mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-04 22:54:18 +00:00
Use librispeech + gigaspeech with modified conformer.
This commit is contained in:
parent
337309267b
commit
bbf074a36b
@ -0,0 +1,304 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
# 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from lhotse import CutSet, Fbank, FbankConfig
|
||||
from lhotse.dataset import (
|
||||
BucketingSampler,
|
||||
CutMix,
|
||||
DynamicBucketingSampler,
|
||||
K2SpeechRecognitionDataset,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import (
|
||||
OnTheFlyFeatures,
|
||||
PrecomputedFeatures,
|
||||
)
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class AsrDataModule:
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(
|
||||
title="ASR data related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=200.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the BucketingSampler "
|
||||
"and DynamicBucketingSampler."
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, each batch will have the "
|
||||
"field: batch['supervisions']['cut'] with the cuts that "
|
||||
"were used to construct it.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-spec-aug",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use SpecAugment for training dataset.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--spec-aug-time-warp-factor",
|
||||
type=int,
|
||||
default=80,
|
||||
help="Used only when --enable-spec-aug is True. "
|
||||
"It specifies the factor for time warping in SpecAugment. "
|
||||
"Larger values mean more warping. "
|
||||
"A value less than 1 means to disable time warp.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-musan",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, select noise from MUSAN and mix it"
|
||||
"with training dataset. ",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--manifest-dir",
|
||||
type=Path,
|
||||
default=Path("data/fbank"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available. Used only in dev/test CutSet",
|
||||
)
|
||||
|
||||
def train_dataloaders(
|
||||
self,
|
||||
cuts_train: CutSet,
|
||||
dynamic_bucketing: bool,
|
||||
on_the_fly_feats: bool,
|
||||
cuts_musan: Optional[CutSet] = None,
|
||||
) -> DataLoader:
|
||||
"""
|
||||
Args:
|
||||
cuts_train:
|
||||
Cuts for training.
|
||||
cuts_musan:
|
||||
If not None, it is the cuts for mixing.
|
||||
dynamic_bucketing:
|
||||
True to use DynamicBucketingSampler;
|
||||
False to use BucketingSampler.
|
||||
on_the_fly_feats:
|
||||
True to use OnTheFlyFeatures;
|
||||
False to use PrecomputedFeatures.
|
||||
"""
|
||||
transforms = []
|
||||
if cuts_musan is not None:
|
||||
logging.info("Enable MUSAN")
|
||||
transforms.append(
|
||||
CutMix(
|
||||
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
|
||||
)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
||||
input_transforms = []
|
||||
|
||||
if self.args.enable_spec_aug:
|
||||
logging.info("Enable SpecAugment")
|
||||
logging.info(
|
||||
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
||||
)
|
||||
input_transforms.append(
|
||||
SpecAugment(
|
||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||
num_frame_masks=2,
|
||||
features_mask_size=27,
|
||||
num_feature_masks=2,
|
||||
frames_mask_size=100,
|
||||
)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable SpecAugment")
|
||||
|
||||
logging.info("About to create train dataset")
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
# NOTE: the PerturbSpeed transform should be added only if we
|
||||
# remove it from data prep stage.
|
||||
# Add on-the-fly speed perturbation; since originally it would
|
||||
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||
# 3x more epochs.
|
||||
# Speed perturbation probably should come first before
|
||||
# concatenation, but in principle the transforms order doesn't have
|
||||
# to be strict (e.g. could be randomized)
|
||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||
# Drop feats to be on the safe side.
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=(
|
||||
OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||
if on_the_fly_feats
|
||||
else PrecomputedFeatures()
|
||||
),
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if dynamic_bucketing:
|
||||
logging.info("Using DynamicBucketingSampler.")
|
||||
train_sampler = DynamicBucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
drop_last=True,
|
||||
)
|
||||
else:
|
||||
logging.info("Using BucketingSampler.")
|
||||
train_sampler = BucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
bucket_method="equal_duration",
|
||||
drop_last=True,
|
||||
)
|
||||
|
||||
logging.info("About to create train dataloader")
|
||||
train_dl = DataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
)
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||
transforms = []
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
valid_sampler = BucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||
logging.debug("About to create test dataset")
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||
if self.args.on_the_fly_feats
|
||||
else PrecomputedFeatures(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = BucketingSampler(
|
||||
cuts, max_duration=self.args.max_duration, shuffle=False
|
||||
)
|
||||
logging.debug("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
test,
|
||||
batch_size=None,
|
||||
sampler=sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
)
|
||||
return test_dl
|
@ -0,0 +1,75 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
# 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
from lhotse import CutSet, load_manifest
|
||||
|
||||
|
||||
class GigaSpeech:
|
||||
def __init__(self, manifest_dir: str):
|
||||
"""
|
||||
Args:
|
||||
manifest_dir:
|
||||
It is expected to contain the following files::
|
||||
|
||||
- cuts_XL_raw.jsonl.gz
|
||||
- cuts_L_raw.jsonl.gz
|
||||
- cuts_M_raw.jsonl.gz
|
||||
- cuts_S_raw.jsonl.gz
|
||||
- cuts_XS_raw.jsonl.gz
|
||||
- cuts_DEV_raw.jsonl.gz
|
||||
- cuts_TEST_raw.jsonl.gz
|
||||
"""
|
||||
self.manifest_dir = Path(manifest_dir)
|
||||
|
||||
def train_XL_cuts(self) -> CutSet:
|
||||
f = self.manifest_dir / "cuts_XL_raw.jsonl.gz"
|
||||
logging.info(f"About to get train-XL cuts from {f}")
|
||||
return CutSet.from_jsonl_lazy(f)
|
||||
|
||||
def train_L_cuts(self) -> CutSet:
|
||||
f = self.manifest_dir / "cuts_L_raw.jsonl.gz"
|
||||
logging.info(f"About to get train-L cuts from {f}")
|
||||
return CutSet.from_jsonl_lazy(f)
|
||||
|
||||
def train_M_cuts(self) -> CutSet:
|
||||
f = self.manifest_dir / "cuts_M_raw.jsonl.gz"
|
||||
logging.info(f"About to get train-M cuts from {f}")
|
||||
return CutSet.from_jsonl_lazy(f)
|
||||
|
||||
def train_S_cuts(self) -> CutSet:
|
||||
f = self.manifest_dir / "cuts_S_raw.jsonl.gz"
|
||||
logging.info(f"About to get train-S cuts from {f}")
|
||||
return CutSet.from_jsonl_lazy(f)
|
||||
|
||||
def train_XS_cuts(self) -> CutSet:
|
||||
f = self.manifest_dir / "cuts_XS_raw.jsonl.gz"
|
||||
logging.info(f"About to get train-XS cuts from {f}")
|
||||
return CutSet.from_jsonl_lazy(f)
|
||||
|
||||
def test_cuts(self) -> CutSet:
|
||||
f = self.manifest_dir / "cuts_TEST.jsonl.gz"
|
||||
logging.info(f"About to get TEST cuts from {f}")
|
||||
return load_manifest(f)
|
||||
|
||||
def dev_cuts(self) -> CutSet:
|
||||
f = self.manifest_dir / "cuts_DEV.jsonl.gz"
|
||||
logging.info(f"About to get DEV cuts from {f}")
|
||||
return load_manifest(f)
|
@ -0,0 +1,74 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
# 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
from lhotse import CutSet, load_manifest
|
||||
|
||||
|
||||
class LibriSpeech:
|
||||
def __init__(self, manifest_dir: str):
|
||||
"""
|
||||
Args:
|
||||
manifest_dir:
|
||||
It is expected to contain the following files::
|
||||
|
||||
- cuts_dev-clean.json.gz
|
||||
- cuts_dev-other.json.gz
|
||||
- cuts_test-clean.json.gz
|
||||
- cuts_test-other.json.gz
|
||||
- cuts_train-clean-100.json.gz
|
||||
- cuts_train-clean-360.json.gz
|
||||
- cuts_train-other-500.json.gz
|
||||
"""
|
||||
self.manifest_dir = Path(manifest_dir)
|
||||
|
||||
def train_clean_100_cuts(self) -> CutSet:
|
||||
f = self.manifest_dir / "cuts_train-clean-100.json.gz"
|
||||
logging.info(f"About to get train-clean-100 cuts from {f}")
|
||||
return load_manifest(f)
|
||||
|
||||
def train_clean_360_cuts(self) -> CutSet:
|
||||
f = self.manifest_dir / "cuts_train-clean-360.json.gz"
|
||||
logging.info(f"About to get train-clean-360 cuts from {f}")
|
||||
return load_manifest(f)
|
||||
|
||||
def train_other_500_cuts(self) -> CutSet:
|
||||
f = self.manifest_dir / "cuts_train-other-500.json.gz"
|
||||
logging.info(f"About to get train-other-500 cuts from {f}")
|
||||
return load_manifest(f)
|
||||
|
||||
def test_clean_cuts(self) -> CutSet:
|
||||
f = self.manifest_dir / "cuts_test-clean.json.gz"
|
||||
logging.info(f"About to get test-clean cuts from {f}")
|
||||
return load_manifest(f)
|
||||
|
||||
def test_other_cuts(self) -> CutSet:
|
||||
f = self.manifest_dir / "cuts_test-other.json.gz"
|
||||
logging.info(f"About to get test-other cuts from {f}")
|
||||
return load_manifest(f)
|
||||
|
||||
def dev_clean_cuts(self) -> CutSet:
|
||||
f = self.manifest_dir / "cuts_dev-clean.json.gz"
|
||||
logging.info(f"About to get dev-clean cuts from {f}")
|
||||
return load_manifest(f)
|
||||
|
||||
def dev_other_cuts(self) -> CutSet:
|
||||
f = self.manifest_dir / "cuts_dev-other.json.gz"
|
||||
logging.info(f"About to get dev-other cuts from {f}")
|
||||
return load_manifest(f)
|
@ -15,6 +15,8 @@
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import Optional
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@ -38,6 +40,8 @@ class Transducer(nn.Module):
|
||||
decoder_dim: int,
|
||||
joiner_dim: int,
|
||||
vocab_size: int,
|
||||
decoder_giga: Optional[nn.Module] = None,
|
||||
joiner_giga: Optional[nn.Module] = None,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
@ -51,11 +55,25 @@ class Transducer(nn.Module):
|
||||
is (N, U) and its output shape is (N, U, decoder_dim).
|
||||
It should contain one attribute: `blank_id`.
|
||||
joiner:
|
||||
It has two inputs with shapes: (N, T, encoder_dim) and (N, U, decoder_dim).
|
||||
Its output shape is (N, T, U, vocab_size). Note that its output contains
|
||||
It has two inputs with shapes: (N, T, encoder_dim) and
|
||||
(N, U, decoder_dim). Its output shape is (N, T, U, vocab_size).
|
||||
Note that its output contains
|
||||
unnormalized probs, i.e., not processed by log-softmax.
|
||||
encoder_dim:
|
||||
Output dimension of the encoder network.
|
||||
decoder_dim:
|
||||
Output dimension of the decoder network.
|
||||
joiner_dim:
|
||||
Input dimension of the joiner network.
|
||||
vocab_size:
|
||||
Output dimension of the joiner network.
|
||||
decoder_giga:
|
||||
Optional. The decoder network for the GigaSpeech dataset.
|
||||
joiner_giga:
|
||||
Optional. The joiner network for the GigaSpeech dataset.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
assert isinstance(encoder, EncoderInterface), type(encoder)
|
||||
assert hasattr(decoder, "blank_id")
|
||||
|
||||
@ -63,16 +81,26 @@ class Transducer(nn.Module):
|
||||
self.decoder = decoder
|
||||
self.joiner = joiner
|
||||
|
||||
self.decoder_giga = decoder_giga
|
||||
self.joiner_giga = joiner_giga
|
||||
|
||||
self.simple_am_proj = ScaledLinear(
|
||||
encoder_dim, vocab_size, initial_speed=0.5
|
||||
)
|
||||
self.simple_lm_proj = ScaledLinear(decoder_dim, vocab_size)
|
||||
|
||||
if decoder_giga is not None:
|
||||
self.simple_am_proj_giga = ScaledLinear(
|
||||
encoder_dim, vocab_size, initial_speed=0.5
|
||||
)
|
||||
self.simple_lm_proj_giga = ScaledLinear(decoder_dim, vocab_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
y: k2.RaggedTensor,
|
||||
libri: bool = True,
|
||||
prune_range: int = 5,
|
||||
am_scale: float = 0.0,
|
||||
lm_scale: float = 0.0,
|
||||
@ -88,6 +116,9 @@ class Transducer(nn.Module):
|
||||
y:
|
||||
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
||||
utterance.
|
||||
libri:
|
||||
True to use the decoder and joiner for the LibriSpeech dataset.
|
||||
False to use the decoder and joiner for the GigaSpeech dataset.
|
||||
prune_range:
|
||||
The prune range for rnnt loss, it means how many symbols(context)
|
||||
we are considering for each frame to compute the loss.
|
||||
@ -115,21 +146,32 @@ class Transducer(nn.Module):
|
||||
|
||||
assert x.size(0) == x_lens.size(0) == y.dim0
|
||||
|
||||
encoder_out, x_lens = self.encoder(x, x_lens, warmup=warmup)
|
||||
assert torch.all(x_lens > 0)
|
||||
encoder_out, encoder_out_lens = self.encoder(x, x_lens, warmup=warmup)
|
||||
assert torch.all(encoder_out_lens > 0)
|
||||
|
||||
if libri:
|
||||
decoder = self.decoder
|
||||
simple_lm_proj = self.simple_lm_proj
|
||||
simple_am_proj = self.simple_am_proj
|
||||
joiner = self.joiner
|
||||
else:
|
||||
decoder = self.decoder_giga
|
||||
simple_lm_proj = self.simple_lm_proj_giga
|
||||
simple_am_proj = self.simple_am_proj_giga
|
||||
joiner = self.joiner_giga
|
||||
|
||||
# Now for the decoder, i.e., the prediction network
|
||||
row_splits = y.shape.row_splits(1)
|
||||
y_lens = row_splits[1:] - row_splits[:-1]
|
||||
|
||||
blank_id = self.decoder.blank_id
|
||||
blank_id = decoder.blank_id
|
||||
sos_y = add_sos(y, sos_id=blank_id)
|
||||
|
||||
# sos_y_padded: [B, S + 1], start with SOS.
|
||||
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
||||
|
||||
# decoder_out: [B, S + 1, decoder_dim]
|
||||
decoder_out = self.decoder(sos_y_padded)
|
||||
decoder_out = decoder(sos_y_padded)
|
||||
|
||||
# Note: y does not start with SOS
|
||||
# y_padded : [B, S]
|
||||
@ -140,10 +182,10 @@ class Transducer(nn.Module):
|
||||
(x.size(0), 4), dtype=torch.int64, device=x.device
|
||||
)
|
||||
boundary[:, 2] = y_lens
|
||||
boundary[:, 3] = x_lens
|
||||
boundary[:, 3] = encoder_out_lens
|
||||
|
||||
lm = self.simple_lm_proj(decoder_out)
|
||||
am = self.simple_am_proj(encoder_out)
|
||||
lm = simple_lm_proj(decoder_out)
|
||||
am = simple_am_proj(encoder_out)
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
|
||||
@ -169,8 +211,8 @@ class Transducer(nn.Module):
|
||||
# am_pruned : [B, T, prune_range, encoder_dim]
|
||||
# lm_pruned : [B, T, prune_range, decoder_dim]
|
||||
am_pruned, lm_pruned = k2.do_rnnt_pruning(
|
||||
am=self.joiner.encoder_proj(encoder_out),
|
||||
lm=self.joiner.decoder_proj(decoder_out),
|
||||
am=joiner.encoder_proj(encoder_out),
|
||||
lm=joiner.decoder_proj(decoder_out),
|
||||
ranges=ranges,
|
||||
)
|
||||
|
||||
@ -178,7 +220,7 @@ class Transducer(nn.Module):
|
||||
|
||||
# project_input=False since we applied the decoder's input projections
|
||||
# prior to do_rnnt_pruning (this is an optimization for speed).
|
||||
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
|
||||
logits = joiner(am_pruned, lm_pruned, project_input=False)
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
pruned_loss = k2.rnnt_loss_pruned(
|
||||
|
@ -21,22 +21,26 @@ Usage:
|
||||
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
./pruned_transducer_stateless2/train.py \
|
||||
cd egs/librispeech/ASR/
|
||||
./prepare.sh
|
||||
./prepare_giga_speech.sh
|
||||
|
||||
./pruned_transducer_stateless3/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 30 \
|
||||
--start-epoch 0 \
|
||||
--exp-dir pruned_transducer_stateless2/exp \
|
||||
--exp-dir pruned_transducer_stateless3/exp \
|
||||
--full-libri 1 \
|
||||
--max-duration 300
|
||||
|
||||
# For mix precision training:
|
||||
|
||||
./pruned_transducer_stateless2/train.py \
|
||||
./pruned_transducer_stateless3/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 30 \
|
||||
--start-epoch 0 \
|
||||
--use_fp16 1 \
|
||||
--exp-dir pruned_transducer_stateless2/exp \
|
||||
--exp-dir pruned_transducer_stateless3/exp \
|
||||
--full-libri 1 \
|
||||
--max-duration 550
|
||||
|
||||
@ -45,6 +49,7 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import random
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
@ -56,13 +61,16 @@ import sentencepiece as spm
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from asr_datamodule import AsrDataModule
|
||||
from conformer import Conformer
|
||||
from decoder import Decoder
|
||||
from gigaspeech import GigaSpeech
|
||||
from joiner import Joiner
|
||||
from lhotse import CutSet, load_manifest
|
||||
from lhotse.cut import Cut
|
||||
from lhotse.dataset.sampling.base import CutSampler
|
||||
from lhotse.utils import fix_random_seed
|
||||
from librispeech import LibriSpeech
|
||||
from model import Transducer
|
||||
from optim import Eden, Eve
|
||||
from torch import Tensor
|
||||
@ -109,6 +117,14 @@ def get_parser():
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--full-libri",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use 960h LibriSpeech. "
|
||||
"Otherwise, use 100h subset.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
@ -122,7 +138,7 @@ def get_parser():
|
||||
default=0,
|
||||
help="""Resume training from from this epoch.
|
||||
If it is positive, it will load checkpoint from
|
||||
transducer_stateless2/exp/epoch-{start_epoch-1}.pt
|
||||
transducer_stateless3/exp/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
@ -138,7 +154,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless2/exp",
|
||||
default="pruned_transducer_stateless3/exp",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
@ -156,7 +172,8 @@ def get_parser():
|
||||
"--initial-lr",
|
||||
type=float,
|
||||
default=0.003,
|
||||
help="The initial learning rate. This value should not need to be changed.",
|
||||
help="The initial learning rate. This value should not need "
|
||||
"to be changed.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -170,7 +187,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--lr-epochs",
|
||||
type=float,
|
||||
default=6,
|
||||
default=4,
|
||||
help="""Number of epochs that affects how rapidly the learning rate decreases.
|
||||
""",
|
||||
)
|
||||
@ -262,6 +279,13 @@ def get_parser():
|
||||
help="Whether to use half precision training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--giga-prob",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="The probability to select a batch from the GigaSpeech dataset",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
@ -377,10 +401,15 @@ def get_transducer_model(params: AttributeDict) -> nn.Module:
|
||||
decoder = get_decoder_model(params)
|
||||
joiner = get_joiner_model(params)
|
||||
|
||||
decoder_giga = get_decoder_model(params)
|
||||
joiner_giga = get_joiner_model(params)
|
||||
|
||||
model = Transducer(
|
||||
encoder=encoder,
|
||||
decoder=decoder,
|
||||
joiner=joiner,
|
||||
decoder_giga=decoder_giga,
|
||||
joiner_giga=joiner_giga,
|
||||
encoder_dim=params.encoder_dim,
|
||||
decoder_dim=params.decoder_dim,
|
||||
joiner_dim=params.joiner_dim,
|
||||
@ -448,9 +477,6 @@ def load_checkpoint_if_available(
|
||||
if "cur_epoch" in saved_params:
|
||||
params["start_epoch"] = saved_params["cur_epoch"]
|
||||
|
||||
if "cur_batch_idx" in saved_params:
|
||||
params["cur_batch_idx"] = saved_params["cur_batch_idx"]
|
||||
|
||||
return saved_params
|
||||
|
||||
|
||||
@ -500,6 +526,17 @@ def save_checkpoint(
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
|
||||
def is_libri(c: Cut) -> bool:
|
||||
"""Return True if this cut is from the LibriSpeech dataset.
|
||||
|
||||
Note:
|
||||
During data preparation, we set the custom field in
|
||||
the supervision segment of GigaSpeech to dict(origin='giga')
|
||||
See ../local/preprocess_gigaspeech.py.
|
||||
"""
|
||||
return c.supervisions[0].custom is None
|
||||
|
||||
|
||||
def compute_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
@ -535,6 +572,8 @@ def compute_loss(
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
libri = is_libri(supervisions["cut"][0])
|
||||
|
||||
texts = batch["supervisions"]["text"]
|
||||
y = sp.encode(texts, out_type=int)
|
||||
y = k2.RaggedTensor(y).to(device)
|
||||
@ -544,6 +583,7 @@ def compute_loss(
|
||||
x=feature,
|
||||
x_lens=feature_lens,
|
||||
y=y,
|
||||
libri=libri,
|
||||
prune_range=params.prune_range,
|
||||
am_scale=params.am_scale,
|
||||
lm_scale=params.lm_scale,
|
||||
@ -621,7 +661,9 @@ def train_one_epoch(
|
||||
scheduler: LRSchedulerType,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
giga_train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
rng: random.Random,
|
||||
scaler: GradScaler,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
@ -644,8 +686,12 @@ def train_one_epoch(
|
||||
The learning rate scheduler, we call step() every step.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
giga_train_dl:
|
||||
Dataloader for the GigaSpeech training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
rng:
|
||||
For selecting which dataset to use.
|
||||
scaler:
|
||||
The scaler used for mix precision training.
|
||||
tb_writer:
|
||||
@ -658,18 +704,36 @@ def train_one_epoch(
|
||||
"""
|
||||
model.train()
|
||||
|
||||
libri_tot_loss = MetricsTracker()
|
||||
giga_tot_loss = MetricsTracker()
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
cur_batch_idx = params.get("cur_batch_idx", 0)
|
||||
# index 0: for LibriSpeech
|
||||
# index 1: for GigaSpeech
|
||||
# This sets the probabilities for choosing which datasets
|
||||
dl_weights = [1 - params.giga_prob, params.giga_prob]
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
if batch_idx < cur_batch_idx:
|
||||
continue
|
||||
cur_batch_idx = batch_idx
|
||||
iter_libri = iter(train_dl)
|
||||
iter_giga = iter(giga_train_dl)
|
||||
|
||||
batch_idx = 0
|
||||
|
||||
while True:
|
||||
idx = rng.choices((0, 1), weights=dl_weights, k=1)[0]
|
||||
dl = iter_libri if idx == 0 else iter_giga
|
||||
|
||||
try:
|
||||
batch = next(dl)
|
||||
except StopIteration:
|
||||
break
|
||||
|
||||
batch_idx += 1
|
||||
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
libri = is_libri(batch["supervisions"]["cut"][0])
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
@ -682,6 +746,17 @@ def train_one_epoch(
|
||||
# summary stats
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||
|
||||
if libri:
|
||||
libri_tot_loss = (
|
||||
libri_tot_loss * (1 - 1 / params.reset_interval)
|
||||
) + loss_info
|
||||
prefix = "libri" # for logging only
|
||||
else:
|
||||
giga_tot_loss = (
|
||||
giga_tot_loss * (1 - 1 / params.reset_interval)
|
||||
) + loss_info
|
||||
prefix = "giga"
|
||||
|
||||
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||
# in the batch and there is no normalization to it so far.
|
||||
scaler.scale(loss).backward()
|
||||
@ -697,7 +772,6 @@ def train_one_epoch(
|
||||
params.batch_idx_train > 0
|
||||
and params.batch_idx_train % params.save_every_n == 0
|
||||
):
|
||||
params.cur_batch_idx = batch_idx
|
||||
save_checkpoint_with_global_batch_idx(
|
||||
out_dir=params.exp_dir,
|
||||
global_batch_idx=params.batch_idx_train,
|
||||
@ -709,7 +783,6 @@ def train_one_epoch(
|
||||
scaler=scaler,
|
||||
rank=rank,
|
||||
)
|
||||
del params.cur_batch_idx
|
||||
remove_checkpoints(
|
||||
out_dir=params.exp_dir,
|
||||
topk=params.keep_last_k,
|
||||
@ -720,8 +793,11 @@ def train_one_epoch(
|
||||
cur_lr = scheduler.get_last_lr()[0]
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}], "
|
||||
f"tot_loss[{tot_loss}], batch size: {batch_size}, "
|
||||
f"batch {batch_idx}, {prefix}_loss[{loss_info}], "
|
||||
f"tot_loss[{tot_loss}], "
|
||||
f"libri_tot_loss[{libri_tot_loss}], "
|
||||
f"giga_tot_loss[{giga_tot_loss}], "
|
||||
f"batch size: {batch_size}"
|
||||
f"lr: {cur_lr:.2e}"
|
||||
)
|
||||
|
||||
@ -731,11 +807,19 @@ def train_one_epoch(
|
||||
)
|
||||
|
||||
loss_info.write_summary(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
tb_writer,
|
||||
f"train/current_{prefix}_",
|
||||
params.batch_idx_train,
|
||||
)
|
||||
tot_loss.write_summary(
|
||||
tb_writer, "train/tot_", params.batch_idx_train
|
||||
)
|
||||
libri_tot_loss.write_summary(
|
||||
tb_writer, "train/libri_tot_", params.batch_idx_train
|
||||
)
|
||||
giga_tot_loss.write_summary(
|
||||
tb_writer, "train/giga_tot_", params.batch_idx_train
|
||||
)
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||
logging.info("Computing validation loss")
|
||||
@ -760,6 +844,23 @@ def train_one_epoch(
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def filter_short_and_long_utterances(cuts: CutSet) -> CutSet:
|
||||
def remove_short_and_long_utt(c: Cut):
|
||||
# Keep only utterances with duration between 1 second and 20 seconds
|
||||
#
|
||||
# Caution: There is a reason to select 20.0 here. Please see
|
||||
# ../local/display_manifest_statistics.py
|
||||
#
|
||||
# You should use ../local/display_manifest_statistics.py to get
|
||||
# an utterance duration distribution for your dataset to select
|
||||
# the threshold
|
||||
return 1.0 <= c.duration <= 20.0
|
||||
|
||||
cuts = cuts.filter(remove_short_and_long_utt)
|
||||
|
||||
return cuts
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
@ -778,6 +879,7 @@ def run(rank, world_size, args):
|
||||
params.valid_interval = 1600
|
||||
|
||||
fix_random_seed(params.seed)
|
||||
rng = random.Random(params.seed)
|
||||
if world_size > 1:
|
||||
setup_dist(rank, world_size, params.master_port)
|
||||
|
||||
@ -814,7 +916,7 @@ def run(rank, world_size, args):
|
||||
model.to(device)
|
||||
if world_size > 1:
|
||||
logging.info("Using DDP")
|
||||
model = DDP(model, device_ids=[rank])
|
||||
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
|
||||
model.device = device
|
||||
|
||||
optimizer = Eve(model.parameters(), lr=params.initial_lr)
|
||||
@ -839,45 +941,65 @@ def run(rank, world_size, args):
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
librispeech = LibriSpeech(manifest_dir=args.manifest_dir)
|
||||
|
||||
train_cuts = librispeech.train_clean_100_cuts()
|
||||
if params.full_libri:
|
||||
train_cuts += librispeech.train_clean_360_cuts()
|
||||
train_cuts += librispeech.train_other_500_cuts()
|
||||
|
||||
def remove_short_and_long_utt(c: Cut):
|
||||
# Keep only utterances with duration between 1 second and 20 seconds
|
||||
#
|
||||
# Caution: There is a reason to select 20.0 here. Please see
|
||||
# ../local/display_manifest_statistics.py
|
||||
#
|
||||
# You should use ../local/display_manifest_statistics.py to get
|
||||
# an utterance duration distribution for your dataset to select
|
||||
# the threshold
|
||||
return 1.0 <= c.duration <= 20.0
|
||||
train_cuts = filter_short_and_long_utterances(train_cuts)
|
||||
|
||||
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||
|
||||
if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
|
||||
# We only load the sampler's state dict when it loads a checkpoint
|
||||
# saved in the middle of an epoch
|
||||
sampler_state_dict = checkpoints["sampler"]
|
||||
gigaspeech = GigaSpeech(manifest_dir=args.manifest_dir)
|
||||
# XL 10k hours
|
||||
# L 2.5k hours
|
||||
# M 1k hours
|
||||
# S 250 hours
|
||||
# XS 10 hours
|
||||
# DEV 12 hours
|
||||
# Test 40 hours
|
||||
if params.full_libri:
|
||||
logging.info("Using the XL subset of GigaSpeech (10k hours)")
|
||||
train_giga_cuts = gigaspeech.train_XL_cuts()
|
||||
else:
|
||||
sampler_state_dict = None
|
||||
logging.info("Using the S subset of GigaSpeech (250 hours)")
|
||||
train_giga_cuts = gigaspeech.train_S_cuts()
|
||||
|
||||
train_dl = librispeech.train_dataloaders(
|
||||
train_cuts, sampler_state_dict=sampler_state_dict
|
||||
train_giga_cuts = filter_short_and_long_utterances(train_giga_cuts)
|
||||
|
||||
if args.enable_musan:
|
||||
cuts_musan = load_manifest(
|
||||
Path(args.manifest_dir) / "cuts_musan.json.gz"
|
||||
)
|
||||
else:
|
||||
cuts_musan = None
|
||||
|
||||
asr_datamodule = AsrDataModule(args)
|
||||
|
||||
train_dl = asr_datamodule.train_dataloaders(
|
||||
train_cuts,
|
||||
dynamic_bucketing=False,
|
||||
on_the_fly_feats=False,
|
||||
cuts_musan=cuts_musan,
|
||||
)
|
||||
|
||||
giga_train_dl = asr_datamodule.train_dataloaders(
|
||||
train_giga_cuts,
|
||||
dynamic_bucketing=True,
|
||||
on_the_fly_feats=True,
|
||||
cuts_musan=cuts_musan,
|
||||
)
|
||||
|
||||
valid_cuts = librispeech.dev_clean_cuts()
|
||||
valid_cuts += librispeech.dev_other_cuts()
|
||||
valid_dl = librispeech.valid_dataloaders(valid_cuts)
|
||||
valid_dl = asr_datamodule.valid_dataloaders(valid_cuts)
|
||||
|
||||
if not params.print_diagnostics:
|
||||
# It's time consuming to include `giga_train_dl` here
|
||||
# for dl in [train_dl, giga_train_dl]:
|
||||
for dl in [train_dl]:
|
||||
scan_pessimistic_batches_for_oom(
|
||||
model=model,
|
||||
train_dl=train_dl,
|
||||
train_dl=dl,
|
||||
optimizer=optimizer,
|
||||
sp=sp,
|
||||
params=params,
|
||||
@ -905,7 +1027,9 @@ def run(rank, world_size, args):
|
||||
scheduler=scheduler,
|
||||
sp=sp,
|
||||
train_dl=train_dl,
|
||||
giga_train_dl=giga_train_dl,
|
||||
valid_dl=valid_dl,
|
||||
rng=rng,
|
||||
scaler=scaler,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
@ -978,10 +1102,12 @@ def scan_pessimistic_batches_for_oom(
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
AsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
assert 0 <= args.giga_prob < 1, args.giga_prob
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
if world_size > 1:
|
||||
|
Loading…
x
Reference in New Issue
Block a user