mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-19 05:54:20 +00:00
add multiprocessing for wenetspeech text segmentation
This commit is contained in:
parent
132132f52a
commit
b986ef5ddc
@ -2,6 +2,7 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo)
|
||||
# 2022 Xiaomi Corp. (authors: Weiji Zhuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
@ -29,10 +30,17 @@ with word segmenting:
|
||||
|
||||
|
||||
import argparse
|
||||
|
||||
import jieba
|
||||
from tqdm import tqdm
|
||||
from multiprocessing import Pool
|
||||
|
||||
import paddle
|
||||
import jieba
|
||||
# In PaddlePaddle 2.x, dynamic graph mode is turned on by default,
|
||||
# and 'data()' is only supported in static graph mode. So if you
|
||||
# want to use this api, should call 'paddle.enable_static()' before
|
||||
# this api to enter static graph mode.
|
||||
paddle.enable_static()
|
||||
paddle.disable_signal_handler()
|
||||
jieba.enable_paddle()
|
||||
|
||||
|
||||
@ -41,42 +49,58 @@ def get_parser():
|
||||
description="Chinese Word Segmentation for text",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-process",
|
||||
"-n",
|
||||
default=20,
|
||||
type=int,
|
||||
help="the number of processes"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--input-file",
|
||||
"-i",
|
||||
default="data/lang_char/text",
|
||||
type=str,
|
||||
help="the input text file for WenetSpeech",
|
||||
help="the input text file for WenetSpeech"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-file",
|
||||
"-o",
|
||||
default="data/lang_char/text_words_segmentation",
|
||||
type=str,
|
||||
help="the text implemented with words segmenting for WenetSpeech",
|
||||
help="the text implemented with words segmenting for WenetSpeech"
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def cut(lines):
|
||||
if lines != None:
|
||||
cut_lines = jieba.cut(lines, use_paddle=True)
|
||||
return [i for i in cut_lines]
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
num_process = args.num_process
|
||||
input_file = args.input_file
|
||||
output_file = args.output_file
|
||||
# parallel mode does not support use_paddle
|
||||
# jieba.enable_parallel(num_process)
|
||||
|
||||
f = open(input_file, "r", encoding="utf-8")
|
||||
lines = f.readlines()
|
||||
new_lines = []
|
||||
for i in tqdm(range(len(lines))):
|
||||
x = lines[i].rstrip()
|
||||
seg_list = jieba.cut(x, use_paddle=True)
|
||||
new_line = " ".join(seg_list)
|
||||
new_lines.append(new_line)
|
||||
with open(input_file, "r", encoding="utf-8") as fr:
|
||||
lines = fr.readlines()
|
||||
|
||||
f_new = open(output_file, "w", encoding="utf-8")
|
||||
for line in new_lines:
|
||||
f_new.write(line)
|
||||
f_new.write("\n")
|
||||
with Pool(processes=num_process) as p:
|
||||
new_lines = list(tqdm(p.imap(cut, lines), total=len(lines)))
|
||||
|
||||
with open(output_file, "w", encoding="utf-8") as fw:
|
||||
for line in new_lines:
|
||||
fw.write(' '.join(line) + "\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
Loading…
x
Reference in New Issue
Block a user