_VaumpkmINz1pNkFXAN9mw>`_
.. youtube:: ofEIoJL-mGM
Training
--------

View File

@ -29,7 +29,7 @@ import os
from pathlib import Path
import torch
from lhotse import ChunkedLilcomHdf5Writer, CutSet, Fbank, FbankConfig
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor
@ -52,19 +52,35 @@ def compute_fbank_aidatatang_200zh(num_mel_bins: int = 80):
"dev",
"test",
)
prefix = "aidatatang"
suffix = "jsonl.gz"
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts, output_dir=src_dir
dataset_parts=dataset_parts,
output_dir=src_dir,
prefix=prefix,
suffix=suffix,
)
assert manifests is not None
assert len(manifests) == len(dataset_parts), (
len(manifests),
len(dataset_parts),
list(manifests.keys()),
dataset_parts,
)
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
with get_executor() as ex: # Initialize the executor only once.
for partition, m in manifests.items():
if (output_dir / f"cuts_{partition}.json.gz").is_file():
if (output_dir / f"{prefix}_cuts_{partition}.{suffix}").is_file():
logging.info(f"{partition} already exists - skipping.")
continue
logging.info(f"Processing {partition}")
for sup in m["supervisions"]:
sup.custom = {"origin": "aidatatang_200zh"}
cut_set = CutSet.from_manifests(
recordings=m["recordings"],
supervisions=m["supervisions"],
@ -77,13 +93,14 @@ def compute_fbank_aidatatang_200zh(num_mel_bins: int = 80):
)
cut_set = cut_set.compute_and_store_features(
extractor=extractor,
storage_path=f"{output_dir}/feats_{partition}",
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
# when an executor is specified, make more partitions
num_jobs=num_jobs if ex is None else 80,
executor=ex,
storage_type=ChunkedLilcomHdf5Writer,
storage_type=LilcomChunkyWriter,
)
cut_set.to_json(output_dir / f"cuts_{partition}.json.gz")
cut_set.to_file(output_dir / f"{prefix}_cuts_{partition}.{suffix}")
def get_args():

View File

@ -25,19 +25,19 @@ for usage.
"""
from lhotse import load_manifest
from lhotse import load_manifest_lazy
def main():
paths = [
"./data/fbank/cuts_train.json.gz",
"./data/fbank/cuts_dev.json.gz",
"./data/fbank/cuts_test.json.gz",
"./data/fbank/aidatatang_cuts_train.jsonl.gz",
"./data/fbank/aidatatang_cuts_dev.jsonl.gz",
"./data/fbank/aidatatang_cuts_test.jsonl.gz",
]
for path in paths:
print(f"Starting display the statistics for {path}")
cuts = load_manifest(path)
cuts = load_manifest_lazy(path)
cuts.describe()
@ -45,7 +45,7 @@ if __name__ == "__main__":
main()
"""
Starting display the statistics for ./data/fbank/cuts_train.json.gz
Starting display the statistics for ./data/fbank/aidatatang_cuts_train.jsonl.gz
Cuts count: 494715
Total duration (hours): 422.6
Speech duration (hours): 422.6 (100.0%)
@ -61,7 +61,7 @@ min 1.0
99.5% 8.0
99.9% 9.5
max 18.1
Starting display the statistics for ./data/fbank/cuts_dev.json.gz
Starting display the statistics for ./data/fbank/aidatatang_cuts_dev.jsonl.gz
Cuts count: 24216
Total duration (hours): 20.2
Speech duration (hours): 20.2 (100.0%)
@ -77,7 +77,7 @@ min 1.2
99.5% 7.3
99.9% 8.8
max 11.3
Starting display the statistics for ./data/fbank/cuts_test.json.gz
Starting display the statistics for ./data/fbank/aidatatang_cuts_test.jsonl.gz
Cuts count: 48144
Total duration (hours): 40.2
Speech duration (hours): 40.2 (100.0%)

View File

@ -50,28 +50,19 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Process aidatatang_200zh"
if [ ! -f data/fbank/aidatatang_200zh/.fbank.done ]; then
mkdir -p data/fbank/aidatatang_200zh
lhotse prepare aidatatang-200zh $dl_dir data/manifests/aidatatang_200zh
touch data/fbank/aidatatang_200zh/.fbank.done
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
if [ ! -f data/manifests/.manifests.done ]; then
log "It may take 6 minutes"
mkdir -p data/manifests/
lhotse prepare musan $dl_dir/musan data/manifests/
touch data/manifests/.manifests.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
if [ ! -f data/manifests/.musan_manifests.done ]; then
log "It may take 6 minutes"
mkdir -p data/manifests
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan_manifests.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
log "Stage 3: Compute fbank for musan"
if [ ! -f data/fbank/.msuan.done ]; then
mkdir -p data/fbank
./local/compute_fbank_musan.py
@ -79,8 +70,8 @@ if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Compute fbank for aidatatang_200zh"
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for aidatatang_200zh"
if [ ! -f data/fbank/.aidatatang_200zh.done ]; then
mkdir -p data/fbank
./local/compute_fbank_aidatatang_200zh.py
@ -88,27 +79,33 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Prepare char based lang"
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Prepare char based lang"
lang_char_dir=data/lang_char
mkdir -p $lang_char_dir
# Prepare text.
grep "\"text\":" data/manifests/aidatatang_200zh/supervisions_train.json \
| sed -e 's/["text:\t ]*//g' | sed 's/,//g' \
# Note: in Linux, you can install jq with the following command:
# 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
# 2. chmod +x ./jq
# 3. cp jq /usr/bin
if [ ! -f $lang_char_dir/text ]; then
gunzip -c data/manifests/aidatatang_200zh/aidatatang_supervisions_train.jsonl.gz \
|jq '.text' |sed -e 's/["text:\t ]*//g' | sed 's/"//g' \
| ./local/text2token.py -t "char" > $lang_char_dir/text
fi
# Prepare words.txt
grep "\"text\":" data/manifests/aidatatang_200zh/supervisions_train.json \
| sed -e 's/["text:\t]*//g' | sed 's/,//g' \
if [ ! -f $lang_char_dir/text_words ]; then
gunzip -c data/manifests/aidatatang_200zh/aidatatang_supervisions_train.jsonl.gz \
| jq '.text' | sed -e 's/["text:\t]*//g' | sed 's/"//g' \
| ./local/text2token.py -t "char" > $lang_char_dir/text_words
fi
cat $lang_char_dir/text_words | sed 's/ /\n/g' | sort -u | sed '/^$/d' \
| uniq > $lang_char_dir/words_no_ids.txt
if [ ! -f $lang_char_dir/words.txt ]; then
./local/prepare_words.py \
--input-file $lang_char_dir/words_no_ids.txt
--input-file $lang_char_dir/words_no_ids.txt \
--output-file $lang_char_dir/words.txt
fi
@ -116,3 +113,4 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
./local/prepare_char.py
fi
fi

View File

@ -28,10 +28,10 @@ from lhotse import (
Fbank,
FbankConfig,
load_manifest,
load_manifest_lazy,
set_caching_enabled,
)
from lhotse.dataset import (
BucketingSampler,
CutConcatenate,
CutMix,
DynamicBucketingSampler,
@ -206,7 +206,7 @@ class Aidatatang_200zhAsrDataModule:
"""
logging.info("About to get Musan cuts")
cuts_musan = load_manifest(
self.args.manifest_dir / "cuts_musan.json.gz"
self.args.manifest_dir / "musan_cuts.jsonl.gz"
)
transforms = []
@ -290,13 +290,12 @@ class Aidatatang_200zhAsrDataModule:
)
if self.args.bucketing_sampler:
logging.info("Using BucketingSampler.")
train_sampler = BucketingSampler(
logging.info("Using DynamicBucketingSampler.")
train_sampler = DynamicBucketingSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
num_buckets=self.args.num_buckets,
bucket_method="equal_duration",
drop_last=True,
)
else:
@ -402,14 +401,20 @@ class Aidatatang_200zhAsrDataModule:
@lru_cache()
def train_cuts(self) -> CutSet:
logging.info("About to get train cuts")
return load_manifest(self.args.manifest_dir / "cuts_train.json.gz")
return load_manifest_lazy(
self.args.manifest_dir / "aidatatang_cuts_train.jsonl.gz"
)
@lru_cache()
def valid_cuts(self) -> CutSet:
logging.info("About to get dev cuts")
return load_manifest(self.args.manifest_dir / "cuts_dev.json.gz")
return load_manifest_lazy(
self.args.manifest_dir / "aidatatang_cuts_dev.jsonl.gz"
)
@lru_cache()
def test_cuts(self) -> List[CutSet]:
logging.info("About to get test cuts")
return load_manifest(self.args.manifest_dir / "cuts_test.json.gz")
return load_manifest_lazy(
self.args.manifest_dir / "aidatatang_cuts_test.jsonl.gz"
)

View File

@ -367,6 +367,7 @@ def decode_dataset(
for batch_idx, batch in enumerate(dl):
texts = batch["supervisions"]["text"]
texts = [list(str(text).replace(" ", "")) for text in texts]
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
hyps_dict = decode_one_batch(
params=params,
@ -379,8 +380,8 @@ def decode_dataset(
for name, hyps in hyps_dict.items():
this_batch = []
assert len(hyps) == len(texts)
for hyp_words, ref_text in zip(hyps, texts):
this_batch.append((ref_text, hyp_words))
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
this_batch.append((cut_id, ref_text, hyp_words))
results[name].extend(this_batch)
@ -405,6 +406,7 @@ def save_results(
recog_path = (
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results)
store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}")
@ -520,61 +522,14 @@ def main():
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
# Note: Please use "pip install webdataset==0.1.103"
# for installing the webdataset.
import glob
import os
from lhotse import CutSet
from lhotse.dataset.webdataset import export_to_webdataset
# we need cut ids to display recognition results.
args.return_cuts = True
aidatatang_200zh = Aidatatang_200zhAsrDataModule(args)
dev = "dev"
test = "test"
if not os.path.exists(f"{dev}/shared-0.tar"):
os.makedirs(dev)
dev_cuts = aidatatang_200zh.valid_cuts()
export_to_webdataset(
dev_cuts,
output_path=f"{dev}/shared-%d.tar",
shard_size=300,
)
if not os.path.exists(f"{test}/shared-0.tar"):
os.makedirs(test)
test_cuts = aidatatang_200zh.test_cuts()
export_to_webdataset(
test_cuts,
output_path=f"{test}/shared-%d.tar",
shard_size=300,
)
dev_shards = [
str(path)
for path in sorted(glob.glob(os.path.join(dev, "shared-*.tar")))
]
cuts_dev_webdataset = CutSet.from_webdataset(
dev_shards,
split_by_worker=True,
split_by_node=True,
shuffle_shards=True,
)
test_shards = [
str(path)
for path in sorted(glob.glob(os.path.join(test, "shared-*.tar")))
]
cuts_test_webdataset = CutSet.from_webdataset(
test_shards,
split_by_worker=True,
split_by_node=True,
shuffle_shards=True,
)
dev_dl = aidatatang_200zh.valid_dataloaders(cuts_dev_webdataset)
test_dl = aidatatang_200zh.test_dataloaders(cuts_test_webdataset)
dev_dl = aidatatang_200zh.valid_dataloaders(dev_cuts)
test_dl = aidatatang_200zh.test_dataloaders(test_cuts)
test_sets = ["dev", "test"]
test_dl = [dev_dl, test_dl]

View File

@ -114,8 +114,6 @@ def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
assert args.jit is False, "Support torchscript will be added later"
params = get_params()
params.update(vars(args))
@ -155,6 +153,11 @@ def main():
model.eval()
if params.jit:
# We won't use the forward() method of the model in C++, so just ignore
# it here.
# Otherwise, one of its arguments is a ragged tensor and is not
# torch scriptabe.
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
logging.info("Using torch.jit.script")
model = torch.jit.script(model)
filename = params.exp_dir / "cpu_jit.pt"

View File

@ -4,6 +4,8 @@
Please refer to <https://icefall.readthedocs.io/en/latest/recipes/aishell/index.html>
for how to run models in this recipe.
# Transducers
There are various folders containing the name `transducer` in this folder.
@ -14,6 +16,7 @@ The following table lists the differences among them.
| `transducer_stateless` | Conformer | Embedding + Conv1d | with `k2.rnnt_loss` |
| `transducer_stateless_modified` | Conformer | Embedding + Conv1d | with modified transducer from `optimized_transducer` |
| `transducer_stateless_modified-2` | Conformer | Embedding + Conv1d | with modified transducer from `optimized_transducer` + extra data |
| `pruned_transducer_stateless3` | Conformer (reworked) | Embedding + Conv1d | pruned RNN-T + reworked model with random combiner + using aidatatang_20zh as extra data|
The decoder in `transducer_stateless` is modified from the paper
[Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419/).

View File

@ -1,10 +1,145 @@
## Results
### Aishell training result(Transducer-stateless)
### Aishell training result(Stateless Transducer)
#### Pruned transducer stateless 3
See <https://github.com/k2-fsa/icefall/pull/436>
[./pruned_transducer_stateless3](./pruned_transducer_stateless3)
It uses pruned RNN-T.
| | test | dev | comment |
|------------------------|------|------|---------------------------------------|
| greedy search | 5.39 | 5.09 | --epoch 29 --avg 5 --max-duration 600 |
| modified beam search | 5.05 | 4.79 | --epoch 29 --avg 5 --max-duration 600 |
| fast beam search | 5.13 | 4.91 | --epoch 29 --avg 5 --max-duration 600 |
Training command is:
```bash
./prepare.sh
./prepare_aidatatang_200zh.sh
export CUDA_VISIBLE_DEVICES="4,5,6,7"
./pruned_transducer_stateless3/train.py \
--exp-dir ./pruned_transducer_stateless3/exp-context-size-1 \
--world-size 4 \
--max-duration 200 \
--datatang-prob 0.5 \
--start-epoch 1 \
--num-epochs 30 \
--use-fp16 1 \
--num-encoder-layers 12 \
--dim-feedforward 2048 \
--nhead 8 \
--encoder-dim 512 \
--context-size 1 \
--decoder-dim 512 \
--joiner-dim 512 \
--master-port 12356
```
**Caution**: It uses `--context-size=1`.
The tensorboard log is available at
<https://tensorboard.dev/experiment/OKKacljwR6ik7rbDr5gMqQ>
The decoding command is:
```bash
for epoch in 29; do
for avg in 5; do
for m in greedy_search modified_beam_search fast_beam_search; do
./pruned_transducer_stateless3/decode.py \
--exp-dir ./pruned_transducer_stateless3/exp-context-size-1 \
--epoch $epoch \
--avg $avg \
--use-averaged-model 1 \
--max-duration 600 \
--decoding-method $m \
--num-encoder-layers 12 \
--dim-feedforward 2048 \
--nhead 8 \
--context-size 1 \
--encoder-dim 512 \
--decoder-dim 512 \
--joiner-dim 512
done
done
done
```
Pretrained models, training logs, decoding logs, and decoding results
are available at
<https://huggingface.co/csukuangfj/icefall-aishell-pruned-transducer-stateless3-2022-06-20>
We have a tutorial in [sherpa](https://github.com/k2-fsa/sherpa) about how
to use the pre-trained model for non-streaming ASR. See
<https://k2-fsa.github.io/sherpa/offline_asr/conformer/aishell.html>
#### Pruned transducer stateless 2
See https://github.com/k2-fsa/icefall/pull/536
[./pruned_transducer_stateless2](./pruned_transducer_stateless2)
It uses pruned RNN-T.
| | test | dev | comment |
| -------------------- | ---- | ---- | -------------------------------------- |
| greedy search | 5.20 | 4.78 | --epoch 72 --avg 14 --max-duration 200 |
| modified beam search | 5.07 | 4.63 | --epoch 72 --avg 14 --max-duration 200 |
| fast beam search | 5.13 | 4.70 | --epoch 72 --avg 14 --max-duration 200 |
Training command is:
```bash
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1"
./pruned_transducer_stateless2/train.py \
--world-size 2 \
--num-epochs 90 \
--start-epoch 0 \
--exp-dir pruned_transducer_stateless2/exp \
--max-duration 200 \
```
The tensorboard log is available at
https://tensorboard.dev/experiment/QI3PVzrGRrebxpbWUPwmkA/
The decoding command is:
```bash
for m in greedy_search modified_beam_search fast_beam_search ; do
./pruned_transducer_stateless2/decode.py \
--epoch 72 \
--avg 14 \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--max-duration 200 \
--decoding-method $m
done
```
Pretrained models, training logs, decoding logs, and decoding results
are available at
<https://huggingface.co/teapoly/icefall-aishell-pruned-transducer-stateless2-2022-08-18>
#### 2022-03-01
[./transducer_stateless_modified-2](./transducer_stateless_modified-2)
It uses [optimized_transducer](https://github.com/csukuangfj/optimized_transducer)
for computing RNN-T loss.
Stateless transducer + modified transducer + using [aidatatang_200zh](http://www.openslr.org/62/) as extra training data.

View File

@ -248,7 +248,9 @@ class ConformerEncoderLayer(nn.Module):
residual = src
if self.normalize_before:
src = self.norm_conv(src)
src = residual + self.dropout(self.conv_module(src))
src = residual + self.dropout(
self.conv_module(src, src_key_padding_mask=src_key_padding_mask)
)
if not self.normalize_before:
src = self.norm_conv(src)
@ -364,7 +366,7 @@ class RelPositionalEncoding(torch.nn.Module):
):
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
# Suppose `i` means to the position of query vecotr and `j` means the
# Suppose `i` means to the position of query vector and `j` means the
# position of key vector. We use position relative positions when keys
# are to the left (i>j) and negative relative positions otherwise (i<j).
pe_positive = torch.zeros(x.size(1), self.d_model)
@ -879,11 +881,16 @@ class ConvolutionModule(nn.Module):
)
self.activation = Swish()
def forward(self, x: Tensor) -> Tensor:
def forward(
self,
x: Tensor,
src_key_padding_mask: Optional[Tensor] = None,
) -> Tensor:
"""Compute convolution module.
Args:
x: Input tensor (#time, batch, channels).
src_key_padding_mask: the mask for the src keys per batch (optional).
Returns:
Tensor: Output tensor (#time, batch, channels).
@ -897,6 +904,8 @@ class ConvolutionModule(nn.Module):
x = nn.functional.glu(x, dim=1) # (batch, channels, time)
# 1D Depthwise Conv
if src_key_padding_mask is not None:
x.masked_fill_(src_key_padding_mask.unsqueeze(1).expand_as(x), 0.0)
x = self.depthwise_conv(x)
x = self.activation(self.norm(x))

View File

@ -335,7 +335,7 @@ def decode_dataset(
lexicon: Lexicon,
sos_id: int,
eos_id: int,
) -> Dict[str, List[Tuple[List[int], List[int]]]]:
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
"""Decode dataset.
Args:
@ -374,6 +374,7 @@ def decode_dataset(
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):
texts = batch["supervisions"]["text"]
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
hyps_dict = decode_one_batch(
params=params,
@ -389,9 +390,9 @@ def decode_dataset(
for lm_scale, hyps in hyps_dict.items():
this_batch = []
assert len(hyps) == len(texts)
for hyp_words, ref_text in zip(hyps, texts):
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
ref_words = ref_text.split()
this_batch.append((ref_words, hyp_words))
this_batch.append((cut_id, ref_words, hyp_words))
results[lm_scale].extend(this_batch)
@ -409,7 +410,7 @@ def decode_dataset(
def save_results(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
):
if params.method == "attention-decoder":
# Set it to False since there are too many logs.
@ -419,6 +420,7 @@ def save_results(
test_set_wers = dict()
for key, results in results_dict.items():
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt"
results = sorted(results)
store_transcripts(filename=recog_path, texts=results)
if enable_log:
logging.info(f"The transcripts are stored in {recog_path}")
@ -429,7 +431,9 @@ def save_results(
# we compute CER for aishell dataset.
results_char = []
for res in results:
results_char.append((list("".join(res[0])), list("".join(res[1]))))
results_char.append(
(res[0], list("".join(res[1])), list("".join(res[2])))
)
with open(errs_filename, "w") as f:
wer = write_error_stats(
f, f"{test_set_name}-{key}", results_char, enable_log=enable_log
@ -537,6 +541,8 @@ def main():
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
# we need cut ids to display recognition results.
args.return_cuts = True
aishell = AishellAsrDataModule(args)
test_cuts = aishell.test_cuts()
test_dl = aishell.test_dataloaders(test_cuts)

View File

@ -195,9 +195,9 @@ def get_params() -> AttributeDict:
"best_train_epoch": -1,
"best_valid_epoch": -1,
"batch_idx_train": 0,
"log_interval": 10,
"log_interval": 50,
"reset_interval": 200,
"valid_interval": 3000,
"valid_interval": 2000,
# parameters for k2.ctc_loss
"beam_size": 10,
"reduction": "sum",

View File

@ -248,7 +248,9 @@ class ConformerEncoderLayer(nn.Module):
residual = src
if self.normalize_before:
src = self.norm_conv(src)
src = residual + self.dropout(self.conv_module(src))
src = residual + self.dropout(
self.conv_module(src, src_key_padding_mask=src_key_padding_mask)
)
if not self.normalize_before:
src = self.norm_conv(src)
@ -364,7 +366,7 @@ class RelPositionalEncoding(torch.nn.Module):
):
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
# Suppose `i` means to the position of query vecotr and `j` means the
# Suppose `i` means to the position of query vector and `j` means the
# position of key vector. We use position relative positions when keys
# are to the left (i>j) and negative relative positions otherwise (i<j).
pe_positive = torch.zeros(x.size(1), self.d_model)
@ -879,11 +881,16 @@ class ConvolutionModule(nn.Module):
)
self.activation = Swish()
def forward(self, x: Tensor) -> Tensor:
def forward(
self,
x: Tensor,
src_key_padding_mask: Optional[Tensor] = None,
) -> Tensor:
"""Compute convolution module.
Args:
x: Input tensor (#time, batch, channels).
src_key_padding_mask: the mask for the src keys per batch (optional).
Returns:
Tensor: Output tensor (#time, batch, channels).
@ -897,6 +904,8 @@ class ConvolutionModule(nn.Module):
x = nn.functional.glu(x, dim=1) # (batch, channels, time)
# 1D Depthwise Conv
if src_key_padding_mask is not None:
x.masked_fill_(src_key_padding_mask.unsqueeze(1).expand_as(x), 0.0)
x = self.depthwise_conv(x)
x = self.activation(self.norm(x))

View File

@ -347,7 +347,7 @@ def decode_dataset(
lexicon: Lexicon,
sos_id: int,
eos_id: int,
) -> Dict[str, List[Tuple[List[int], List[int]]]]:
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
"""Decode dataset.
Args:
@ -386,6 +386,7 @@ def decode_dataset(
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):
texts = batch["supervisions"]["text"]
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
hyps_dict = decode_one_batch(
params=params,
@ -401,9 +402,9 @@ def decode_dataset(
for lm_scale, hyps in hyps_dict.items():
this_batch = []
assert len(hyps) == len(texts)
for hyp_words, ref_text in zip(hyps, texts):
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
ref_words = ref_text.split()
this_batch.append((ref_words, hyp_words))
this_batch.append((cut_id, ref_words, hyp_words))
results[lm_scale].extend(this_batch)
@ -421,7 +422,7 @@ def decode_dataset(
def save_results(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
):
if params.method == "attention-decoder":
# Set it to False since there are too many logs.
@ -431,6 +432,7 @@ def save_results(
test_set_wers = dict()
for key, results in results_dict.items():
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt"
results = sorted(results)
store_transcripts(filename=recog_path, texts=results)
if enable_log:
logging.info(f"The transcripts are stored in {recog_path}")
@ -441,7 +443,9 @@ def save_results(
# we compute CER for aishell dataset.
results_char = []
for res in results:
results_char.append((list("".join(res[0])), list("".join(res[1]))))
results_char.append(
(res[0], list("".join(res[1])), list("".join(res[2])))
)
with open(errs_filename, "w") as f:
wer = write_error_stats(
f, f"{test_set_name}-{key}", results_char, enable_log=enable_log
@ -556,6 +560,8 @@ def main():
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
# we need cut ids to display recognition results.
args.return_cuts = True
aishell = AishellAsrDataModule(args)
test_cuts = aishell.test_cuts()
test_dl = aishell.test_dataloaders(test_cuts)

View File

@ -0,0 +1,126 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file computes fbank features of the aidatatang_200zh dataset.
It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/fbank.
"""
import argparse
import logging
import os
from pathlib import Path
import torch
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def compute_fbank_aidatatang_200zh(num_mel_bins: int = 80):
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
num_jobs = min(15, os.cpu_count())
dataset_parts = (
"train",
"test",
"dev",
)
prefix = "aidatatang"
suffix = "jsonl.gz"
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts,
output_dir=src_dir,
prefix=prefix,
suffix=suffix,
)
assert manifests is not None
assert len(manifests) == len(dataset_parts), (
len(manifests),
len(dataset_parts),
list(manifests.keys()),
dataset_parts,
)
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
with get_executor() as ex: # Initialize the executor only once.
for partition, m in manifests.items():
if (output_dir / f"{prefix}_cuts_{partition}.{suffix}").is_file():
logging.info(f"{partition} already exists - skipping.")
continue
logging.info(f"Processing {partition}")
for sup in m["supervisions"]:
sup.custom = {"origin": "aidatatang_200zh"}
cut_set = CutSet.from_manifests(
recordings=m["recordings"],
supervisions=m["supervisions"],
)
if "train" in partition:
cut_set = (
cut_set
+ cut_set.perturb_speed(0.9)
+ cut_set.perturb_speed(1.1)
)
cut_set = cut_set.compute_and_store_features(
extractor=extractor,
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
# when an executor is specified, make more partitions
num_jobs=num_jobs if ex is None else 80,
executor=ex,
storage_type=LilcomChunkyWriter,
)
cut_set.to_file(output_dir / f"{prefix}_cuts_{partition}.{suffix}")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--num-mel-bins",
type=int,
default=80,
help="""The number of mel bins for Fbank""",
)
return parser.parse_args()
if __name__ == "__main__":
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
compute_fbank_aidatatang_200zh(num_mel_bins=args.num_mel_bins)

View File

@ -29,7 +29,7 @@ import os
from pathlib import Path
import torch
from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor
@ -52,16 +52,28 @@ def compute_fbank_aishell(num_mel_bins: int = 80):
"dev",
"test",
)
prefix = "aishell"
suffix = "jsonl.gz"
manifests = read_manifests_if_cached(
prefix="aishell", dataset_parts=dataset_parts, output_dir=src_dir
dataset_parts=dataset_parts,
output_dir=src_dir,
prefix=prefix,
suffix=suffix,
)
assert manifests is not None
assert len(manifests) == len(dataset_parts), (
len(manifests),
len(dataset_parts),
list(manifests.keys()),
dataset_parts,
)
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
with get_executor() as ex: # Initialize the executor only once.
for partition, m in manifests.items():
if (output_dir / f"cuts_{partition}.json.gz").is_file():
if (output_dir / f"{prefix}_cuts_{partition}.{suffix}").is_file():
logging.info(f"{partition} already exists - skipping.")
continue
logging.info(f"Processing {partition}")
@ -77,13 +89,13 @@ def compute_fbank_aishell(num_mel_bins: int = 80):
)
cut_set = cut_set.compute_and_store_features(
extractor=extractor,
storage_path=f"{output_dir}/feats_{partition}",
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
# when an executor is specified, make more partitions
num_jobs=num_jobs if ex is None else 80,
executor=ex,
storage_type=LilcomHdf5Writer,
storage_type=LilcomChunkyWriter,
)
cut_set.to_json(output_dir / f"cuts_{partition}.json.gz")
cut_set.to_file(output_dir / f"{prefix}_cuts_{partition}.{suffix}")
def get_args():

View File

@ -25,18 +25,18 @@ for usage.
"""
from lhotse import load_manifest
from lhotse import load_manifest_lazy
def main():
# path = "./data/fbank/cuts_train.json.gz"
# path = "./data/fbank/cuts_test.json.gz"
# path = "./data/fbank/cuts_dev.json.gz"
# path = "./data/fbank/aidatatang_200zh/cuts_train_raw.jsonl.gz"
# path = "./data/fbank/aidatatang_200zh/cuts_test_raw.jsonl.gz"
path = "./data/fbank/aidatatang_200zh/cuts_dev_raw.jsonl.gz"
# path = "./data/fbank/aishell_cuts_train.jsonl.gz"
# path = "./data/fbank/aishell_cuts_test.jsonl.gz"
path = "./data/fbank/aishell_cuts_dev.jsonl.gz"
# path = "./data/fbank/aidatatang_cuts_train.jsonl.gz"
# path = "./data/fbank/aidatatang_cuts_test.jsonl.gz"
# path = "./data/fbank/aidatatang_cuts_dev.jsonl.gz"
cuts = load_manifest(path)
cuts = load_manifest_lazy(path)
cuts.describe()

View File

@ -1,71 +0,0 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from pathlib import Path
from lhotse import CutSet
from lhotse.recipes.utils import read_manifests_if_cached
def preprocess_aidatatang_200zh():
src_dir = Path("data/manifests/aidatatang_200zh")
output_dir = Path("data/fbank/aidatatang_200zh")
output_dir.mkdir(exist_ok=True, parents=True)
dataset_parts = (
"train",
"test",
"dev",
)
logging.info("Loading manifest")
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts, output_dir=src_dir, prefix="aidatatang"
)
assert len(manifests) > 0
for partition, m in manifests.items():
logging.info(f"Processing {partition}")
raw_cuts_path = output_dir / f"cuts_{partition}_raw.jsonl.gz"
if raw_cuts_path.is_file():
logging.info(f"{partition} already exists - skipping")
continue
for sup in m["supervisions"]:
sup.custom = {"origin": "aidatatang_200zh"}
cut_set = CutSet.from_manifests(
recordings=m["recordings"],
supervisions=m["supervisions"],
)
logging.info(f"Saving to {raw_cuts_path}")
cut_set.to_file(raw_cuts_path)
def main():
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
preprocess_aidatatang_200zh()
if __name__ == "__main__":
main()

View File

@ -18,7 +18,7 @@ stop_stage=10
# This directory contains the language model downloaded from
# https://huggingface.co/pkufool/aishell_lm
#
# - 3-gram.unpruned.apra
# - 3-gram.unpruned.arpa
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
@ -48,6 +48,8 @@ if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "stage -1: Download LM"
# We assume that you have installed the git-lfs, if not, you could install it
# using: `sudo apt-get install git-lfs && git-lfs install`
git lfs 1>/dev/null 2>&1 || (echo "please install git-lfs, consider using: sudo apt-get install git-lfs && git-lfs install" && exit 1)
if [ ! -f $dl_dir/lm/3-gram.unpruned.arpa ]; then
git clone https://huggingface.co/pkufool/aishell_lm $dl_dir/lm
fi

View File

@ -42,18 +42,18 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare manifest"
# We assume that you have downloaded the aidatatang_200zh corpus
# to $dl_dir/aidatatang_200zh
if [ ! -f data/manifests/aidatatang_200zh/.manifests.done ]; then
mkdir -p data/manifests/aidatatang_200zh
lhotse prepare aidatatang-200zh $dl_dir data/manifests/aidatatang_200zh
touch data/manifests/aidatatang_200zh/.manifests.done
if [ ! -f data/manifests/.aidatatang_200zh_manifests.done ]; then
mkdir -p data/manifests
lhotse prepare aidatatang-200zh $dl_dir data/manifests
touch data/manifests/.aidatatang_200zh_manifests.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Process aidatatang_200zh"
if [ ! -f data/fbank/aidatatang_200zh/.fbank.done ]; then
mkdir -p data/fbank/aidatatang_200zh
lhotse prepare aidatatang-200zh $dl_dir data/manifests/aidatatang_200zh
touch data/fbank/aidatatang_200zh/.fbank.done
if [ ! -f data/fbank/.aidatatang_200zh_fbank.done ]; then
mkdir -p data/fbank
./local/compute_fbank_aidatatang_200zh.py
touch data/fbank/.aidatatang_200zh_fbank.done
fi
fi

View File

@ -0,0 +1 @@
../tdnn_lstm_ctc/asr_datamodule.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless2/beam_search.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless2/conformer.py

View File

@ -0,0 +1,573 @@
#!/usr/bin/env python3
#
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
# Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
(1) greedy search
./pruned_transducer_stateless2/decode.py \
--epoch 84 \
--avg 25 \
--exp-dir ./pruned_transducer_stateless2/exp \
--max-duration 600 \
--decoding-method greedy_search
(2) beam search (not recommended)
./pruned_transducer_stateless2/decode.py \
--epoch 84 \
--avg 25 \
--exp-dir ./pruned_transducer_stateless2/exp \
--max-duration 600 \
--decoding-method beam_search \
--beam-size 4
(3) modified beam search
./pruned_transducer_stateless2/decode.py \
--epoch 84 \
--avg 25 \
--exp-dir ./pruned_transducer_stateless2/exp \
--max-duration 600 \
--decoding-method modified_beam_search \
--beam-size 4
(4) fast beam search
./pruned_transducer_stateless2/decode.py \
--epoch 84 \
--avg 25 \
--exp-dir ./pruned_transducer_stateless2/exp \
--max-duration 600 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8
"""
import argparse
import logging
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import k2
import torch
import torch.nn as nn
from asr_datamodule import AishellAsrDataModule
from beam_search import (
beam_search,
fast_beam_search_one_best,
greedy_search,
greedy_search_batch,
modified_beam_search,
)
from train import add_model_arguments, get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
find_checkpoints,
load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
setup_logger,
store_transcripts,
write_error_stats,
)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=30,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless2/exp",
help="The experiment dir",
)
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_char",
help="The lang dir",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="""Possible values are:
- greedy_search
- beam_search
- modified_beam_search
- fast_beam_search
""",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
help="""An integer indicating how many candidates we will keep for each
frame. Used only when --decoding-method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=4,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --decoding-method is fast_beam_search""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=4,
help="""Used only when --decoding-method is
fast_beam_search""",
)
parser.add_argument(
"--max-states",
type=int,
default=8,
help="""Used only when --decoding-method is
fast_beam_search""",
)
parser.add_argument(
"--context-size",
type=int,
default=1,
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
default=1,
help="""Maximum number of symbols per frame.
Used only when --decoding_method is greedy_search""",
)
add_model_arguments(parser)
return parser
def decode_one_batch(
params: AttributeDict,
model: nn.Module,
token_table: k2.SymbolTable,
batch: dict,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
- key: It indicates the setting used for decoding. For example,
if greedy_search is used, it would be "greedy_search"
If beam search with a beam size of 7 is used, it would be
"beam_7"
- value: It contains the decoding result. `len(value)` equals to
batch size. `value[i]` is the decoding result for the i-th
utterance in the given batch.
Args:
params:
It's the return value of :func:`get_params`.
model:
The neural model.
token_table:
It maps token ID to a string.
batch:
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
for the format of the `batch`.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search.
Returns:
Return the decoding result. See above description for the format of
the returned dict.
"""
device = next(model.parameters()).device
feature = batch["inputs"]
assert feature.ndim == 3
feature = feature.to(device)
# at entry, feature is (N, T, C)
supervisions = batch["supervisions"]
feature_lens = supervisions["num_frames"].to(device)
encoder_out, encoder_out_lens = model.encoder(
x=feature, x_lens=feature_lens
)
if params.decoding_method == "fast_beam_search":
hyp_tokens = fast_beam_search_one_best(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
)
elif (
params.decoding_method == "greedy_search"
and params.max_sym_per_frame == 1
):
hyp_tokens = greedy_search_batch(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
elif params.decoding_method == "modified_beam_search":
hyp_tokens = modified_beam_search(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
)
else:
hyp_tokens = []
batch_size = encoder_out.size(0)
for i in range(batch_size):
# fmt: off
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
# fmt: on
if params.decoding_method == "greedy_search":
hyp = greedy_search(
model=model,
encoder_out=encoder_out_i,
max_sym_per_frame=params.max_sym_per_frame,
)
elif params.decoding_method == "beam_search":
hyp = beam_search(
model=model,
encoder_out=encoder_out_i,
beam=params.beam_size,
)
else:
raise ValueError(
f"Unsupported decoding method: {params.decoding_method}"
)
hyp_tokens.append(hyp)
hyps = [[token_table[t] for t in tokens] for tokens in hyp_tokens]
if params.decoding_method == "greedy_search":
return {"greedy_search": hyps}
elif params.decoding_method == "fast_beam_search":
return {
(
f"beam_{params.beam}_"
f"max_contexts_{params.max_contexts}_"
f"max_states_{params.max_states}"
): hyps
}
else:
return {f"beam_size_{params.beam_size}": hyps}
def decode_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
token_table: k2.SymbolTable,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
"""Decode dataset.
Args:
dl:
PyTorch's dataloader containing the dataset to decode.
params:
It is returned by :func:`get_params`.
model:
The neural model.
token_table:
It maps a token ID to a string.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search.
Returns:
Return a dict, whose key may be "greedy_search" if greedy search
is used, or it may be "beam_7" if beam size of 7 is used.
Its value is a list of tuples. Each tuple contains two elements:
The first is the reference transcript, and the second is the
predicted result.
"""
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
if params.decoding_method == "greedy_search":
log_interval = 50
else:
log_interval = 20
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):
texts = batch["supervisions"]["text"]
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
hyps_dict = decode_one_batch(
params=params,
model=model,
token_table=token_table,
decoding_graph=decoding_graph,
batch=batch,
)
for name, hyps in hyps_dict.items():
this_batch = []
assert len(hyps) == len(texts)
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
ref_words = ref_text.split()
this_batch.append((cut_id, ref_words, hyp_words))
results[name].extend(this_batch)
num_cuts += len(texts)
if batch_idx % log_interval == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(
f"batch {batch_str}, cuts processed until now is {num_cuts}"
)
return results
def save_results(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
):
test_set_wers = dict()
for key, results in results_dict.items():
recog_path = (
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results)
store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs.
errs_filename = (
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
# we compute CER for aishell dataset.
results_char = []
for res in results:
results_char.append(
(res[0], list("".join(res[1])), list("".join(res[2])))
)
with open(errs_filename, "w") as f:
wer = write_error_stats(
f, f"{test_set_name}-{key}", results_char, enable_log=True
)
test_set_wers[key] = wer
logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = (
params.res_dir
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f:
print("settings\tWER", file=f)
for key, val in test_set_wers:
print("{}\t{}".format(key, val), file=f)
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
note = "\tbest for {}".format(test_set_name)
for key, val in test_set_wers:
s += "{}\t{}{}\n".format(key, val, note)
note = ""
logging.info(s)
@torch.no_grad()
def main():
parser = get_parser()
AishellAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
args.lang_dir = Path(args.lang_dir)
params = get_params()
params.update(vars(args))
assert params.decoding_method in (
"greedy_search",
"beam_search",
"fast_beam_search",
"modified_beam_search",
)
params.res_dir = params.exp_dir / params.decoding_method
if params.iter > 0:
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
else:
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
if "fast_beam_search" in params.decoding_method:
params.suffix += f"-beam-{params.beam}"
params.suffix += f"-max-contexts-{params.max_contexts}"
params.suffix += f"-max-states-{params.max_states}"
elif "beam_search" in params.decoding_method:
params.suffix += (
f"-{params.decoding_method}-beam-size-{params.beam_size}"
)
else:
params.suffix += f"-context-{params.context_size}"
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
logging.info("Decoding started")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
lexicon = Lexicon(params.lang_dir)
params.blank_id = 0
params.vocab_size = max(lexicon.tokens) + 1
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(
average_checkpoints(filenames, device=device), strict=False
)
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(
average_checkpoints(filenames, device=device), strict=False
)
model.to(device)
model.eval()
if params.decoding_method == "fast_beam_search":
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
else:
decoding_graph = None
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
aishell = AishellAsrDataModule(args)
test_cuts = aishell.test_cuts()
dev_cuts = aishell.valid_cuts()
test_dl = aishell.test_dataloaders(test_cuts)
dev_dl = aishell.test_dataloaders(dev_cuts)
test_sets = ["test", "dev"]
test_dls = [test_dl, dev_dl]
for test_set, test_dl in zip(test_sets, test_dls):
results_dict = decode_dataset(
dl=test_dl,
params=params,
model=model,
token_table=lexicon.token_table,
decoding_graph=decoding_graph,
)
save_results(
params=params,
test_set_name=test_set,
results_dict=results_dict,
)
logging.info("Done!")
if __name__ == "__main__":
main()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless2/decoder.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless2/encoder_interface.py

View File

@ -0,0 +1,217 @@
#!/usr/bin/env python3
#
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This script converts several saved checkpoints
# to a single one using model averaging.
"""
Usage:
./pruned_transducer_stateless2/export.py \
--exp-dir ./pruned_transducer_stateless2/exp \
--jit 0 \
--epoch 29 \
--avg 5
It will generate a file exp_dir/pretrained-epoch-29-avg-5.pt
To use the generated file with `pruned_transducer_stateless2/decode.py`,
you can do::
cd /path/to/exp_dir
ln -s pretrained-epoch-29-avg-5.pt epoch-9999.pt
cd /path/to/egs/aishell/ASR
./pruned_transducer_stateless2/decode.py \
--exp-dir ./pruned_transducer_stateless2/exp \
--epoch 9999 \
--avg 1 \
--max-duration 100 \
--lang-dir data/lang_char
"""
import argparse
import logging
from pathlib import Path
import torch
from train import add_model_arguments, get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
find_checkpoints,
load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.utils import str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=29,
help="""It specifies the checkpoint to use for averaging.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--exp-dir",
type=Path,
default=Path("pruned_transducer_stateless2/exp"),
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--jit",
type=str2bool,
default=False,
help="""True to save a model after applying torch.jit.script.
""",
)
parser.add_argument(
"--lang-dir",
type=Path,
default=Path("data/lang_char"),
help="The lang dir",
)
parser.add_argument(
"--context-size",
type=int,
default=1,
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
)
add_model_arguments(parser)
return parser
def main():
args = get_parser().parse_args()
params = get_params()
params.update(vars(args))
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
lexicon = Lexicon(params.lang_dir)
params.blank_id = 0
params.vocab_size = max(lexicon.tokens) + 1
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
model.to("cpu")
model.eval()
if params.jit:
# We won't use the forward() method of the model in C++, so just ignore
# it here.
# Otherwise, one of its arguments is a ragged tensor and is not
# torch scriptabe.
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
logging.info("Using torch.jit.script")
model = torch.jit.script(model)
filename = (
params.exp_dir / f"cpu_jit-epoch-{params.epoch}-avg-{params.avg}.pt"
)
model.save(str(filename))
logging.info(f"Saved to {filename}")
else:
logging.info("Not using torch.jit.script")
# Save it using a format so that it can be loaded
# by :func:`load_checkpoint`
filename = (
params.exp_dir
/ f"pretrained-epoch-{params.epoch}-avg-{params.avg}.pt"
)
torch.save({"model": model.state_dict()}, str(filename))
logging.info(f"Saved to {filename}")
if __name__ == "__main__":
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless2/joiner.py

Some files were not shown because too many files have changed in this diff Show More