From b77772f4b1abf21ed1edd5f17a096a90d7ca2c1d Mon Sep 17 00:00:00 2001 From: dohe0342 Date: Wed, 25 Jan 2023 16:48:43 +0900 Subject: [PATCH] from local --- egs/librispeech/ASR/.run_adapter.sh.swp | Bin 12288 -> 12288 bytes .../.train_adapter.py.swp | Bin 81920 -> 81920 bytes .../train_adapter.py | 5 +++-- 3 files changed, 3 insertions(+), 2 deletions(-) diff --git a/egs/librispeech/ASR/.run_adapter.sh.swp b/egs/librispeech/ASR/.run_adapter.sh.swp index b87d9da06e099a04784873545590bd8b33d1b105..cf49f8583ac4b3d287c6dc1c50eb6368afde8d6c 100644 GIT binary patch delta 32 mcmZojXh;xGG6?hZRj|}EU;qLE28LbtE+mT`RN5&1QXc@4-U-0~ delta 32 mcmZojXh;xGG6?hZRj|}EU;qLE28IVNdyAE)w?`H!Hb5b5D~7WMTH>!22JhK+z^?QOW^epR8DaVR|yXyZVgk{IK#%3W@w>;L(CoN5p`7Yoz|6>X=#EM8mQwE1$g*L zNn5<3gBnWM^TrwpW{4~qo4uqmMJ@<}(T8Iv$&F+8PVRrwUytIf6_YQ|jxT-zmvAoc delta 269 zcmWm9F-t;W97o~bU+-H+23?R4gb>`C8jNUZR1s8g6~BTQI0Oz}nj&x#amuizKoLRY z4sA^lf*+$0ajzv$!*li%1TF~Ntm#{Ae&hGHM`=l~MvkRg-?wpR8Iy)+p^gHsaEiZu z=?7nULKo*aLmcZpX@X}w;ucx_I_V87_RsWx~GMFfy1rONLd?8s1=bVCirZv&7{NmuM^+ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/train_adapter.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/train_adapter.py index d0e93ef11..15d8222f1 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/train_adapter.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/train_adapter.py @@ -1188,7 +1188,8 @@ def train_one_epoch( wb.log({"train/simple_loss": loss_info["simple_loss"]*numel}) wb.log({"train/pruned_loss": loss_info["pruned_loss"]*numel}) wb.log({"train/ctc_loss": loss_info["ctc_loss"]*numel}) - + + ''' logging.info("Computing validation loss") valid_info = compute_validation_loss( params=params, @@ -1217,7 +1218,7 @@ def train_one_epoch( wb.log({"valid/simple_loss": valid_info["simple_loss"]*numel}) wb.log({"valid/pruned_loss": valid_info["pruned_loss"]*numel}) wb.log({"valid/ctc_loss": valid_info["ctc_loss"]*numel}) - + ''' loss_value = tot_loss["loss"] / tot_loss["utterances"] params.train_loss = loss_value if params.train_loss < params.best_train_loss: