mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-07 08:04:18 +00:00
Add modified beam search for pruned rnn-t.
This commit is contained in:
parent
ad62981765
commit
bd033de8bc
@ -48,7 +48,7 @@ def greedy_search(
|
|||||||
device = model.device
|
device = model.device
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
decoder_input = torch.tensor(
|
||||||
[blank_id] * context_size, device=device
|
[blank_id] * context_size, device=device, dtype=torch.int64
|
||||||
).reshape(1, context_size)
|
).reshape(1, context_size)
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
@ -103,8 +103,9 @@ class Hypothesis:
|
|||||||
# Newly predicted tokens are appended to `ys`.
|
# Newly predicted tokens are appended to `ys`.
|
||||||
ys: List[int]
|
ys: List[int]
|
||||||
|
|
||||||
# The log prob of ys
|
# The log prob of ys.
|
||||||
log_prob: float
|
# It contains only one entry.
|
||||||
|
log_prob: torch.Tensor
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def key(self) -> str:
|
def key(self) -> str:
|
||||||
@ -113,7 +114,7 @@ class Hypothesis:
|
|||||||
|
|
||||||
|
|
||||||
class HypothesisList(object):
|
class HypothesisList(object):
|
||||||
def __init__(self, data: Optional[Dict[str, Hypothesis]] = None):
|
def __init__(self, data: Optional[Dict[str, Hypothesis]] = None) -> None:
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
data:
|
data:
|
||||||
@ -125,10 +126,10 @@ class HypothesisList(object):
|
|||||||
self._data = data
|
self._data = data
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def data(self):
|
def data(self) -> Dict[str, Hypothesis]:
|
||||||
return self._data
|
return self._data
|
||||||
|
|
||||||
def add(self, hyp: Hypothesis):
|
def add(self, hyp: Hypothesis) -> None:
|
||||||
"""Add a Hypothesis to `self`.
|
"""Add a Hypothesis to `self`.
|
||||||
|
|
||||||
If `hyp` already exists in `self`, its probability is updated using
|
If `hyp` already exists in `self`, its probability is updated using
|
||||||
@ -140,8 +141,10 @@ class HypothesisList(object):
|
|||||||
"""
|
"""
|
||||||
key = hyp.key
|
key = hyp.key
|
||||||
if key in self:
|
if key in self:
|
||||||
old_hyp = self._data[key]
|
old_hyp = self._data[key] # shallow copy
|
||||||
old_hyp.log_prob = np.logaddexp(old_hyp.log_prob, hyp.log_prob)
|
torch.logaddexp(
|
||||||
|
old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
self._data[key] = hyp
|
self._data[key] = hyp
|
||||||
|
|
||||||
@ -153,7 +156,8 @@ class HypothesisList(object):
|
|||||||
length_norm:
|
length_norm:
|
||||||
If True, the `log_prob` of a hypothesis is normalized by the
|
If True, the `log_prob` of a hypothesis is normalized by the
|
||||||
number of tokens in it.
|
number of tokens in it.
|
||||||
|
Returns:
|
||||||
|
Return the hypothesis that has the largest `log_prob`.
|
||||||
"""
|
"""
|
||||||
if length_norm:
|
if length_norm:
|
||||||
return max(
|
return max(
|
||||||
@ -165,6 +169,9 @@ class HypothesisList(object):
|
|||||||
def remove(self, hyp: Hypothesis) -> None:
|
def remove(self, hyp: Hypothesis) -> None:
|
||||||
"""Remove a given hypothesis.
|
"""Remove a given hypothesis.
|
||||||
|
|
||||||
|
Caution:
|
||||||
|
`self` is modified **in-place**.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
hyp:
|
hyp:
|
||||||
The hypothesis to be removed from `self`.
|
The hypothesis to be removed from `self`.
|
||||||
@ -175,7 +182,7 @@ class HypothesisList(object):
|
|||||||
assert key in self, f"{key} does not exist"
|
assert key in self, f"{key} does not exist"
|
||||||
del self._data[key]
|
del self._data[key]
|
||||||
|
|
||||||
def filter(self, threshold: float) -> "HypothesisList":
|
def filter(self, threshold: torch.Tensor) -> "HypothesisList":
|
||||||
"""Remove all Hypotheses whose log_prob is less than threshold.
|
"""Remove all Hypotheses whose log_prob is less than threshold.
|
||||||
|
|
||||||
Caution:
|
Caution:
|
||||||
@ -183,10 +190,10 @@ class HypothesisList(object):
|
|||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Return a new HypothesisList containing all hypotheses from `self`
|
Return a new HypothesisList containing all hypotheses from `self`
|
||||||
that have `log_prob` being greater than the given `threshold`.
|
with `log_prob` being greater than the given `threshold`.
|
||||||
"""
|
"""
|
||||||
ans = HypothesisList()
|
ans = HypothesisList()
|
||||||
for key, hyp in self._data.items():
|
for _, hyp in self._data.items():
|
||||||
if hyp.log_prob > threshold:
|
if hyp.log_prob > threshold:
|
||||||
ans.add(hyp) # shallow copy
|
ans.add(hyp) # shallow copy
|
||||||
return ans
|
return ans
|
||||||
@ -216,6 +223,106 @@ class HypothesisList(object):
|
|||||||
return ", ".join(s)
|
return ", ".join(s)
|
||||||
|
|
||||||
|
|
||||||
|
def modified_beam_search(
|
||||||
|
model: Transducer,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
beam: int = 4,
|
||||||
|
) -> List[int]:
|
||||||
|
"""It limits the maximum number of symbols per frame to 1.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
An instance of `Transducer`.
|
||||||
|
encoder_out:
|
||||||
|
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
||||||
|
beam:
|
||||||
|
Beam size.
|
||||||
|
Returns:
|
||||||
|
Return the decoded result.
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
|
||||||
|
# support only batch_size == 1 for now
|
||||||
|
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
T = encoder_out.size(1)
|
||||||
|
|
||||||
|
B = HypothesisList()
|
||||||
|
B.add(
|
||||||
|
Hypothesis(
|
||||||
|
ys=[blank_id] * context_size,
|
||||||
|
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
for t in range(T):
|
||||||
|
# fmt: off
|
||||||
|
current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2)
|
||||||
|
# current_encoder_out is of shape (1, 1, encoder_out_dim)
|
||||||
|
# fmt: on
|
||||||
|
A = list(B)
|
||||||
|
B = HypothesisList()
|
||||||
|
|
||||||
|
ys_log_probs = torch.cat([hyp.log_prob.reshape(1, 1) for hyp in A])
|
||||||
|
# ys_log_probs is of shape (num_hyps, 1)
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[hyp.ys[-context_size:] for hyp in A],
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
)
|
||||||
|
# decoder_input is of shape (num_hyps, context_size)
|
||||||
|
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
||||||
|
# decoder_output is of shape (num_hyps, 1,1, decoder_output_dim)
|
||||||
|
|
||||||
|
current_encoder_out = current_encoder_out.expand(
|
||||||
|
decoder_out.size(0), 1, 1, -1
|
||||||
|
)
|
||||||
|
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out,
|
||||||
|
decoder_out,
|
||||||
|
)
|
||||||
|
# logits is of shape (num_hyps, 1, 1, vocab_size)
|
||||||
|
logits = logits.squeeze(1).squeeze(1)
|
||||||
|
|
||||||
|
# now logits is of shape (num_hyps, vocab_size)
|
||||||
|
log_probs = logits.log_softmax(dim=-1)
|
||||||
|
|
||||||
|
log_probs.add_(ys_log_probs)
|
||||||
|
|
||||||
|
log_probs = log_probs.reshape(-1)
|
||||||
|
topk_log_probs, topk_indexes = log_probs.topk(beam)
|
||||||
|
|
||||||
|
# topk_hyp_indexes are indexes into `A`
|
||||||
|
topk_hyp_indexes = topk_indexes // logits.size(-1)
|
||||||
|
topk_token_indexes = topk_indexes % logits.size(-1)
|
||||||
|
|
||||||
|
topk_hyp_indexes = topk_hyp_indexes.tolist()
|
||||||
|
topk_token_indexes = topk_token_indexes.tolist()
|
||||||
|
|
||||||
|
for i in range(len(topk_hyp_indexes)):
|
||||||
|
hyp = A[topk_hyp_indexes[i]]
|
||||||
|
new_ys = hyp.ys[:]
|
||||||
|
new_token = topk_token_indexes[i]
|
||||||
|
if new_token != blank_id:
|
||||||
|
new_ys.append(new_token)
|
||||||
|
new_log_prob = topk_log_probs[i]
|
||||||
|
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
||||||
|
B.add(new_hyp)
|
||||||
|
|
||||||
|
best_hyp = B.get_most_probable(length_norm=True)
|
||||||
|
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
|
||||||
|
|
||||||
|
return ys
|
||||||
|
|
||||||
|
|
||||||
def beam_search(
|
def beam_search(
|
||||||
model: Transducer,
|
model: Transducer,
|
||||||
encoder_out: torch.Tensor,
|
encoder_out: torch.Tensor,
|
||||||
@ -246,7 +353,9 @@ def beam_search(
|
|||||||
device = model.device
|
device = model.device
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
decoder_input = torch.tensor(
|
||||||
[blank_id] * context_size, device=device
|
[blank_id] * context_size,
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
).reshape(1, context_size)
|
).reshape(1, context_size)
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
@ -283,7 +392,9 @@ def beam_search(
|
|||||||
|
|
||||||
if cached_key not in decoder_cache:
|
if cached_key not in decoder_cache:
|
||||||
decoder_input = torch.tensor(
|
decoder_input = torch.tensor(
|
||||||
[y_star.ys[-context_size:]], device=device
|
[y_star.ys[-context_size:]],
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
).reshape(1, context_size)
|
).reshape(1, context_size)
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
@ -297,7 +408,7 @@ def beam_search(
|
|||||||
current_encoder_out, decoder_out.unsqueeze(1)
|
current_encoder_out, decoder_out.unsqueeze(1)
|
||||||
)
|
)
|
||||||
|
|
||||||
# TODO(fangjun): Cache the blank posterior
|
# TODO(fangjun): Scale the blank posterior
|
||||||
|
|
||||||
log_prob = logits.log_softmax(dim=-1)
|
log_prob = logits.log_softmax(dim=-1)
|
||||||
# log_prob is (1, 1, 1, vocab_size)
|
# log_prob is (1, 1, 1, vocab_size)
|
||||||
@ -309,7 +420,7 @@ def beam_search(
|
|||||||
|
|
||||||
# First, process the blank symbol
|
# First, process the blank symbol
|
||||||
skip_log_prob = log_prob[blank_id]
|
skip_log_prob = log_prob[blank_id]
|
||||||
new_y_star_log_prob = y_star.log_prob + skip_log_prob.item()
|
new_y_star_log_prob = y_star.log_prob + skip_log_prob
|
||||||
|
|
||||||
# ys[:] returns a copy of ys
|
# ys[:] returns a copy of ys
|
||||||
B.add(Hypothesis(ys=y_star.ys[:], log_prob=new_y_star_log_prob))
|
B.add(Hypothesis(ys=y_star.ys[:], log_prob=new_y_star_log_prob))
|
||||||
|
@ -33,6 +33,15 @@ Usage:
|
|||||||
--max-duration 100 \
|
--max-duration 100 \
|
||||||
--decoding-method beam_search \
|
--decoding-method beam_search \
|
||||||
--beam-size 4
|
--beam-size 4
|
||||||
|
|
||||||
|
(3) modified beam search
|
||||||
|
./pruned_transducer_stateless/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless/exp \
|
||||||
|
--max-duration 100 \
|
||||||
|
--decoding-method modified_beam_search \
|
||||||
|
--beam-size 4
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
@ -46,7 +55,7 @@ import sentencepiece as spm
|
|||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from asr_datamodule import LibriSpeechAsrDataModule
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
from beam_search import beam_search, greedy_search
|
from beam_search import beam_search, greedy_search, modified_beam_search
|
||||||
from conformer import Conformer
|
from conformer import Conformer
|
||||||
from decoder import Decoder
|
from decoder import Decoder
|
||||||
from joiner import Joiner
|
from joiner import Joiner
|
||||||
@ -104,6 +113,7 @@ def get_parser():
|
|||||||
help="""Possible values are:
|
help="""Possible values are:
|
||||||
- greedy_search
|
- greedy_search
|
||||||
- beam_search
|
- beam_search
|
||||||
|
- modified_beam_search
|
||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -111,7 +121,8 @@ def get_parser():
|
|||||||
"--beam-size",
|
"--beam-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=4,
|
default=4,
|
||||||
help="Used only when --decoding-method is beam_search",
|
help="""Used only when --decoding-method is
|
||||||
|
beam_search or modified_beam_search""",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -125,7 +136,8 @@ def get_parser():
|
|||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
type=int,
|
type=int,
|
||||||
default=3,
|
default=3,
|
||||||
help="Maximum number of symbols per frame",
|
help="""Maximum number of symbols per frame.
|
||||||
|
Used only when --decoding_method is greedy_search""",
|
||||||
)
|
)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
@ -258,6 +270,10 @@ def decode_one_batch(
|
|||||||
hyp = beam_search(
|
hyp = beam_search(
|
||||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||||
)
|
)
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
hyp = modified_beam_search(
|
||||||
|
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"Unsupported decoding method: {params.decoding_method}"
|
f"Unsupported decoding method: {params.decoding_method}"
|
||||||
@ -391,11 +407,15 @@ def main():
|
|||||||
params = get_params()
|
params = get_params()
|
||||||
params.update(vars(args))
|
params.update(vars(args))
|
||||||
|
|
||||||
assert params.decoding_method in ("greedy_search", "beam_search")
|
assert params.decoding_method in (
|
||||||
|
"greedy_search",
|
||||||
|
"beam_search",
|
||||||
|
"modified_beam_search",
|
||||||
|
)
|
||||||
params.res_dir = params.exp_dir / params.decoding_method
|
params.res_dir = params.exp_dir / params.decoding_method
|
||||||
|
|
||||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
if params.decoding_method == "beam_search":
|
if "beam_search" in params.decoding_method:
|
||||||
params.suffix += f"-beam-{params.beam_size}"
|
params.suffix += f"-beam-{params.beam_size}"
|
||||||
else:
|
else:
|
||||||
params.suffix += f"-context-{params.context_size}"
|
params.suffix += f"-context-{params.context_size}"
|
||||||
|
Loading…
x
Reference in New Issue
Block a user