mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
add debug script
This commit is contained in:
parent
37db65984c
commit
bd2df570ad
480
egs/speech_llm/SPEECH2SPEECH/debug/data_module.py
Normal file
480
egs/speech_llm/SPEECH2SPEECH/debug/data_module.py
Normal file
@ -0,0 +1,480 @@
|
|||||||
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import inspect
|
||||||
|
import logging
|
||||||
|
from functools import lru_cache
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Dict, Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from datasets import load_dataset
|
||||||
|
from lhotse import (
|
||||||
|
CutSet,
|
||||||
|
WhisperFbank,
|
||||||
|
WhisperFbankConfig,
|
||||||
|
load_manifest,
|
||||||
|
load_manifest_lazy,
|
||||||
|
)
|
||||||
|
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
||||||
|
CutConcatenate,
|
||||||
|
CutMix,
|
||||||
|
DynamicBucketingSampler,
|
||||||
|
PrecomputedFeatures,
|
||||||
|
SimpleCutSampler,
|
||||||
|
SpecAugment,
|
||||||
|
)
|
||||||
|
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||||
|
AudioSamples,
|
||||||
|
OnTheFlyFeatures,
|
||||||
|
)
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from speech_dataset import K2SpeechRecognitionDataset
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
from utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
class _SeedWorkers:
|
||||||
|
def __init__(self, seed: int):
|
||||||
|
self.seed = seed
|
||||||
|
|
||||||
|
def __call__(self, worker_id: int):
|
||||||
|
fix_random_seed(self.seed + worker_id)
|
||||||
|
|
||||||
|
|
||||||
|
class AsrDataModule:
|
||||||
|
"""
|
||||||
|
DataModule for k2 ASR experiments.
|
||||||
|
It assumes there is always one train and valid dataloader,
|
||||||
|
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||||
|
and test-other).
|
||||||
|
|
||||||
|
It contains all the common data pipeline modules used in ASR
|
||||||
|
experiments, e.g.:
|
||||||
|
- dynamic batch size,
|
||||||
|
- bucketing samplers,
|
||||||
|
- cut concatenation,
|
||||||
|
- augmentation,
|
||||||
|
- on-the-fly feature extraction
|
||||||
|
|
||||||
|
This class should be derived for specific corpora used in ASR tasks.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, args: argparse.Namespace):
|
||||||
|
self.args = args
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
|
group = parser.add_argument_group(
|
||||||
|
title="ASR data related options",
|
||||||
|
description="These options are used for the preparation of "
|
||||||
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
|
"augmentations, etc.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--manifest-dir",
|
||||||
|
type=Path,
|
||||||
|
default=Path("data/fbank"),
|
||||||
|
help="Path to directory with train/valid/test cuts.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--max-duration",
|
||||||
|
type=int,
|
||||||
|
default=300.0,
|
||||||
|
help="Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--bucketing-sampler",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, the batches will come from buckets of "
|
||||||
|
"similar duration (saves padding frames).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--num-buckets",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="The number of buckets for the DynamicBucketingSampler"
|
||||||
|
"(you might want to increase it for larger datasets).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--on-the-fly-feats",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, use on-the-fly cut mixing and feature "
|
||||||
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
|
"if available.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--shuffle",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled (=default), the examples will be "
|
||||||
|
"shuffled for each epoch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--drop-last",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to drop last batch. Used by sampler.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--return-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, each batch will have the "
|
||||||
|
"field: batch['supervisions']['cut'] with the cuts that "
|
||||||
|
"were used to construct it.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--num-workers",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The number of training dataloader workers that "
|
||||||
|
"collect the batches.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-spec-aug",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, use SpecAugment for training dataset.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--spec-aug-time-warp-factor",
|
||||||
|
type=int,
|
||||||
|
default=80,
|
||||||
|
help="Used only when --enable-spec-aug is True. "
|
||||||
|
"It specifies the factor for time warping in SpecAugment. "
|
||||||
|
"Larger values mean more warping. "
|
||||||
|
"A value less than 1 means to disable time warp.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-musan",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, select noise from MUSAN and mix it"
|
||||||
|
"with training dataset. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--input-strategy",
|
||||||
|
type=str,
|
||||||
|
default="PrecomputedFeatures",
|
||||||
|
help="AudioSamples or PrecomputedFeatures",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--huggingface-dataset-path-or-name",
|
||||||
|
type=str,
|
||||||
|
default="/workspace/Belle_1.4M-SLAM-Omni",
|
||||||
|
help="The path or name of the Huggingface dataset",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--audio-key",
|
||||||
|
type=str,
|
||||||
|
default="question_audio",
|
||||||
|
help="The key in the Huggingface dataset containing the audio data",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--text-key",
|
||||||
|
type=str,
|
||||||
|
default="answer",
|
||||||
|
help="The key in the Huggingface dataset containing the text data",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--resample-to-16kHz",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Resample audio to 16kHz. Default: False.",
|
||||||
|
)
|
||||||
|
|
||||||
|
def train_dataloaders(
|
||||||
|
self,
|
||||||
|
cuts_train: CutSet,
|
||||||
|
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||||
|
) -> DataLoader:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
cuts_train:
|
||||||
|
CutSet for training.
|
||||||
|
sampler_state_dict:
|
||||||
|
The state dict for the training sampler.
|
||||||
|
"""
|
||||||
|
transforms = []
|
||||||
|
if self.args.enable_musan:
|
||||||
|
logging.info("Enable MUSAN")
|
||||||
|
logging.info("About to get Musan cuts")
|
||||||
|
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||||
|
transforms.append(
|
||||||
|
CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable MUSAN")
|
||||||
|
|
||||||
|
input_transforms = []
|
||||||
|
if self.args.enable_spec_aug:
|
||||||
|
logging.info("Enable SpecAugment")
|
||||||
|
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||||
|
# Set the value of num_frame_masks according to Lhotse's version.
|
||||||
|
# In different Lhotse's versions, the default of num_frame_masks is
|
||||||
|
# different.
|
||||||
|
num_frame_masks = 10
|
||||||
|
num_frame_masks_parameter = inspect.signature(
|
||||||
|
SpecAugment.__init__
|
||||||
|
).parameters["num_frame_masks"]
|
||||||
|
if num_frame_masks_parameter.default == 1:
|
||||||
|
num_frame_masks = 2
|
||||||
|
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||||
|
input_transforms.append(
|
||||||
|
SpecAugment(
|
||||||
|
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||||
|
num_frame_masks=num_frame_masks,
|
||||||
|
features_mask_size=27,
|
||||||
|
num_feature_masks=2,
|
||||||
|
frames_mask_size=100,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable SpecAugment")
|
||||||
|
|
||||||
|
logging.info("About to create train dataset")
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=eval(self.args.input_strategy)(),
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
# NOTE: the PerturbSpeed transform should be added only if we
|
||||||
|
# remove it from data prep stage.
|
||||||
|
# Add on-the-fly speed perturbation; since originally it would
|
||||||
|
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||||
|
# 3x more epochs.
|
||||||
|
# Speed perturbation probably should come first before
|
||||||
|
# concatenation, but in principle the transforms order doesn't have
|
||||||
|
# to be strict (e.g. could be randomized)
|
||||||
|
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||||
|
# Drop feats to be on the safe side.
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(
|
||||||
|
WhisperFbank(WhisperFbankConfig(num_filters=80, device="cuda"))
|
||||||
|
),
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.bucketing_sampler:
|
||||||
|
logging.info("Using DynamicBucketingSampler.")
|
||||||
|
train_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
num_buckets=self.args.num_buckets,
|
||||||
|
buffer_size=self.args.num_buckets * 2000,
|
||||||
|
shuffle_buffer_size=self.args.num_buckets * 5000,
|
||||||
|
drop_last=self.args.drop_last,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Using SimpleCutSampler.")
|
||||||
|
train_sampler = SimpleCutSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
)
|
||||||
|
logging.info("About to create train dataloader")
|
||||||
|
|
||||||
|
if sampler_state_dict is not None:
|
||||||
|
logging.info("Loading sampler state dict")
|
||||||
|
train_sampler.load_state_dict(sampler_state_dict)
|
||||||
|
|
||||||
|
# 'seed' is derived from the current random state, which will have
|
||||||
|
# previously been set in the main process.
|
||||||
|
seed = torch.randint(0, 100000, ()).item()
|
||||||
|
worker_init_fn = _SeedWorkers(seed)
|
||||||
|
|
||||||
|
train_dl = DataLoader(
|
||||||
|
train,
|
||||||
|
sampler=train_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
persistent_workers=True,
|
||||||
|
pin_memory=True,
|
||||||
|
worker_init_fn=worker_init_fn,
|
||||||
|
)
|
||||||
|
|
||||||
|
return train_dl
|
||||||
|
|
||||||
|
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
cuts_valid:
|
||||||
|
CutSet for validation.
|
||||||
|
"""
|
||||||
|
logging.info("About to create dev dataset")
|
||||||
|
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=OnTheFlyFeatures(
|
||||||
|
WhisperFbank(WhisperFbankConfig(num_filters=80, device="cuda"))
|
||||||
|
)
|
||||||
|
if self.args.on_the_fly_feats
|
||||||
|
else eval(self.args.input_strategy)(),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
if self.args.bucketing_sampler:
|
||||||
|
valid_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_valid,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
valid_sampler = SimpleCutSampler(
|
||||||
|
cuts_valid,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
logging.info("About to create dev dataloader")
|
||||||
|
valid_dl = DataLoader(
|
||||||
|
validate,
|
||||||
|
sampler=valid_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=2,
|
||||||
|
persistent_workers=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
return valid_dl
|
||||||
|
|
||||||
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||||
|
logging.debug("About to create test dataset")
|
||||||
|
test = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=OnTheFlyFeatures(
|
||||||
|
WhisperFbank(WhisperFbankConfig(num_filters=80, device="cpu"))
|
||||||
|
)
|
||||||
|
if self.args.on_the_fly_feats
|
||||||
|
else eval(self.args.input_strategy)(),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
sampler = DynamicBucketingSampler(
|
||||||
|
cuts,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
logging.debug("About to create test dataloader")
|
||||||
|
test_dl = DataLoader(
|
||||||
|
test,
|
||||||
|
batch_size=None,
|
||||||
|
sampler=sampler,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
)
|
||||||
|
return test_dl
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get test cuts")
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
return {
|
||||||
|
"test": load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "cuts_belle_test.jsonl.gz"
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def dev_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get test cuts")
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "cuts_belle_test.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get train cuts")
|
||||||
|
slam_omni_zh_cuts = load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "cuts_belle_train.jsonl.gz"
|
||||||
|
)
|
||||||
|
return slam_omni_zh_cuts
|
||||||
|
|
||||||
|
# @lru_cache()
|
||||||
|
# def train_cuts_en_vocalnet(self) -> CutSet:
|
||||||
|
# logging.info("About to get train cuts")
|
||||||
|
# VoiceAssistant_cuts = load_manifest_lazy(
|
||||||
|
# self.args.manifest_dir / "cuts_voice_assistant_00001-00049.jsonl.gz"
|
||||||
|
# )
|
||||||
|
# ultrachat_cuts = load_manifest_lazy(
|
||||||
|
# self.args.manifest_dir / "cuts_ultrachat_train.jsonl.gz"
|
||||||
|
# )
|
||||||
|
# return CutSet.mux(
|
||||||
|
# VoiceAssistant_cuts,
|
||||||
|
# ultrachat_cuts,
|
||||||
|
# weights=[
|
||||||
|
# len(VoiceAssistant_cuts),
|
||||||
|
# len(ultrachat_cuts),
|
||||||
|
# ],
|
||||||
|
# )
|
||||||
|
|
||||||
|
# valid cuts_voice_assistant.00000.jsonl.gz
|
||||||
|
# @lru_cache()
|
||||||
|
# def valid_cuts_en_vocalnet(self) -> CutSet:
|
||||||
|
# logging.info("About to get valid cuts")
|
||||||
|
# VoiceAssistant_cuts = load_manifest_lazy(
|
||||||
|
# self.args.manifest_dir / "cuts_voice_assistant.00000.jsonl.gz"
|
||||||
|
# )
|
||||||
|
# return VoiceAssistant_cuts
|
||||||
|
|
||||||
|
# @lru_cache()
|
||||||
|
# def test_cuts_en_vocalnet(self) -> CutSet:
|
||||||
|
# logging.info("About to get test cuts")
|
||||||
|
# VoiceAssistant_cuts = load_manifest_lazy(
|
||||||
|
# self.args.manifest_dir / "cuts_voice_assistant.00000.jsonl.gz"
|
||||||
|
# )
|
||||||
|
# return VoiceAssistant_cuts
|
||||||
|
def train_cuts_en_vocalnet(self) -> CutSet:
|
||||||
|
logging.info("About to get train cuts")
|
||||||
|
VoiceAssistant_cuts = load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "cuts_debug.jsonl.gz"
|
||||||
|
)
|
||||||
|
return VoiceAssistant_cuts
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def valid_cuts_en_vocalnet(self) -> CutSet:
|
||||||
|
logging.info("About to get valid cuts")
|
||||||
|
VoiceAssistant_cuts = load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "cuts_debug.jsonl.gz"
|
||||||
|
)
|
||||||
|
return VoiceAssistant_cuts
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_cuts_en_vocalnet(self) -> CutSet:
|
||||||
|
logging.info("About to get test cuts")
|
||||||
|
VoiceAssistant_cuts = load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "cuts_debug.jsonl.gz"
|
||||||
|
)
|
||||||
|
return VoiceAssistant_cuts
|
795
egs/speech_llm/SPEECH2SPEECH/debug/model.py
Normal file
795
egs/speech_llm/SPEECH2SPEECH/debug/model.py
Normal file
@ -0,0 +1,795 @@
|
|||||||
|
from typing import List, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from torchmetrics.classification import MulticlassAccuracy
|
||||||
|
from transformers.trainer_pt_utils import LabelSmoother
|
||||||
|
|
||||||
|
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
|
||||||
|
import logging
|
||||||
|
from utils import get_rank
|
||||||
|
|
||||||
|
class EncoderProjector(nn.Module):
|
||||||
|
"""
|
||||||
|
The encoder projector module. It is used to project the encoder outputs to the same dimension as the language model.
|
||||||
|
Modified from https://github.com/X-LANCE/SLAM-LLM/blob/main/src/slam_llm/models/projector.py.
|
||||||
|
Args:
|
||||||
|
encoder_dim (:obj:`int`): The dimension of the encoder outputs.
|
||||||
|
llm_dim (:obj:`int`): The dimension of the language model.
|
||||||
|
downsample_rate (:obj:`int`, `optional`, defaults to 5): The downsample rate to use.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, encoder_dim, llm_dim, downsample_rate=5):
|
||||||
|
super().__init__()
|
||||||
|
self.downsample_rate = downsample_rate
|
||||||
|
self.linear1 = nn.Linear(encoder_dim * self.downsample_rate, llm_dim)
|
||||||
|
self.relu = nn.ReLU()
|
||||||
|
self.linear2 = nn.Linear(llm_dim, llm_dim)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
|
||||||
|
batch_size, seq_len, feat_dim = x.size()
|
||||||
|
num_frames_to_discard = seq_len % self.downsample_rate
|
||||||
|
if num_frames_to_discard > 0:
|
||||||
|
x = x[:, :-num_frames_to_discard, :]
|
||||||
|
seq_len = x.size(1)
|
||||||
|
|
||||||
|
x = x.contiguous()
|
||||||
|
x = x.view(
|
||||||
|
batch_size, seq_len // self.downsample_rate, feat_dim * self.downsample_rate
|
||||||
|
)
|
||||||
|
|
||||||
|
x = self.linear1(x)
|
||||||
|
x = self.relu(x)
|
||||||
|
x = self.linear2(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class SPEECH_LLM(nn.Module):
|
||||||
|
"""
|
||||||
|
The Speech-to-Text model. It consists of an encoder, a language model and an encoder projector.
|
||||||
|
The encoder is used to extract speech features from the input speech signal.
|
||||||
|
The encoder projector is used to project the encoder outputs to the same dimension as the language model.
|
||||||
|
The language model is used to generate the text from the speech features.
|
||||||
|
Args:
|
||||||
|
encoder (:obj:`nn.Module`): The encoder module.
|
||||||
|
llm (:obj:`nn.Module`): The language model module.
|
||||||
|
encoder_projector (:obj:`nn.Module`): The encoder projector module.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
encoder: nn.Module,
|
||||||
|
llm: nn.Module,
|
||||||
|
encoder_projector: nn.Module,
|
||||||
|
codec_lm: nn.Module = None,
|
||||||
|
codec_lm_padding_side: str = "left",
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.encoder = encoder
|
||||||
|
self.llm = llm
|
||||||
|
self.encoder_projector = encoder_projector
|
||||||
|
self.codec_lm = codec_lm
|
||||||
|
if self.codec_lm:
|
||||||
|
self.speech_token_projector = nn.Linear(
|
||||||
|
self.llm.config.hidden_size + self.llm.config.hidden_size,
|
||||||
|
self.codec_lm.config.hidden_size,
|
||||||
|
)
|
||||||
|
self.codec_lm_head = nn.Linear(
|
||||||
|
self.codec_lm.config.hidden_size, self.codec_lm.config.vocab_size
|
||||||
|
)
|
||||||
|
self.speech_token_projector = self.speech_token_projector.to(
|
||||||
|
dtype=torch.float16
|
||||||
|
)
|
||||||
|
self.codec_lm_head = self.codec_lm_head.to(dtype=torch.float16)
|
||||||
|
self.loss_fct = torch.nn.CrossEntropyLoss()
|
||||||
|
self.codec_lm_padding_side = codec_lm_padding_side
|
||||||
|
|
||||||
|
self.audio_accuracy_metric = MulticlassAccuracy(
|
||||||
|
self.codec_lm.vocab_size,
|
||||||
|
top_k=10,
|
||||||
|
average="micro",
|
||||||
|
multidim_average="global",
|
||||||
|
ignore_index=IGNORE_TOKEN_ID,
|
||||||
|
)
|
||||||
|
|
||||||
|
def _merge_input_ids_with_speech_features(
|
||||||
|
self, speech_features, inputs_embeds, input_ids, attention_mask, labels=None
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Merge the speech features with the input_ids and attention_mask. This is done by replacing the speech tokens
|
||||||
|
with the speech features and padding the input_ids to the maximum length of the speech features.
|
||||||
|
Modified from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/modeling_llava.py#L277.
|
||||||
|
Args:
|
||||||
|
speech_features (:obj:`torch.Tensor`): The speech features to merge with the input_ids.
|
||||||
|
inputs_embeds (:obj:`torch.Tensor`): The embeddings of the input_ids.
|
||||||
|
input_ids (:obj:`torch.Tensor`): The input ids to merge.
|
||||||
|
attention_mask (:obj:`torch.Tensor`): The attention mask to merge.
|
||||||
|
labels (:obj:`torch.Tensor`, `optional`): The labels to merge.
|
||||||
|
Returns:
|
||||||
|
:obj:`Tuple(torch.Tensor)`: The merged embeddings, attention mask, labels and position ids.
|
||||||
|
"""
|
||||||
|
num_speechs, speech_len, embed_dim = speech_features.shape
|
||||||
|
batch_size, sequence_length = input_ids.shape
|
||||||
|
left_padding = not torch.sum(
|
||||||
|
input_ids[:, -1] == torch.tensor(self.llm.config.pad_token_id)
|
||||||
|
)
|
||||||
|
# 1. Create a mask to know where special speech tokens are
|
||||||
|
special_speech_token_mask = input_ids == self.llm.config.default_speech_token_id
|
||||||
|
num_special_speech_tokens = torch.sum(special_speech_token_mask, dim=-1)
|
||||||
|
# Compute the maximum embed dimension
|
||||||
|
max_embed_dim = (
|
||||||
|
num_special_speech_tokens.max() * (speech_len - 1)
|
||||||
|
) + sequence_length
|
||||||
|
batch_indices, non_speech_indices = torch.where(
|
||||||
|
input_ids != self.llm.config.default_speech_token_id
|
||||||
|
)
|
||||||
|
|
||||||
|
# 2. Compute the positions where text should be written
|
||||||
|
# Calculate new positions for text tokens in merged speech-text sequence.
|
||||||
|
# `special_speech_token_mask` identifies speech tokens. Each speech token will be replaced by `nb_text_tokens_per_speechs - 1` text tokens.
|
||||||
|
# `torch.cumsum` computes how each speech token shifts subsequent text token positions.
|
||||||
|
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
|
||||||
|
new_token_positions = (
|
||||||
|
torch.cumsum((special_speech_token_mask * (speech_len - 1) + 1), -1) - 1
|
||||||
|
)
|
||||||
|
nb_speech_pad = max_embed_dim - 1 - new_token_positions[:, -1]
|
||||||
|
if left_padding:
|
||||||
|
new_token_positions += nb_speech_pad[:, None] # offset for left padding
|
||||||
|
text_to_overwrite = new_token_positions[batch_indices, non_speech_indices]
|
||||||
|
|
||||||
|
# 3. Create the full embedding, already padded to the maximum position
|
||||||
|
final_embedding = torch.zeros(
|
||||||
|
batch_size,
|
||||||
|
max_embed_dim,
|
||||||
|
embed_dim,
|
||||||
|
dtype=inputs_embeds.dtype,
|
||||||
|
device=inputs_embeds.device,
|
||||||
|
)
|
||||||
|
final_attention_mask = torch.zeros(
|
||||||
|
batch_size,
|
||||||
|
max_embed_dim,
|
||||||
|
dtype=attention_mask.dtype,
|
||||||
|
device=inputs_embeds.device,
|
||||||
|
)
|
||||||
|
if labels is not None:
|
||||||
|
final_labels = torch.full(
|
||||||
|
(batch_size, max_embed_dim),
|
||||||
|
IGNORE_TOKEN_ID,
|
||||||
|
dtype=input_ids.dtype,
|
||||||
|
device=input_ids.device,
|
||||||
|
)
|
||||||
|
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
|
||||||
|
# set the corresponding tensors into their correct target device.
|
||||||
|
target_device = inputs_embeds.device
|
||||||
|
batch_indices, non_speech_indices, text_to_overwrite = (
|
||||||
|
batch_indices.to(target_device),
|
||||||
|
non_speech_indices.to(target_device),
|
||||||
|
text_to_overwrite.to(target_device),
|
||||||
|
)
|
||||||
|
attention_mask = attention_mask.to(target_device)
|
||||||
|
|
||||||
|
# 4. Fill the embeddings based on the mask. If we have ["hey" "<speech>", "how", "are"]
|
||||||
|
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the speech features
|
||||||
|
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[
|
||||||
|
batch_indices, non_speech_indices
|
||||||
|
]
|
||||||
|
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[
|
||||||
|
batch_indices, non_speech_indices
|
||||||
|
]
|
||||||
|
if labels is not None:
|
||||||
|
final_labels[batch_indices, text_to_overwrite] = labels[
|
||||||
|
batch_indices, non_speech_indices
|
||||||
|
]
|
||||||
|
|
||||||
|
# 5. Fill the embeddings corresponding to the speechs. Anything that is not `text_positions` needs filling (#29835)
|
||||||
|
speech_to_overwrite = torch.full(
|
||||||
|
(batch_size, max_embed_dim),
|
||||||
|
True,
|
||||||
|
dtype=torch.bool,
|
||||||
|
device=inputs_embeds.device,
|
||||||
|
)
|
||||||
|
speech_to_overwrite[batch_indices, text_to_overwrite] = False
|
||||||
|
speech_to_overwrite &= speech_to_overwrite.cumsum(-1) - 1 >= nb_speech_pad[
|
||||||
|
:, None
|
||||||
|
].to(target_device)
|
||||||
|
|
||||||
|
if speech_to_overwrite.sum() != speech_features.shape[:-1].numel():
|
||||||
|
raise ValueError(
|
||||||
|
f"The input provided to the model are wrong. The number of speech tokens is {torch.sum(special_speech_token_mask)} while"
|
||||||
|
f" the number of speech given to the model is {num_speechs}. This prevents correct indexing and breaks batch generation."
|
||||||
|
)
|
||||||
|
|
||||||
|
final_embedding[speech_to_overwrite] = (
|
||||||
|
speech_features.contiguous().reshape(-1, embed_dim).to(target_device)
|
||||||
|
)
|
||||||
|
final_attention_mask |= speech_to_overwrite
|
||||||
|
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_(
|
||||||
|
(final_attention_mask == 0), 1
|
||||||
|
)
|
||||||
|
|
||||||
|
# 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens.
|
||||||
|
batch_indices, pad_indices = torch.where(
|
||||||
|
input_ids == self.llm.config.pad_token_id
|
||||||
|
)
|
||||||
|
indices_to_mask = new_token_positions[batch_indices, pad_indices]
|
||||||
|
|
||||||
|
final_embedding[batch_indices, indices_to_mask] = 0
|
||||||
|
|
||||||
|
if labels is None:
|
||||||
|
final_labels = None
|
||||||
|
|
||||||
|
return final_embedding, final_attention_mask, final_labels, position_ids
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
fbank: torch.Tensor = None,
|
||||||
|
input_ids: torch.LongTensor = None,
|
||||||
|
attention_mask: torch.Tensor = None,
|
||||||
|
labels: torch.LongTensor = None,
|
||||||
|
):
|
||||||
|
encoder_outs = self.encoder(fbank)
|
||||||
|
|
||||||
|
speech_features = self.encoder_projector(encoder_outs)
|
||||||
|
|
||||||
|
inputs_embeds = self.llm.get_input_embeddings()(input_ids)
|
||||||
|
|
||||||
|
(
|
||||||
|
inputs_embeds,
|
||||||
|
attention_mask,
|
||||||
|
labels,
|
||||||
|
_,
|
||||||
|
) = self._merge_input_ids_with_speech_features(
|
||||||
|
speech_features, inputs_embeds, input_ids, attention_mask, labels
|
||||||
|
)
|
||||||
|
|
||||||
|
rank = get_rank()
|
||||||
|
print(f"Current rank: {rank}, input_ids: {input_ids.shape}, input_ids: {input_ids}")
|
||||||
|
print(f"Current rank: {rank}, input_embeds: {inputs_embeds.shape}, input_embeds: {inputs_embeds}")
|
||||||
|
print(f"Current rank: {rank}, attention_mask: {attention_mask.shape}, attention_mask: {attention_mask}")
|
||||||
|
print(f"Current rank: {rank}, labels: {labels.shape}, labels: {labels}")
|
||||||
|
model_outputs = self.llm(
|
||||||
|
inputs_embeds=inputs_embeds,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
labels=labels,
|
||||||
|
output_hidden_states=True,
|
||||||
|
)
|
||||||
|
print(f"Current rank: {rank}, model_outputs: {model_outputs}")
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
preds = torch.argmax(model_outputs.logits, -1)
|
||||||
|
acc = compute_accuracy(
|
||||||
|
preds.detach()[:, :-1],
|
||||||
|
labels.detach()[:, 1:],
|
||||||
|
ignore_label=IGNORE_TOKEN_ID,
|
||||||
|
)
|
||||||
|
return model_outputs.loss, acc
|
||||||
|
|
||||||
|
def forward_with_speech_output(
|
||||||
|
self,
|
||||||
|
fbank: torch.Tensor = None,
|
||||||
|
input_ids: torch.LongTensor = None,
|
||||||
|
attention_mask: torch.Tensor = None,
|
||||||
|
labels: torch.LongTensor = None,
|
||||||
|
speech_codec_ids: torch.LongTensor = None,
|
||||||
|
):
|
||||||
|
encoder_outs = self.encoder(fbank)
|
||||||
|
|
||||||
|
speech_features = self.encoder_projector(encoder_outs)
|
||||||
|
|
||||||
|
inputs_embeds = self.llm.get_input_embeddings()(input_ids)
|
||||||
|
|
||||||
|
(
|
||||||
|
inputs_embeds,
|
||||||
|
attention_mask,
|
||||||
|
labels,
|
||||||
|
_,
|
||||||
|
) = self._merge_input_ids_with_speech_features(
|
||||||
|
speech_features, inputs_embeds, input_ids, attention_mask, labels
|
||||||
|
)
|
||||||
|
input_seq_len = attention_mask.sum(dim=1) # shape, B
|
||||||
|
(
|
||||||
|
text_label_start_index_list,
|
||||||
|
text_input_start_index_list,
|
||||||
|
input_question_len_list,
|
||||||
|
) = ([], [], [])
|
||||||
|
for i in range(labels.shape[0]):
|
||||||
|
input_embeds_valid_index = torch.where(attention_mask[i] != 0)[0]
|
||||||
|
input_embeds_start_index = input_embeds_valid_index[0]
|
||||||
|
text_labels_valid_index = torch.where(labels[i] != IGNORE_TOKEN_ID)[0]
|
||||||
|
text_labels_start_index = text_labels_valid_index[0]
|
||||||
|
|
||||||
|
assert (
|
||||||
|
input_seq_len[i]
|
||||||
|
== input_embeds_valid_index[-1] - input_embeds_start_index + 1
|
||||||
|
), f"input_seq_len: {input_seq_len[i]}, input_embeds_valid_index: {input_embeds_valid_index}, input_embeds_start_index: {input_embeds_start_index}"
|
||||||
|
assert (
|
||||||
|
input_embeds_valid_index[-1] == text_labels_valid_index[-1]
|
||||||
|
), f"input_embeds_valid_index: {input_embeds_valid_index}, text_labels_valid_index: {text_labels_valid_index}"
|
||||||
|
input_question_len = text_labels_start_index - input_embeds_start_index
|
||||||
|
assert (
|
||||||
|
input_question_len
|
||||||
|
+ text_labels_valid_index[-1]
|
||||||
|
- text_labels_start_index
|
||||||
|
+ 1
|
||||||
|
== input_seq_len[i]
|
||||||
|
)
|
||||||
|
text_label_start_index_list.append(text_labels_start_index)
|
||||||
|
text_input_start_index_list.append(input_embeds_start_index)
|
||||||
|
input_question_len_list.append(input_question_len)
|
||||||
|
|
||||||
|
rank = get_rank()
|
||||||
|
print(f"Current rank: {rank}, input_ids: {input_ids.shape}, input_ids: {input_ids}")
|
||||||
|
print(f"Current rank: {rank}, input_embeds: {inputs_embeds.shape}, input_embeds: {inputs_embeds}")
|
||||||
|
print(f"Current rank: {rank}, attention_mask: {attention_mask.shape}, attention_mask: {attention_mask}")
|
||||||
|
print(f"Current rank: {rank}, labels: {labels.shape}, labels: {labels}")
|
||||||
|
model_outputs = self.llm(
|
||||||
|
inputs_embeds=inputs_embeds,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
labels=labels,
|
||||||
|
output_hidden_states=True,
|
||||||
|
)
|
||||||
|
print(f"Current rank: {rank}, model_outputs: {model_outputs}")
|
||||||
|
text_loss = model_outputs.loss
|
||||||
|
delay_step = 1
|
||||||
|
# prepare codec lm inputs
|
||||||
|
audio_codes_lens = [
|
||||||
|
len(x) + input_question_len_list[i] + delay_step + 1
|
||||||
|
for i, x in enumerate(speech_codec_ids)
|
||||||
|
]
|
||||||
|
max_len_speech_codec = max(audio_codes_lens)
|
||||||
|
|
||||||
|
if self.codec_lm_padding_side == "right":
|
||||||
|
audio_codes = [
|
||||||
|
[self.codec_lm.config.mask_token_id]
|
||||||
|
* (input_question_len_list[i] + delay_step)
|
||||||
|
+ [self.codec_lm.config.bos_token_id]
|
||||||
|
+ x
|
||||||
|
+ [self.codec_lm.config.pad_token_id]
|
||||||
|
* (max_len_speech_codec - audio_codes_lens[i])
|
||||||
|
for i, x in enumerate(speech_codec_ids)
|
||||||
|
]
|
||||||
|
audio_labels = [
|
||||||
|
[self.codec_lm.config.pad_token_id]
|
||||||
|
* (input_question_len_list[i] + delay_step)
|
||||||
|
+ x
|
||||||
|
+ [self.codec_lm.config.eos_token_id]
|
||||||
|
+ [self.codec_lm.config.pad_token_id]
|
||||||
|
* (max_len_speech_codec - audio_codes_lens[i])
|
||||||
|
for i, x in enumerate(speech_codec_ids)
|
||||||
|
]
|
||||||
|
elif self.codec_lm_padding_side == "left":
|
||||||
|
audio_codes = [
|
||||||
|
[self.codec_lm.config.pad_token_id]
|
||||||
|
* (max_len_speech_codec - audio_codes_lens[i])
|
||||||
|
+ [self.codec_lm.config.mask_token_id]
|
||||||
|
* (input_question_len_list[i] + delay_step)
|
||||||
|
+ [self.codec_lm.config.bos_token_id]
|
||||||
|
+ x
|
||||||
|
for i, x in enumerate(speech_codec_ids)
|
||||||
|
]
|
||||||
|
audio_labels = [
|
||||||
|
[self.codec_lm.config.pad_token_id]
|
||||||
|
* (max_len_speech_codec - audio_codes_lens[i])
|
||||||
|
+ [self.codec_lm.config.pad_token_id]
|
||||||
|
* (input_question_len_list[i] + delay_step)
|
||||||
|
+ x
|
||||||
|
+ [self.codec_lm.config.eos_token_id]
|
||||||
|
for i, x in enumerate(speech_codec_ids)
|
||||||
|
]
|
||||||
|
audio_codes = torch.tensor(
|
||||||
|
audio_codes, dtype=torch.int64, device=input_ids.device
|
||||||
|
)
|
||||||
|
audio_labels = torch.tensor(
|
||||||
|
audio_labels, dtype=torch.int64, device=input_ids.device
|
||||||
|
)
|
||||||
|
|
||||||
|
audio_attention_mask = audio_codes.ne(self.codec_lm.config.pad_token_id)
|
||||||
|
audio_embeddings = self.codec_lm.get_input_embeddings()(audio_codes)
|
||||||
|
|
||||||
|
text_last_hidden_lists, text_embeds_list, text_input_embeds_list = [], [], []
|
||||||
|
for i in range(len(text_label_start_index_list)):
|
||||||
|
text_last_hidden = model_outputs.hidden_states[-1][
|
||||||
|
i,
|
||||||
|
text_input_start_index_list[i] : text_input_start_index_list[i]
|
||||||
|
+ input_seq_len[i]
|
||||||
|
- 1,
|
||||||
|
]
|
||||||
|
print(233336666666, text_last_hidden, text_last_hidden.shape)
|
||||||
|
text_last_hidden_lists.append(text_last_hidden)
|
||||||
|
text_embed = inputs_embeds[
|
||||||
|
i,
|
||||||
|
text_input_start_index_list[i]
|
||||||
|
+ 1 : text_input_start_index_list[i]
|
||||||
|
+ input_seq_len[i],
|
||||||
|
] # exclude bos
|
||||||
|
text_embeds_list.append(text_embed)
|
||||||
|
|
||||||
|
text_input_embeds = torch.cat(
|
||||||
|
[
|
||||||
|
text_last_hidden,
|
||||||
|
text_embed,
|
||||||
|
],
|
||||||
|
dim=-1,
|
||||||
|
) # shape, T, D1 + D2
|
||||||
|
text_input_embeds = self.speech_token_projector(
|
||||||
|
text_input_embeds
|
||||||
|
) # shape, T, D_codec
|
||||||
|
text_input_embeds_list.append(text_input_embeds)
|
||||||
|
|
||||||
|
for i in range(audio_embeddings.shape[0]):
|
||||||
|
text_input_embeds = text_input_embeds_list[i]
|
||||||
|
if self.codec_lm_padding_side == "right":
|
||||||
|
audio_embeddings[i, : text_input_embeds.shape[0]] += text_input_embeds
|
||||||
|
elif self.codec_lm_padding_side == "left":
|
||||||
|
start_idx = torch.where(
|
||||||
|
audio_codes[i] == self.codec_lm.config.mask_token_id
|
||||||
|
)[0][0]
|
||||||
|
start_idx_re_compute = torch.where(audio_attention_mask[i] != 0)[0][0]
|
||||||
|
assert (
|
||||||
|
start_idx == start_idx_re_compute
|
||||||
|
), f"start_idx: {start_idx}, start_idx_re_compute: {start_idx_re_compute}"
|
||||||
|
if text_input_embeds.shape[0] > audio_embeddings.shape[1] - start_idx:
|
||||||
|
text_input_embeds = text_input_embeds[
|
||||||
|
: audio_embeddings.shape[1] - start_idx
|
||||||
|
]
|
||||||
|
logging.warning(
|
||||||
|
f"Truncate text_input_embeds: {text_input_embeds.shape} to {audio_embeddings.shape[1] - start_idx}"
|
||||||
|
)
|
||||||
|
audio_embeddings[
|
||||||
|
i, start_idx : start_idx + text_input_embeds.shape[0]
|
||||||
|
] += text_input_embeds
|
||||||
|
|
||||||
|
speech_outputs = self.codec_lm(
|
||||||
|
attention_mask=audio_attention_mask,
|
||||||
|
inputs_embeds=audio_embeddings,
|
||||||
|
return_dict=True,
|
||||||
|
output_hidden_states=True,
|
||||||
|
)
|
||||||
|
last_hidden_state = speech_outputs.hidden_states[-1].clone()
|
||||||
|
|
||||||
|
audio_logits = self.codec_lm_head(last_hidden_state) # shape, B, T, vocab_size
|
||||||
|
audio_logits = audio_logits.contiguous().view(
|
||||||
|
-1, self.codec_lm.config.vocab_size
|
||||||
|
)
|
||||||
|
audio_labels = audio_labels.contiguous().view(-1)
|
||||||
|
audio_labels = audio_labels.masked_fill(
|
||||||
|
audio_labels == self.codec_lm.config.pad_token_id, IGNORE_TOKEN_ID
|
||||||
|
)
|
||||||
|
codec_loss = self.loss_fct(audio_logits, audio_labels)
|
||||||
|
audio_preds = torch.argmax(audio_logits, -1)
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
preds = torch.argmax(model_outputs.logits, -1)
|
||||||
|
print(23333444444, preds)
|
||||||
|
print(233335555555, labels)
|
||||||
|
acc = compute_accuracy(
|
||||||
|
preds.detach()[:, :-1],
|
||||||
|
labels.detach()[:, 1:],
|
||||||
|
ignore_label=IGNORE_TOKEN_ID,
|
||||||
|
)
|
||||||
|
audio_acc = compute_accuracy(
|
||||||
|
audio_preds.detach(),
|
||||||
|
audio_labels.detach(),
|
||||||
|
ignore_label=IGNORE_TOKEN_ID,
|
||||||
|
)
|
||||||
|
audio_topk_acc = self.audio_accuracy_metric(
|
||||||
|
audio_logits.detach(), audio_labels.detach()
|
||||||
|
).item()
|
||||||
|
|
||||||
|
return text_loss, acc, codec_loss, audio_acc, audio_topk_acc
|
||||||
|
|
||||||
|
def decode(
|
||||||
|
self,
|
||||||
|
fbank: torch.Tensor = None,
|
||||||
|
input_ids: torch.LongTensor = None,
|
||||||
|
attention_mask: torch.Tensor = None,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
|
||||||
|
encoder_outs = self.encoder(fbank)
|
||||||
|
speech_features = self.encoder_projector(encoder_outs)
|
||||||
|
speech_features = speech_features.to(torch.float16)
|
||||||
|
inputs_embeds = self.llm.get_input_embeddings()(input_ids)
|
||||||
|
(
|
||||||
|
inputs_embeds,
|
||||||
|
attention_mask,
|
||||||
|
_,
|
||||||
|
_,
|
||||||
|
) = self._merge_input_ids_with_speech_features(
|
||||||
|
speech_features, inputs_embeds, input_ids, attention_mask
|
||||||
|
)
|
||||||
|
generated_ids = self.llm.generate(
|
||||||
|
inputs_embeds=inputs_embeds,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
max_new_tokens=kwargs.get("max_new_tokens", 1024),
|
||||||
|
num_beams=kwargs.get("num_beams", 1),
|
||||||
|
do_sample=kwargs.get("do_sample", True),
|
||||||
|
min_length=kwargs.get("min_length", 1),
|
||||||
|
top_p=kwargs.get("top_p", 0.5),
|
||||||
|
top_k=kwargs.get("top_k", 20),
|
||||||
|
repetition_penalty=kwargs.get("repetition_penalty", 1.1),
|
||||||
|
temperature=kwargs.get("temperature", 0.7),
|
||||||
|
bos_token_id=self.llm.config.bos_token_id,
|
||||||
|
eos_token_id=self.llm.config.eos_token_id,
|
||||||
|
pad_token_id=self.llm.config.pad_token_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
return generated_ids
|
||||||
|
|
||||||
|
def decode_with_speech_output(
|
||||||
|
self,
|
||||||
|
fbank: torch.Tensor = None,
|
||||||
|
input_ids: torch.LongTensor = None, # Prompt input_ids
|
||||||
|
attention_mask: torch.Tensor = None, # Prompt attention_mask
|
||||||
|
max_text_new_tokens: int = 1024,
|
||||||
|
max_speech_new_tokens: int = 2048, # Max length for speech tokens
|
||||||
|
llm_kwargs: dict = None, # Kwargs for text LLM generate
|
||||||
|
codec_lm_kwargs: dict = None, # Kwargs for codec LM (e.g., temperature for sampling) - NOT IMPLEMENTED YET
|
||||||
|
) -> Tuple[torch.LongTensor, List[List[int]]]:
|
||||||
|
"""
|
||||||
|
Generates text and corresponding speech tokens using the revised logic.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
fbank: Input audio features.
|
||||||
|
input_ids: Input token IDs for the text prompt.
|
||||||
|
attention_mask: Attention mask for the text prompt.
|
||||||
|
max_text_new_tokens: Max new tokens for text generation.
|
||||||
|
max_speech_new_tokens: Max new tokens for speech generation.
|
||||||
|
llm_kwargs: Additional arguments for self.llm.generate.
|
||||||
|
codec_lm_kwargs: Additional arguments for self.codec_lm.generate.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple[torch.LongTensor, List[List[int]]]:
|
||||||
|
- generated_text_ids: Tensor of generated text token IDs (including prompt).
|
||||||
|
- generated_speech_tokens: List of lists, where each inner list contains
|
||||||
|
the generated speech codec tokens for a batch item.
|
||||||
|
"""
|
||||||
|
assert fbank.shape[0] == 1, "Batch size must be 1 for speech generation."
|
||||||
|
if (
|
||||||
|
not self.codec_lm
|
||||||
|
or not self.speech_token_projector
|
||||||
|
or not self.codec_lm_head
|
||||||
|
):
|
||||||
|
raise ValueError(
|
||||||
|
"codec_lm and associated layers must be initialized to generate speech output."
|
||||||
|
)
|
||||||
|
|
||||||
|
device = next(self.parameters()).device # Use model's device
|
||||||
|
batch_size = fbank.shape[0]
|
||||||
|
|
||||||
|
# --- 1. Prepare Prompt Embeddings ---
|
||||||
|
encoder_outs = self.encoder(fbank)
|
||||||
|
speech_features = self.encoder_projector(encoder_outs)
|
||||||
|
speech_features = speech_features.to(self.llm.dtype) # Ensure matching dtype
|
||||||
|
|
||||||
|
prompt_embeds = self.llm.get_input_embeddings()(input_ids)
|
||||||
|
|
||||||
|
# Merge speech features with prompt embeddings
|
||||||
|
(
|
||||||
|
merged_prompt_inputs_embeds,
|
||||||
|
merged_prompt_attention_mask,
|
||||||
|
_,
|
||||||
|
_,
|
||||||
|
) = self._merge_input_ids_with_speech_features(
|
||||||
|
speech_features, prompt_embeds, input_ids, attention_mask
|
||||||
|
)
|
||||||
|
|
||||||
|
# --- 2. Generate Text using LLM ---
|
||||||
|
# Use merged embeds/mask as input to generate
|
||||||
|
# Ensure kwargs passed are suitable for llm.generate
|
||||||
|
# Note: Using default generation params from `decode` if not provided in kwargs
|
||||||
|
final_llm_kwargs = {
|
||||||
|
"bos_token_id": self.llm.config.bos_token_id,
|
||||||
|
"eos_token_id": self.llm.config.eos_token_id,
|
||||||
|
"pad_token_id": self.llm.config.pad_token_id,
|
||||||
|
"num_beams": 1,
|
||||||
|
"do_sample": True, # Typically false for S2ST/S2TT tasks unless exploration needed
|
||||||
|
"top_p": 0.5,
|
||||||
|
"top_k": 20,
|
||||||
|
"repetition_penalty": 1.1,
|
||||||
|
"temperature": 0.7,
|
||||||
|
**(llm_kwargs or {}), # User-provided kwargs override defaults
|
||||||
|
}
|
||||||
|
|
||||||
|
text_outputs = self.llm.generate(
|
||||||
|
inputs_embeds=merged_prompt_inputs_embeds,
|
||||||
|
attention_mask=merged_prompt_attention_mask,
|
||||||
|
max_new_tokens=max_text_new_tokens,
|
||||||
|
return_dict_in_generate=True,
|
||||||
|
output_hidden_states=True,
|
||||||
|
**final_llm_kwargs,
|
||||||
|
)
|
||||||
|
delay_step = 1
|
||||||
|
generated_text_ids = text_outputs.sequences # [B, S_full]
|
||||||
|
eos_token_id = self.llm.config.eos_token_id
|
||||||
|
eos_token_embedding = self.llm.get_input_embeddings()(
|
||||||
|
torch.tensor([[eos_token_id]], device=device)
|
||||||
|
)
|
||||||
|
assert (
|
||||||
|
generated_text_ids[0, -1] == eos_token_id
|
||||||
|
), f"Last token is not EOS: {generated_text_ids[0, -1]} != {eos_token_id}"
|
||||||
|
thinker_token_embeds_org = [
|
||||||
|
token_hidden_states[0].to(self.llm.device)
|
||||||
|
for token_hidden_states in text_outputs.hidden_states
|
||||||
|
]
|
||||||
|
|
||||||
|
first_thinker_token_embed = torch.cat(
|
||||||
|
[
|
||||||
|
thinker_token_embeds_org[0][:, 1:],
|
||||||
|
thinker_token_embeds_org[1],
|
||||||
|
],
|
||||||
|
dim=1,
|
||||||
|
)
|
||||||
|
|
||||||
|
thinker_token_embeds = (
|
||||||
|
[first_thinker_token_embed]
|
||||||
|
+ thinker_token_embeds_org[2:]
|
||||||
|
+ [eos_token_embedding]
|
||||||
|
)
|
||||||
|
thinker_hidden_states = [
|
||||||
|
token_hidden_states[-1].to(self.llm.device)
|
||||||
|
for token_hidden_states in text_outputs.hidden_states
|
||||||
|
]
|
||||||
|
|
||||||
|
thinker_reply_part = [
|
||||||
|
torch.cat(
|
||||||
|
[
|
||||||
|
thinker_hidden_state,
|
||||||
|
thinker_token_embed,
|
||||||
|
],
|
||||||
|
dim=-1,
|
||||||
|
)
|
||||||
|
for thinker_hidden_state, thinker_token_embed in zip(
|
||||||
|
thinker_hidden_states[1:], thinker_token_embeds[1:]
|
||||||
|
)
|
||||||
|
]
|
||||||
|
thinker_reply_part = torch.cat(thinker_reply_part, dim=1)
|
||||||
|
# thinker_prompt_part = thinker_hidden_states[0] + thinker_token_embeds[0]
|
||||||
|
thinker_prompt_part = torch.cat(
|
||||||
|
[
|
||||||
|
thinker_hidden_states[0],
|
||||||
|
thinker_token_embeds[0],
|
||||||
|
],
|
||||||
|
dim=-1,
|
||||||
|
)
|
||||||
|
|
||||||
|
thinker_prompt_part = self.speech_token_projector(thinker_prompt_part)
|
||||||
|
thinker_reply_part = self.speech_token_projector(thinker_reply_part)
|
||||||
|
|
||||||
|
thinker_prompt_part_seq_len = thinker_prompt_part.shape[1]
|
||||||
|
talker_input_ids = torch.full(
|
||||||
|
(batch_size, thinker_prompt_part_seq_len + delay_step + 1),
|
||||||
|
self.codec_lm.config.mask_token_id,
|
||||||
|
dtype=torch.long,
|
||||||
|
device=self.llm.device,
|
||||||
|
)
|
||||||
|
talker_input_ids[:, -1] = self.codec_lm.config.bos_token_id
|
||||||
|
talker_inputs_embeds = self.codec_lm.get_input_embeddings()(talker_input_ids)
|
||||||
|
thinker_input_embeds = torch.cat(
|
||||||
|
[
|
||||||
|
thinker_prompt_part,
|
||||||
|
thinker_reply_part[:, : delay_step + 1, :],
|
||||||
|
],
|
||||||
|
dim=1,
|
||||||
|
)
|
||||||
|
talker_inputs_embeds += thinker_input_embeds
|
||||||
|
thinker_reply_part = thinker_reply_part[:, delay_step + 1 :, :]
|
||||||
|
|
||||||
|
past_key_values = None
|
||||||
|
|
||||||
|
generated_speech_tokens_list = []
|
||||||
|
next_token_ids = None
|
||||||
|
|
||||||
|
for t in range(max_speech_new_tokens):
|
||||||
|
if t > 0:
|
||||||
|
talker_inputs_embeds = self.codec_lm.get_input_embeddings()(
|
||||||
|
next_token_ids
|
||||||
|
)
|
||||||
|
if thinker_reply_part.shape[1] > 0:
|
||||||
|
talker_inputs_embeds += thinker_reply_part[:, :1, :]
|
||||||
|
thinker_reply_part = thinker_reply_part[:, 1:, :]
|
||||||
|
|
||||||
|
codec_outputs = self.codec_lm(
|
||||||
|
inputs_embeds=talker_inputs_embeds,
|
||||||
|
past_key_values=past_key_values,
|
||||||
|
use_cache=True,
|
||||||
|
return_dict=True,
|
||||||
|
output_hidden_states=True,
|
||||||
|
)
|
||||||
|
last_token_hidden_state = codec_outputs.hidden_states[-1][:, -1, :]
|
||||||
|
next_token_logits = self.codec_lm_head(last_token_hidden_state)
|
||||||
|
|
||||||
|
next_token_ids = topk_sampling(
|
||||||
|
next_token_logits,
|
||||||
|
)
|
||||||
|
if next_token_ids[0, 0] == self.codec_lm.config.eos_token_id:
|
||||||
|
break
|
||||||
|
|
||||||
|
past_key_values = codec_outputs.past_key_values # Update KV cache
|
||||||
|
generated_speech_tokens_list.append(
|
||||||
|
next_token_ids.squeeze(1).cpu().tolist()[0]
|
||||||
|
)
|
||||||
|
|
||||||
|
return generated_text_ids, generated_speech_tokens_list
|
||||||
|
|
||||||
|
|
||||||
|
def compute_accuracy(pad_outputs, pad_targets, ignore_label):
|
||||||
|
"""Calculate accuracy.
|
||||||
|
Copied from https://github.com/X-LANCE/SLAM-LLM/blob/main/src/slam_llm/utils/metric.py
|
||||||
|
Args:
|
||||||
|
pad_outputs (LongTensor): Prediction tensors (B, Lmax).
|
||||||
|
pad_targets (LongTensor): Target label tensors (B, Lmax).
|
||||||
|
ignore_label (int): Ignore label id.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
float: Accuracy value (0.0 - 1.0).
|
||||||
|
|
||||||
|
"""
|
||||||
|
mask = pad_targets != ignore_label
|
||||||
|
numerator = torch.sum(
|
||||||
|
pad_outputs.masked_select(mask) == pad_targets.masked_select(mask)
|
||||||
|
)
|
||||||
|
denominator = torch.sum(mask)
|
||||||
|
return numerator.float() / denominator.float()
|
||||||
|
|
||||||
|
|
||||||
|
def topk_sampling(
|
||||||
|
logits,
|
||||||
|
top_k=50,
|
||||||
|
top_p=0.95,
|
||||||
|
temperature=0.8,
|
||||||
|
):
|
||||||
|
if temperature != 1.0:
|
||||||
|
logits = logits / temperature
|
||||||
|
# Top-p/top-k filtering
|
||||||
|
logits_filtered = top_k_top_p_filtering(
|
||||||
|
logits.clone(), top_k=top_k, top_p=top_p, min_tokens_to_keep=2
|
||||||
|
)
|
||||||
|
# Sample
|
||||||
|
probs = torch.nn.functional.softmax(logits_filtered, dim=-1)
|
||||||
|
tokens = torch.multinomial(probs, num_samples=1)
|
||||||
|
|
||||||
|
return tokens
|
||||||
|
|
||||||
|
|
||||||
|
# https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py
|
||||||
|
def top_k_top_p_filtering(
|
||||||
|
logits, top_k=20, top_p=0.5, filter_value=-float("Inf"), min_tokens_to_keep=1
|
||||||
|
):
|
||||||
|
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
||||||
|
Args:
|
||||||
|
logits: logits distribution shape (batch size, vocabulary size)
|
||||||
|
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
||||||
|
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
||||||
|
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
||||||
|
Make sure we keep at least min_tokens_to_keep per batch example in the output
|
||||||
|
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
||||||
|
"""
|
||||||
|
if top_k > 0:
|
||||||
|
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
|
||||||
|
# Remove all tokens with a probability less than the last token of the top-k
|
||||||
|
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
||||||
|
logits[indices_to_remove] = filter_value
|
||||||
|
|
||||||
|
if top_p < 1.0:
|
||||||
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
||||||
|
cumulative_probs = torch.cumsum(
|
||||||
|
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
|
||||||
|
)
|
||||||
|
|
||||||
|
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
|
||||||
|
sorted_indices_to_remove = cumulative_probs > top_p
|
||||||
|
if min_tokens_to_keep > 1:
|
||||||
|
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
|
||||||
|
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
|
||||||
|
# Shift the indices to the right to keep also the first token above the threshold
|
||||||
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
||||||
|
sorted_indices_to_remove[..., 0] = 0
|
||||||
|
|
||||||
|
# scatter sorted tensors to original indexing
|
||||||
|
indices_to_remove = sorted_indices_to_remove.scatter(
|
||||||
|
1, sorted_indices, sorted_indices_to_remove
|
||||||
|
)
|
||||||
|
logits[indices_to_remove] = filter_value
|
||||||
|
return logits
|
195
egs/speech_llm/SPEECH2SPEECH/debug/prepare.sh
Normal file
195
egs/speech_llm/SPEECH2SPEECH/debug/prepare.sh
Normal file
@ -0,0 +1,195 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||||
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||||
|
|
||||||
|
export PYTHONPATH=$PYTHONPATH:/workspace/icefall
|
||||||
|
|
||||||
|
set -eou pipefail
|
||||||
|
|
||||||
|
stage=$1
|
||||||
|
stop_stage=$2
|
||||||
|
# All files generated by this script are saved in "data".
|
||||||
|
# You can safely remove "data" and rerun this script to regenerate it.
|
||||||
|
mkdir -p data
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||||
|
log "stage 0: Clone CosyVoice repo and install requirements inside the container"
|
||||||
|
# docker: ghcr.io/swivid/f5-tts:main
|
||||||
|
pip install k2==1.24.4.dev20241030+cuda12.4.torch2.4.0 -f https://k2-fsa.github.io/k2/cuda.html
|
||||||
|
git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git /workspace/CosyVoice
|
||||||
|
cd /workspace/CosyVoice
|
||||||
|
# If you failed to clone submodule due to network failures, please run following command until success
|
||||||
|
git submodule update --init --recursive
|
||||||
|
pip install -r qwen_omni/requirements.txt
|
||||||
|
pip install -r qwen_omni/requirements-cosyvoice.txt
|
||||||
|
|
||||||
|
# For Chinese only dataset, you can use the following command to download the Chinese fine-tuned whisper model.
|
||||||
|
huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_multi-hans-zh_whisper
|
||||||
|
# Cosyvoice pretrained model for speech token2wav module
|
||||||
|
huggingface-cli download --local-dir models/CosyVoice-300M-SFT FunAudioLLM/CosyVoice-300M-SFT
|
||||||
|
# Qwen Pretrained model
|
||||||
|
huggingface-cli download --local-dir models/Qwen2.5-0.5B-Instruct Qwen/Qwen2.5-0.5B-Instruct
|
||||||
|
# Qwen-Omni like speech2speech model trained on worstchan/Belle_1.4M-SLAM-Omni
|
||||||
|
huggingface-cli download --local-dir models/qwen-omni-like-speech2speech-belle-1.4M yuekai/qwen-omni-like-speech2speech-belle-1.4M
|
||||||
|
|
||||||
|
# For Gradio demo, we follow https://arxiv.org/abs/2412.15649 to use ASR model to decode the history speech as context.
|
||||||
|
pip install sherpa-onnx
|
||||||
|
model_path=local/sherpa-onnx-paraformer-zh-2023-09-14
|
||||||
|
if [ ! -d $model_path ]; then
|
||||||
|
wget -nc https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-paraformer-zh-2023-09-14.tar.bz2
|
||||||
|
tar xvf sherpa-onnx-paraformer-zh-2023-09-14.tar.bz2 -C local
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
export PYTHONPATH=$PYTHONPATH:/workspace/CosyVoice
|
||||||
|
|
||||||
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||||
|
log "stage 1: Compute fbank feature from huggingface"
|
||||||
|
python3 local/compute_whisper_fbank.py \
|
||||||
|
--num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \
|
||||||
|
--out-dir data/fbank_test \
|
||||||
|
--huggingface-dataset-path-or-name /workspace/Belle_1.4M-SLAM-Omni \
|
||||||
|
--audio-key question_audio --text-key answer \
|
||||||
|
--prefix belle
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||||
|
log "Stage 2: Combine features"
|
||||||
|
manifest_dir=data/fbank
|
||||||
|
if [ ! -f $manifest_dir/cuts_belle_00001-01600.jsonl.gz ]; then
|
||||||
|
mv $manifest_dir/cuts_belle.00000.jsonl.gz ./
|
||||||
|
# exclude cust_belle_00000.jsonl.gz for valid and test set
|
||||||
|
pieces=$(find $manifest_dir -name "cuts_belle.*.jsonl.gz" | sort)
|
||||||
|
echo $pieces | wc
|
||||||
|
lhotse combine $pieces data/fbank/cuts_belle_00001-01600.jsonl.gz
|
||||||
|
mv ./cuts_belle.00000.jsonl.gz $manifest_dir # put it back
|
||||||
|
cd $manifest_dir && ln -s cuts_belle_00001-01600.jsonl.gz cuts_belle_train.jsonl.gz
|
||||||
|
ln -s cuts_belle.00000.jsonl.gz cuts_belle_test.jsonl.gz && cd -
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
ngpu=8
|
||||||
|
exp_dir=./qwen_omni/exp_speech2speech
|
||||||
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||||
|
log "stage 3: Training Speech2Speech Model"
|
||||||
|
torchrun --nproc_per_node $ngpu ./qwen_omni/train.py \
|
||||||
|
--max-duration 50 \
|
||||||
|
--enable-musan False \
|
||||||
|
--exp-dir $exp_dir \
|
||||||
|
--speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \
|
||||||
|
--llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \
|
||||||
|
--manifest-dir data/fbank \
|
||||||
|
--deepspeed \
|
||||||
|
--deepspeed_config ./qwen_omni/ds_config_zero1.json \
|
||||||
|
--use-flash-attn True \
|
||||||
|
--use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output True
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||||
|
log "stage 4: Decoding, only support batch_size=1 for now."
|
||||||
|
cd $exp_dir && ln -s ../../models/qwen-omni-like-speech2speech-belle-1.4M/pytorch_model.bin epoch-999.pt && cd -
|
||||||
|
python3 ./qwen_omni/decode.py \
|
||||||
|
--max-duration 1 \
|
||||||
|
--exp-dir $exp_dir \
|
||||||
|
--speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \
|
||||||
|
--llm-path-or-name models/Qwen2.5-0.5B-Instruct \
|
||||||
|
--epoch 999 --avg 1 \
|
||||||
|
--manifest-dir data/fbank \
|
||||||
|
--use-flash-attn True \
|
||||||
|
--method e2e-epoch10_speech2speech \
|
||||||
|
--enable-speech-output True \
|
||||||
|
--token2wav-path models/CosyVoice-300M-SFT \
|
||||||
|
--use-lora True
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||||
|
log "stage 5: Gradio Demo"
|
||||||
|
python3 ./qwen_omni/web_demo.py \
|
||||||
|
--speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \
|
||||||
|
--llm-path-or-name models/Qwen2.5-0.5B-Instruct \
|
||||||
|
--checkpoint-path $exp_dir/epoch-999.pt \
|
||||||
|
--use-flash-attn True \
|
||||||
|
--enable-speech-output True \
|
||||||
|
--asr-model-dir local/sherpa-onnx-paraformer-zh-2023-09-14 \
|
||||||
|
--use-lora True --token2wav-path /workspace/CosyVoice-300M-SFT --share
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||||
|
log "stage 1: Compute fbank feature from huggingface"
|
||||||
|
# CUDA_VISIBLE_DEVICES=0 python3 local/compute_whisper_fbank.py \
|
||||||
|
# --num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \
|
||||||
|
# --out-dir data/fbank_voice_assistant \
|
||||||
|
# --huggingface-dataset-path-or-name worstchan/VoiceAssistant-400K-SLAM-Omni \
|
||||||
|
# --audio-key question_audio --text-key answer \
|
||||||
|
# --prefix voice_assistant
|
||||||
|
CUDA_VISIBLE_DEVICES=0 python3 local/compute_whisper_fbank.py \
|
||||||
|
--num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \
|
||||||
|
--out-dir data/fbank_voice_assistant_cosy2 \
|
||||||
|
--json-file-path /workspace/slam/VoiceAssistant-430K-vocalnet/VoiceAssistant-430K.json \
|
||||||
|
--prefix voice_assistant
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||||
|
log "stage 7: Compute fbank feature from huggingface"
|
||||||
|
# CUDA_VISIBLE_DEVICES=1 python3 local/compute_whisper_fbank.py \
|
||||||
|
# --num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \
|
||||||
|
# --out-dir data/fbank_ultrachat \
|
||||||
|
# --huggingface-dataset-path-or-name worstchan/UltraChat-300K-SLAM-Omni \
|
||||||
|
# --audio-key question_audio --text-key answer \
|
||||||
|
# --prefix ultrachat
|
||||||
|
CUDA_VISIBLE_DEVICES=1 python3 local/compute_whisper_fbank.py \
|
||||||
|
--num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \
|
||||||
|
--out-dir data/fbank_ultrachat_cosy2 \
|
||||||
|
--json-file-path /workspace/slam/UltraChat-vocalnet/UltraChat.json \
|
||||||
|
--prefix ultrachat
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||||
|
log "stage 8: Compute fbank feature from huggingface"
|
||||||
|
|
||||||
|
CUDA_VISIBLE_DEVICES=1 python3 local/compute_whisper_fbank.py \
|
||||||
|
--num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb False \
|
||||||
|
--out-dir data/fbank_gigaspeech \
|
||||||
|
--huggingface-dataset-path-or-name speechcolab/gigaspeech \
|
||||||
|
--subset test --split test \
|
||||||
|
--audio-key audio --text-key text \
|
||||||
|
--prefix gigaspeech
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
||||||
|
log "stage 9: Compute fbank feature from huggingface"
|
||||||
|
CUDA_VISIBLE_DEVICES=0 python3 local/compute_whisper_fbank.py \
|
||||||
|
--num-mel-bins 80 --whisper-fbank True --resample-to-16kHz True --speed-perturb True \
|
||||||
|
--out-dir data/fbank_gigaspeech \
|
||||||
|
--huggingface-dataset-path-or-name speechcolab/gigaspeech \
|
||||||
|
--subset xl --split train \
|
||||||
|
--audio-key audio --text-key text \
|
||||||
|
--prefix gigaspeech
|
||||||
|
fi
|
||||||
|
|
||||||
|
|
||||||
|
ngpu=2
|
||||||
|
exp_dir=./qwen_omni/exp_speech2speech_en
|
||||||
|
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
|
||||||
|
log "stage 10: Training Speech2Speech Model"
|
||||||
|
torchrun --nproc_per_node $ngpu ./qwen_omni/train.py \
|
||||||
|
--max-duration 1 \
|
||||||
|
--enable-musan False \
|
||||||
|
--exp-dir $exp_dir \
|
||||||
|
--speech-encoder-path-or-name models/large-v2.pt \
|
||||||
|
--llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \
|
||||||
|
--dataset-format vocalnet \
|
||||||
|
--manifest-dir data/fbank \
|
||||||
|
--deepspeed \
|
||||||
|
--deepspeed_config ./qwen_omni/ds_config_zero1.json \
|
||||||
|
--use-flash-attn False --bucketing-sampler False \
|
||||||
|
--use-lora False --unfreeze-llm False --unfreeze-speech-projector True --enable-speech-output False
|
||||||
|
# --use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output True
|
||||||
|
fi
|
977
egs/speech_llm/SPEECH2SPEECH/debug/train.py
Executable file
977
egs/speech_llm/SPEECH2SPEECH/debug/train.py
Executable file
@ -0,0 +1,977 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang)
|
||||||
|
# 2024 Yuekai Zhang
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
# For Chinese dataset, you can use the following command to download the Chinese fine-tuned whisper model.
|
||||||
|
huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_multi-hans-zh_whisper
|
||||||
|
# Qwen Pretrained model
|
||||||
|
huggingface-cli download --local-dir models/Qwen2.5-0.5B-Instruct Qwen/Qwen2.5-0.5B-Instruct
|
||||||
|
|
||||||
|
torchrun --nproc_per_node $ngpu ./qwen_omni/train.py \
|
||||||
|
--max-duration 50 \
|
||||||
|
--enable-musan False \
|
||||||
|
--exp-dir $exp_dir \
|
||||||
|
--speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \
|
||||||
|
--llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \
|
||||||
|
--manifest-dir data/fbank \
|
||||||
|
--deepspeed \
|
||||||
|
--deepspeed_config ./qwen_omni/ds_config_zero1.json \
|
||||||
|
--use-flash-attn True \
|
||||||
|
--use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output True
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import copy
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
import warnings
|
||||||
|
from pathlib import Path
|
||||||
|
from shutil import copyfile
|
||||||
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||||
|
|
||||||
|
import deepspeed
|
||||||
|
import torch
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
import torch.nn as nn
|
||||||
|
import transformers
|
||||||
|
import whisper
|
||||||
|
from data_module import AsrDataModule
|
||||||
|
from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict
|
||||||
|
from label_smoothing import LabelSmoothingLoss
|
||||||
|
from lhotse import CutSet, load_manifest
|
||||||
|
from lhotse.cut import Cut
|
||||||
|
from lhotse.dataset.sampling.base import CutSampler
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from model import IGNORE_TOKEN_ID, SPEECH_LLM, EncoderProjector
|
||||||
|
from peft import LoraConfig, get_peft_model
|
||||||
|
from torch import Tensor
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
from transformers import (
|
||||||
|
AutoModelForCausalLM,
|
||||||
|
AutoTokenizer,
|
||||||
|
Qwen2Config,
|
||||||
|
Qwen2ForCausalLM,
|
||||||
|
)
|
||||||
|
from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward
|
||||||
|
|
||||||
|
# from icefall import diagnostics
|
||||||
|
from utils import get_rank, get_world_size
|
||||||
|
# from icefall.env import get_env_info
|
||||||
|
from utils import ( # filter_uneven_sized_batch,
|
||||||
|
AttributeDict,
|
||||||
|
MetricsTracker,
|
||||||
|
setup_logger,
|
||||||
|
str2bool,
|
||||||
|
)
|
||||||
|
|
||||||
|
DEFAULT_SPEECH_TOKEN = "<speech>"
|
||||||
|
|
||||||
|
|
||||||
|
def set_batch_count(model: nn.Module, batch_count: float) -> None:
|
||||||
|
for module in model.modules():
|
||||||
|
if hasattr(module, "batch_count"):
|
||||||
|
module.batch_count = batch_count
|
||||||
|
|
||||||
|
|
||||||
|
def add_model_arguments(parser: argparse.ArgumentParser):
|
||||||
|
parser.add_argument(
|
||||||
|
"--remove-whisper-encoder-input-length-restriction",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="replace whisper encoder forward method to remove input length restriction",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--llm-path-or-name",
|
||||||
|
type=str,
|
||||||
|
default="/workspace/asr/Qwen1.5-0.5B-Chat",
|
||||||
|
help="Path or name of the large language model.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--speech-encoder-path-or-name",
|
||||||
|
type=str,
|
||||||
|
default="whisper-large-v2",
|
||||||
|
help="Path or name of the speech encoder.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--encoder-projector-ds-rate",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="Downsample rate for the encoder projector.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-flash-attn",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to use flash attention.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-lora",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Whether to use lora to fine-tune llm.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--enable-speech-output",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Whether to enable speech codec output.",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tensorboard",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Should various information be logged in tensorboard.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-epochs",
|
||||||
|
type=int,
|
||||||
|
default=10,
|
||||||
|
help="Number of epochs to train.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--start-epoch",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Resume training from this epoch. It should be positive.
|
||||||
|
If larger than 1, it will load checkpoint from
|
||||||
|
exp-dir/epoch-{start_epoch-1}.pt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="whisper_qwen/exp",
|
||||||
|
help="""The experiment dir.
|
||||||
|
It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--pretrained-model-path",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="""The path to the pretrained model if it is not None. Training will
|
||||||
|
start from this model. e.g. ./wenetspeech/ASR/whisper/exp_large_v2/epoch-4-avg-3.pt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sampler-state-dict-path",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="""The path to the sampler state dict if it is not None. Training will start from this sampler state dict.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--seed",
|
||||||
|
type=int,
|
||||||
|
default=42,
|
||||||
|
help="The seed for random generators intended for reproducibility",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-fp16",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to use half precision training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--unfreeze-llm",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Whether to unfreeze llm during training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--unfreeze-speech-projector",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Whether to unfreeze speech adaptor during training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--dataset-format",
|
||||||
|
type=str,
|
||||||
|
default="slam_omni",
|
||||||
|
help="The format of the dataset.",
|
||||||
|
)
|
||||||
|
parser = deepspeed.add_config_arguments(parser)
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
"""Return a dict containing training parameters.
|
||||||
|
|
||||||
|
All training related parameters that are not passed from the commandline
|
||||||
|
are saved in the variable `params`.
|
||||||
|
|
||||||
|
Commandline options are merged into `params` after they are parsed, so
|
||||||
|
you can also access them via `params`.
|
||||||
|
|
||||||
|
Explanation of options saved in `params`:
|
||||||
|
|
||||||
|
- frame_shift_ms: The frame shift in milliseconds.
|
||||||
|
- allowed_excess_duration_ratio: The allowed excess duration ratio.
|
||||||
|
- best_train_loss: The best training loss so far.
|
||||||
|
- best_valid_loss: The best validation loss so far.
|
||||||
|
- best_train_epoch: The epoch where the best training loss is achieved.
|
||||||
|
- best_valid_epoch: The epoch where the best validation loss is achieved.
|
||||||
|
- batch_idx_train: The batch index of the current batch.
|
||||||
|
- log_interval: Log training stats every `log_interval` batches.
|
||||||
|
- reset_interval: Reset the stats every `reset_interval` batches.
|
||||||
|
- valid_interval: Run validation every `valid_interval` batches.
|
||||||
|
- env_info: The environment information.
|
||||||
|
"""
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"allowed_excess_duration_ratio": 0.1,
|
||||||
|
"subsampling_factor": 2,
|
||||||
|
"frame_shift_ms": 10,
|
||||||
|
"best_train_loss": float("inf"),
|
||||||
|
"best_valid_loss": float("inf"),
|
||||||
|
"best_train_epoch": -1,
|
||||||
|
"best_valid_epoch": -1,
|
||||||
|
"batch_idx_train": 0,
|
||||||
|
"log_interval": 50,
|
||||||
|
"reset_interval": 200,
|
||||||
|
"valid_interval": 5000,
|
||||||
|
# "env_info": get_env_info(),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def process_batch_slam_omni(batch: dict):
|
||||||
|
answers = batch["supervisions"]["text"]
|
||||||
|
questions_with_history = [
|
||||||
|
cut.custom["question"] for cut in batch["supervisions"]["cut"]
|
||||||
|
]
|
||||||
|
chat_rounds = [cut.custom["round"] for cut in batch["supervisions"]["cut"]]
|
||||||
|
answer_cosyvoice_speech_token = [
|
||||||
|
cut.custom["answer_cosyvoice_speech_token"]
|
||||||
|
for cut in batch["supervisions"]["cut"]
|
||||||
|
]
|
||||||
|
last_questions = [
|
||||||
|
question.split("<USER>: ")[-1].strip() for question in questions_with_history
|
||||||
|
]
|
||||||
|
history_contexts = [
|
||||||
|
question.rsplit("<USER>:", 1)[0].strip() for question in questions_with_history
|
||||||
|
]
|
||||||
|
|
||||||
|
messages = []
|
||||||
|
for i, total_round in enumerate(chat_rounds):
|
||||||
|
message = []
|
||||||
|
if total_round > 1:
|
||||||
|
history_question_answer = history_contexts[i].split("USER:")
|
||||||
|
history_question_answer = [item for item in history_question_answer if item]
|
||||||
|
for j in range(total_round - 1):
|
||||||
|
question_answer = history_question_answer[j].split("ASSISTANT:")
|
||||||
|
message += [
|
||||||
|
{"role": "user", "content": question_answer[0].strip()},
|
||||||
|
{"role": "assistant", "content": question_answer[1].strip()},
|
||||||
|
]
|
||||||
|
message += [
|
||||||
|
{"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}"},
|
||||||
|
{"role": "assistant", "content": answers[i]},
|
||||||
|
]
|
||||||
|
messages.append(message)
|
||||||
|
return messages, answer_cosyvoice_speech_token
|
||||||
|
|
||||||
|
|
||||||
|
def process_batch_vocalnet(batch: dict):
|
||||||
|
answers = batch["supervisions"]["text"]
|
||||||
|
answer_cosyvoice_speech_token = [
|
||||||
|
cut.custom["speech_token"] for cut in batch["supervisions"]["cut"]
|
||||||
|
]
|
||||||
|
messages = []
|
||||||
|
for i in range(len(answers)):
|
||||||
|
message = [
|
||||||
|
{"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}"},
|
||||||
|
{"role": "assistant", "content": answers[i]},
|
||||||
|
]
|
||||||
|
messages.append(message)
|
||||||
|
return messages, answer_cosyvoice_speech_token
|
||||||
|
|
||||||
|
|
||||||
|
def compute_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
tokenizer: AutoTokenizer,
|
||||||
|
model: nn.Module,
|
||||||
|
batch: dict,
|
||||||
|
is_training: bool,
|
||||||
|
) -> Tuple[Tensor, MetricsTracker]:
|
||||||
|
"""
|
||||||
|
Compute the loss for the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
tokenizer:
|
||||||
|
The tokenizer used to encode the text.
|
||||||
|
model:
|
||||||
|
The model for training.
|
||||||
|
batch:
|
||||||
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||||
|
for the content in it.
|
||||||
|
is_training:
|
||||||
|
Whether it is training.
|
||||||
|
Returns:
|
||||||
|
Return a tuple of two elements. The first element is the loss tensor.
|
||||||
|
"""
|
||||||
|
# For the uneven-sized batch, the total duration after padding would possibly
|
||||||
|
# cause OOM. Hence, for each batch, which is sorted descendingly by length,
|
||||||
|
# we simply drop the last few shortest samples, so that the retained total frames
|
||||||
|
# (after padding) would not exceed `allowed_max_frames`:
|
||||||
|
# `allowed_max_frames = int(max_frames * (1.0 + allowed_excess_duration_ratio))`,
|
||||||
|
# where `max_frames = max_duration * 1000 // frame_shift_ms`.
|
||||||
|
# We set allowed_excess_duration_ratio=0.1.
|
||||||
|
|
||||||
|
def preprocess(
|
||||||
|
messages,
|
||||||
|
tokenizer: transformers.PreTrainedTokenizer,
|
||||||
|
) -> Dict:
|
||||||
|
"""Preprocesses the data for supervised fine-tuning."""
|
||||||
|
texts = []
|
||||||
|
TEMPLATE = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if loop.last %}{{ '<|im_end|>'}}{% else %}{{ '<|im_end|>\n' }}{% endif %}{% endfor %}"
|
||||||
|
for i, msg in enumerate(messages):
|
||||||
|
texts.append(
|
||||||
|
tokenizer.apply_chat_template(
|
||||||
|
msg,
|
||||||
|
tokenize=True,
|
||||||
|
chat_template=TEMPLATE,
|
||||||
|
add_generation_prompt=False,
|
||||||
|
padding="longest", # FIX me change padding to longest
|
||||||
|
truncation=False,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
if len(texts) != len(messages):
|
||||||
|
logging.warning(f"Remove too long text, {messages} ")
|
||||||
|
max_len_texts = max([len(text) for text in texts])
|
||||||
|
if tokenizer.padding_side == "right":
|
||||||
|
texts = [
|
||||||
|
text + [tokenizer.pad_token_id] * (max_len_texts - len(text))
|
||||||
|
for text in texts
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
texts = [
|
||||||
|
[tokenizer.pad_token_id] * (max_len_texts - len(text)) + text
|
||||||
|
for text in texts
|
||||||
|
]
|
||||||
|
input_ids = torch.tensor(texts, dtype=torch.int)
|
||||||
|
|
||||||
|
target_ids = input_ids.clone()
|
||||||
|
target_ids[target_ids == tokenizer.pad_token_id] = IGNORE_TOKEN_ID
|
||||||
|
# mask all tokens before token_id 151646 with IGNORE_TOKEN_ID
|
||||||
|
# first get the indices of the tokens
|
||||||
|
mask_prompt = True
|
||||||
|
if mask_prompt:
|
||||||
|
default_speech_token_id = tokenizer.convert_tokens_to_ids(
|
||||||
|
DEFAULT_SPEECH_TOKEN
|
||||||
|
)
|
||||||
|
mask_indices = torch.where(input_ids == default_speech_token_id)
|
||||||
|
for i in range(mask_indices[0].size(0)):
|
||||||
|
row = mask_indices[0][i]
|
||||||
|
col = mask_indices[1][i]
|
||||||
|
# + 6 to skip: 'assistant', '\n' 151665, 151645, 198, 151644, 77091, 198
|
||||||
|
# WAR: TODO FIXME check qwen3
|
||||||
|
target_ids[row, : col + 6] = IGNORE_TOKEN_ID
|
||||||
|
|
||||||
|
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
||||||
|
|
||||||
|
return input_ids, attention_mask, target_ids
|
||||||
|
|
||||||
|
# max_frames = params.max_duration * 1000 // params.frame_shift_ms
|
||||||
|
# allowed_max_frames = int(max_frames * (1.0 + params.allowed_excess_duration_ratio))
|
||||||
|
# batch = filter_uneven_sized_batch(batch, allowed_max_frames)
|
||||||
|
|
||||||
|
device = next(model.parameters()).device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device)
|
||||||
|
feature = feature.transpose(1, 2) # (N, C, T)
|
||||||
|
|
||||||
|
batch_idx_train = params.batch_idx_train
|
||||||
|
|
||||||
|
# WAR: TODO FIXME merge process_batch_slam_omni and process_batch_vocalnet
|
||||||
|
if params.dataset_format == "slam_omni":
|
||||||
|
messages, answer_cosyvoice_speech_token = process_batch_slam_omni(batch)
|
||||||
|
elif params.dataset_format == "vocalnet":
|
||||||
|
messages, answer_cosyvoice_speech_token = process_batch_vocalnet(batch)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown dataset format: {params.dataset_format}")
|
||||||
|
|
||||||
|
print(f"messages: {messages}")
|
||||||
|
|
||||||
|
input_ids, attention_mask, target_ids = preprocess(messages, tokenizer)
|
||||||
|
|
||||||
|
target_ids = target_ids.type(torch.LongTensor)
|
||||||
|
input_ids = input_ids.type(torch.LongTensor)
|
||||||
|
|
||||||
|
with torch.set_grad_enabled(is_training):
|
||||||
|
if not params.enable_speech_output:
|
||||||
|
loss, acc = model(
|
||||||
|
fbank=feature,
|
||||||
|
input_ids=input_ids.to(device),
|
||||||
|
attention_mask=attention_mask.to(device),
|
||||||
|
labels=target_ids.to(device),
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
(
|
||||||
|
text_loss,
|
||||||
|
acc,
|
||||||
|
codec_loss,
|
||||||
|
codec_acc,
|
||||||
|
codec_topk_acc,
|
||||||
|
) = model.forward_with_speech_output(
|
||||||
|
fbank=feature,
|
||||||
|
input_ids=input_ids.to(device),
|
||||||
|
attention_mask=attention_mask.to(device),
|
||||||
|
labels=target_ids.to(device),
|
||||||
|
speech_codec_ids=answer_cosyvoice_speech_token,
|
||||||
|
)
|
||||||
|
loss = text_loss + codec_loss
|
||||||
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
|
info = MetricsTracker()
|
||||||
|
with warnings.catch_warnings():
|
||||||
|
warnings.simplefilter("ignore")
|
||||||
|
feature_lens = batch["supervisions"]["num_frames"]
|
||||||
|
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
||||||
|
|
||||||
|
# Note: We use reduction=sum while computing the loss.
|
||||||
|
info["loss"] = loss.detach().cpu().item()
|
||||||
|
info["acc"] = (
|
||||||
|
acc * info["frames"]
|
||||||
|
) # WAR: to avoid normalization by the number of frames
|
||||||
|
if params.enable_speech_output:
|
||||||
|
info["codec_acc"] = codec_acc * info["frames"]
|
||||||
|
info["codec_topk_acc"] = codec_topk_acc * info["frames"]
|
||||||
|
info["codec_loss"] = codec_loss.detach().cpu().item()
|
||||||
|
info["text_loss"] = text_loss.detach().cpu().item()
|
||||||
|
return loss, info
|
||||||
|
|
||||||
|
|
||||||
|
def compute_validation_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
tokenizer: whisper.tokenizer.Tokenizer,
|
||||||
|
model: nn.Module,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> MetricsTracker:
|
||||||
|
"""Run the validation process."""
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
tot_loss = MetricsTracker()
|
||||||
|
|
||||||
|
for batch_idx, batch in enumerate(valid_dl):
|
||||||
|
with torch.amp.autocast("cuda", enabled=params.use_fp16):
|
||||||
|
loss, loss_info = compute_loss(
|
||||||
|
params=params,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
is_training=False,
|
||||||
|
)
|
||||||
|
assert loss.requires_grad is False
|
||||||
|
tot_loss = tot_loss + loss_info
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
tot_loss.reduce(loss.device)
|
||||||
|
|
||||||
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||||
|
if loss_value < params.best_valid_loss:
|
||||||
|
params.best_valid_epoch = params.cur_epoch
|
||||||
|
params.best_valid_loss = loss_value
|
||||||
|
exit()
|
||||||
|
return tot_loss
|
||||||
|
|
||||||
|
|
||||||
|
def train_one_epoch(
|
||||||
|
params: AttributeDict,
|
||||||
|
tokenizer: AutoTokenizer,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
scheduler: torch.optim.lr_scheduler,
|
||||||
|
train_dl: torch.utils.data.DataLoader,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
tb_writer: Optional[SummaryWriter] = None,
|
||||||
|
world_size: int = 1,
|
||||||
|
rank: int = 0,
|
||||||
|
) -> None:
|
||||||
|
"""Train the model for one epoch.
|
||||||
|
|
||||||
|
The training loss from the mean of all frames is saved in
|
||||||
|
`params.train_loss`. It runs the validation process every
|
||||||
|
`params.valid_interval` batches.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training.
|
||||||
|
optimizer:
|
||||||
|
The optimizer we are using.
|
||||||
|
scheduler:
|
||||||
|
The learning rate scheduler, we call step() every step.
|
||||||
|
train_dl:
|
||||||
|
Dataloader for the training dataset.
|
||||||
|
valid_dl:
|
||||||
|
Dataloader for the validation dataset.
|
||||||
|
scaler:
|
||||||
|
The scaler used for mix precision training.
|
||||||
|
model_avg:
|
||||||
|
The stored model averaged from the start of training.
|
||||||
|
tb_writer:
|
||||||
|
Writer to write log messages to tensorboard.
|
||||||
|
world_size:
|
||||||
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||||
|
rank:
|
||||||
|
The rank of the node in DDP training. If no DDP is used, it should
|
||||||
|
be set to 0.
|
||||||
|
"""
|
||||||
|
model.encoder_projector.train()
|
||||||
|
|
||||||
|
tot_loss = MetricsTracker()
|
||||||
|
|
||||||
|
for batch_idx, batch in enumerate(train_dl):
|
||||||
|
params.batch_idx_train += 1
|
||||||
|
batch_size = len(batch["supervisions"]["text"])
|
||||||
|
if batch_idx % params.valid_interval == 0:
|
||||||
|
logging.info("Computing validation loss")
|
||||||
|
valid_info = compute_validation_loss(
|
||||||
|
params=params,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
model=model,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
model.train()
|
||||||
|
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||||
|
logging.info(
|
||||||
|
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
||||||
|
)
|
||||||
|
if tb_writer is not None:
|
||||||
|
valid_info.write_summary(
|
||||||
|
tb_writer, "train/valid_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
if batch_idx != 0:
|
||||||
|
model.save_checkpoint(
|
||||||
|
save_dir=params.exp_dir,
|
||||||
|
tag=f"epoch-{params.cur_epoch}-checkpoint-{batch_idx}",
|
||||||
|
client_state={},
|
||||||
|
exclude_frozen_parameters=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
if rank == 0:
|
||||||
|
convert_zero_checkpoint_to_fp32_state_dict(
|
||||||
|
params.exp_dir,
|
||||||
|
f"{params.exp_dir}/epoch-{params.cur_epoch}-checkpoint-{batch_idx}.pt",
|
||||||
|
tag=f"epoch-{params.cur_epoch}-checkpoint-{batch_idx}",
|
||||||
|
exclude_frozen_parameters=True,
|
||||||
|
)
|
||||||
|
# save sampler state dict into checkpoint
|
||||||
|
sampler_state_dict = train_dl.sampler.state_dict()
|
||||||
|
torch.save(
|
||||||
|
sampler_state_dict,
|
||||||
|
f"{params.exp_dir}/epoch-{params.cur_epoch}-checkpoint-{batch_idx}-sampler.pt",
|
||||||
|
)
|
||||||
|
os.system(
|
||||||
|
f"rm -rf {params.exp_dir}/epoch-{params.cur_epoch}-checkpoint-{batch_idx}"
|
||||||
|
)
|
||||||
|
try:
|
||||||
|
with torch.amp.autocast("cuda", enabled=params.use_fp16):
|
||||||
|
loss, loss_info = compute_loss(
|
||||||
|
params=params,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
is_training=True,
|
||||||
|
)
|
||||||
|
# summary stats
|
||||||
|
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||||
|
|
||||||
|
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||||
|
# in the batch and there is no normalization to it so far.
|
||||||
|
|
||||||
|
# deepspeed's backward() is different from torch's backward()
|
||||||
|
# in that it does not accept a loss tensor as input.
|
||||||
|
# It computes the loss internally.
|
||||||
|
model.backward(loss)
|
||||||
|
model.step()
|
||||||
|
|
||||||
|
except: # noqa
|
||||||
|
display_and_save_batch(batch, params=params)
|
||||||
|
raise
|
||||||
|
|
||||||
|
if batch_idx % params.log_interval == 0:
|
||||||
|
try:
|
||||||
|
cur_lr = scheduler.get_last_lr()[0]
|
||||||
|
except: # noqa
|
||||||
|
cur_lr = 0.0
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
f"Epoch {params.cur_epoch}, "
|
||||||
|
f"batch {batch_idx}, loss[{loss_info}], "
|
||||||
|
f"tot_loss[{tot_loss}], batch size: {batch_size}, "
|
||||||
|
f"lr: {cur_lr:.2e}, "
|
||||||
|
)
|
||||||
|
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/learning_rate", cur_lr, params.batch_idx_train
|
||||||
|
)
|
||||||
|
|
||||||
|
loss_info.write_summary(
|
||||||
|
tb_writer, "train/current_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||||
|
|
||||||
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||||
|
params.train_loss = loss_value
|
||||||
|
if params.train_loss < params.best_train_loss:
|
||||||
|
params.best_train_epoch = params.cur_epoch
|
||||||
|
params.best_train_loss = params.train_loss
|
||||||
|
|
||||||
|
|
||||||
|
def run(rank, world_size, args):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
rank:
|
||||||
|
It is a value between 0 and `world_size-1`, which is
|
||||||
|
passed automatically by `mp.spawn()` in :func:`main`.
|
||||||
|
The node with rank 0 is responsible for saving checkpoint.
|
||||||
|
world_size:
|
||||||
|
Number of GPUs for DDP training.
|
||||||
|
args:
|
||||||
|
The return value of get_parser().parse_args()
|
||||||
|
"""
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
fix_random_seed(params.seed)
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
|
||||||
|
replace_whisper_encoder_forward()
|
||||||
|
whisper_model = whisper.load_model(params.speech_encoder_path_or_name, "cpu")
|
||||||
|
speech_encoder = whisper_model.encoder
|
||||||
|
speech_encoder_dim = whisper_model.dims.n_audio_state
|
||||||
|
for name, param in speech_encoder.named_parameters():
|
||||||
|
param.requires_grad = False
|
||||||
|
speech_encoder.eval()
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(params.llm_path_or_name)
|
||||||
|
|
||||||
|
if params.use_flash_attn:
|
||||||
|
attn_implementation = "flash_attention_2"
|
||||||
|
torch_dtype = torch.float16
|
||||||
|
tokenizer.padding_side = "left"
|
||||||
|
|
||||||
|
else:
|
||||||
|
attn_implementation = "eager"
|
||||||
|
torch_dtype = torch.float16
|
||||||
|
tokenizer.padding_side = "right"
|
||||||
|
|
||||||
|
llm = AutoModelForCausalLM.from_pretrained(
|
||||||
|
params.llm_path_or_name,
|
||||||
|
attn_implementation=attn_implementation,
|
||||||
|
torch_dtype=torch_dtype,
|
||||||
|
)
|
||||||
|
|
||||||
|
if not params.unfreeze_llm:
|
||||||
|
for name, param in llm.named_parameters():
|
||||||
|
param.requires_grad = False
|
||||||
|
llm.eval()
|
||||||
|
else:
|
||||||
|
if params.use_lora:
|
||||||
|
lora_config = LoraConfig(
|
||||||
|
r=64,
|
||||||
|
lora_alpha=16,
|
||||||
|
target_modules=[
|
||||||
|
"q_proj",
|
||||||
|
"k_proj",
|
||||||
|
"v_proj",
|
||||||
|
"o_proj",
|
||||||
|
"up_proj",
|
||||||
|
"gate_proj",
|
||||||
|
"down_proj",
|
||||||
|
],
|
||||||
|
lora_dropout=0.05,
|
||||||
|
task_type="CAUSAL_LM",
|
||||||
|
)
|
||||||
|
llm = get_peft_model(llm, lora_config)
|
||||||
|
llm.print_trainable_parameters()
|
||||||
|
|
||||||
|
special_tokens_dict = {"additional_special_tokens": [DEFAULT_SPEECH_TOKEN]}
|
||||||
|
tokenizer.add_special_tokens(special_tokens_dict)
|
||||||
|
|
||||||
|
llm.config.pad_token_id = tokenizer.pad_token_id
|
||||||
|
llm.config.default_speech_token_id = tokenizer.convert_tokens_to_ids(
|
||||||
|
DEFAULT_SPEECH_TOKEN
|
||||||
|
)
|
||||||
|
|
||||||
|
encoder_projector = EncoderProjector(
|
||||||
|
speech_encoder_dim, llm.config.hidden_size, params.encoder_projector_ds_rate
|
||||||
|
)
|
||||||
|
if not params.unfreeze_speech_projector:
|
||||||
|
for name, param in encoder_projector.named_parameters():
|
||||||
|
param.requires_grad = False
|
||||||
|
encoder_projector.eval()
|
||||||
|
|
||||||
|
if params.enable_speech_output:
|
||||||
|
# Determine attn_implementation and torch_dtype based on use_flash_attn
|
||||||
|
if params.use_flash_attn:
|
||||||
|
attn_implementation = "flash_attention_2"
|
||||||
|
torch_dtype = torch.float16 # Or torch.bfloat16 if needed/supported
|
||||||
|
else:
|
||||||
|
attn_implementation = "eager"
|
||||||
|
torch_dtype = torch.float16
|
||||||
|
if params.dataset_format == "slam_omni":
|
||||||
|
codec_vocab_size = 4096 + 4
|
||||||
|
elif params.dataset_format == "vocalnet":
|
||||||
|
codec_vocab_size = 6561 + 4
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown dataset format: {params.dataset_format}")
|
||||||
|
# TODO: modify above vocab size or supress_tokens when decoding
|
||||||
|
config = Qwen2Config(
|
||||||
|
vocab_size=codec_vocab_size,
|
||||||
|
hidden_size=1024,
|
||||||
|
num_hidden_layers=12,
|
||||||
|
num_attention_heads=16,
|
||||||
|
num_key_value_heads=16,
|
||||||
|
intermediate_size=2048,
|
||||||
|
max_position_embeddings=4096,
|
||||||
|
)
|
||||||
|
|
||||||
|
codec_lm = AutoModelForCausalLM.from_config(
|
||||||
|
config=config,
|
||||||
|
attn_implementation=attn_implementation,
|
||||||
|
torch_dtype=torch_dtype,
|
||||||
|
)
|
||||||
|
|
||||||
|
codec_lm.resize_token_embeddings(codec_vocab_size)
|
||||||
|
codec_lm.vocab_size = codec_vocab_size
|
||||||
|
codec_lm.config.pad_token_id = codec_vocab_size - 1
|
||||||
|
codec_lm.config.eos_token_id = codec_vocab_size - 2
|
||||||
|
codec_lm.config.bos_token_id = codec_vocab_size - 3
|
||||||
|
codec_lm.config.mask_token_id = codec_vocab_size - 4
|
||||||
|
else:
|
||||||
|
codec_lm = None
|
||||||
|
|
||||||
|
model = SPEECH_LLM(
|
||||||
|
speech_encoder,
|
||||||
|
llm,
|
||||||
|
encoder_projector,
|
||||||
|
codec_lm,
|
||||||
|
codec_lm_padding_side="left" if params.use_flash_attn else "right",
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.pretrained_model_path:
|
||||||
|
checkpoint = torch.load(params.pretrained_model_path, map_location="cpu")
|
||||||
|
missing_keys, unexpected_keys = model.load_state_dict(checkpoint, strict=False)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
logging.info("Trainable parameters (excluding model.eval modules):")
|
||||||
|
for name, param in model.named_parameters():
|
||||||
|
if param.requires_grad:
|
||||||
|
logging.info(f"{name}: {param.shape}")
|
||||||
|
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", rank)
|
||||||
|
else:
|
||||||
|
device = torch.device("cpu")
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
assert params.deepspeed and world_size > 1
|
||||||
|
logging.info("Using DeepSpeed")
|
||||||
|
model, optimizer, _, scheduler = deepspeed.initialize(
|
||||||
|
args=params, model=model, model_parameters=model.parameters()
|
||||||
|
)
|
||||||
|
|
||||||
|
data_module = AsrDataModule(args)
|
||||||
|
|
||||||
|
def remove_short_and_long_utt(c: Cut):
|
||||||
|
# Keep only utterances with duration between 1 second and 20 seconds
|
||||||
|
#
|
||||||
|
# Caution: There is a reason to select 20.0 here. Please see
|
||||||
|
# ../local/display_manifest_statistics.py
|
||||||
|
#
|
||||||
|
# You should use ../local/display_manifest_statistics.py to get
|
||||||
|
# an utterance duration distribution for your dataset to select
|
||||||
|
# the threshold
|
||||||
|
if c.duration < 1.0 or c.duration > 30.0:
|
||||||
|
# logging.warning(
|
||||||
|
# f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
||||||
|
# )
|
||||||
|
return False
|
||||||
|
codec_len = (
|
||||||
|
len(c.custom["answer_cosyvoice_speech_token"])
|
||||||
|
if "answer_cosyvoice_speech_token" in c.custom
|
||||||
|
else len(c.custom["speech_token"])
|
||||||
|
)
|
||||||
|
if codec_len > 2200:
|
||||||
|
logging.warning(
|
||||||
|
f"Exclude cut with ID {c.id} from training. Duration: {c.duration}, lenth: {codec_len}"
|
||||||
|
)
|
||||||
|
return False
|
||||||
|
return True
|
||||||
|
|
||||||
|
if params.dataset_format == "slam_omni":
|
||||||
|
train_cuts = data_module.train_cuts()
|
||||||
|
valid_cuts = data_module.dev_cuts()
|
||||||
|
elif params.dataset_format == "vocalnet":
|
||||||
|
train_cuts = data_module.train_cuts_en_vocalnet()
|
||||||
|
valid_cuts = data_module.valid_cuts_en_vocalnet()
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown dataset format: {params.dataset_format}")
|
||||||
|
|
||||||
|
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||||
|
valid_cuts = valid_cuts.filter(remove_short_and_long_utt)
|
||||||
|
|
||||||
|
sampler_state_dict = None
|
||||||
|
if params.sampler_state_dict_path:
|
||||||
|
sampler_state_dict = torch.load(params.sampler_state_dict_path)
|
||||||
|
sampler_state_dict["max_duration"] = params.max_duration
|
||||||
|
|
||||||
|
train_dl = data_module.train_dataloaders(
|
||||||
|
train_cuts, sampler_state_dict=sampler_state_dict
|
||||||
|
)
|
||||||
|
|
||||||
|
valid_dl = data_module.valid_dataloaders(valid_cuts)
|
||||||
|
|
||||||
|
if args.tensorboard and rank == 0:
|
||||||
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||||
|
else:
|
||||||
|
tb_writer = None
|
||||||
|
|
||||||
|
logging.info(f"start training from epoch {params.start_epoch}")
|
||||||
|
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
||||||
|
|
||||||
|
fix_random_seed(params.seed + epoch - 1)
|
||||||
|
train_dl.sampler.set_epoch(epoch - 1)
|
||||||
|
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||||
|
|
||||||
|
params.cur_epoch = epoch
|
||||||
|
|
||||||
|
train_one_epoch(
|
||||||
|
params=params,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
train_dl=train_dl,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
tb_writer=tb_writer,
|
||||||
|
world_size=world_size,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
model.save_checkpoint(
|
||||||
|
save_dir=params.exp_dir,
|
||||||
|
tag=f"epoch-{params.cur_epoch}",
|
||||||
|
client_state={},
|
||||||
|
exclude_frozen_parameters=True,
|
||||||
|
)
|
||||||
|
if rank == 0:
|
||||||
|
convert_zero_checkpoint_to_fp32_state_dict(
|
||||||
|
params.exp_dir,
|
||||||
|
f"{params.exp_dir}/epoch-{params.cur_epoch}.pt",
|
||||||
|
tag=f"epoch-{params.cur_epoch}",
|
||||||
|
exclude_frozen_parameters=True,
|
||||||
|
)
|
||||||
|
# save sampler state dict into checkpoint
|
||||||
|
sampler_state_dict = train_dl.sampler.state_dict()
|
||||||
|
torch.save(
|
||||||
|
sampler_state_dict,
|
||||||
|
f"{params.exp_dir}/epoch-{params.cur_epoch}-sampler.pt",
|
||||||
|
)
|
||||||
|
|
||||||
|
os.system(f"rm -rf {params.exp_dir}/epoch-{params.cur_epoch}")
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
def display_and_save_batch(
|
||||||
|
batch: dict,
|
||||||
|
params: AttributeDict,
|
||||||
|
) -> None:
|
||||||
|
"""Display the batch statistics and save the batch into disk.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
batch:
|
||||||
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||||
|
for the content in it.
|
||||||
|
params:
|
||||||
|
Parameters for training. See :func:`get_params`.
|
||||||
|
"""
|
||||||
|
from lhotse.utils import uuid4
|
||||||
|
|
||||||
|
filename = f"{params.exp_dir}/batch-{uuid4()}.pt"
|
||||||
|
logging.info(f"Saving batch to {filename}")
|
||||||
|
torch.save(batch, filename)
|
||||||
|
|
||||||
|
features = batch["inputs"]
|
||||||
|
|
||||||
|
logging.info(f"features shape: {features.shape}")
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
AsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
world_size = get_world_size()
|
||||||
|
rank = get_rank()
|
||||||
|
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
run(rank=rank, world_size=world_size, args=args)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Loading…
x
Reference in New Issue
Block a user