mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-06 23:54:17 +00:00
Merge bb58c85c839d9d0766fc57e217788aa17a7f85cb into 800bf4b6a2e32745e7d0c31dd78d473f1faff509
This commit is contained in:
commit
b6f48899c7
@ -375,6 +375,38 @@ for m in greedy_search modified_beam_search fast_beam_search; do
|
|||||||
done
|
done
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### zipformer ctc streaming
|
||||||
|
|
||||||
|
| decoding method | test-clean | test-other | comment |
|
||||||
|
|----------------------|------------|------------|--------------------|
|
||||||
|
| greedy_search | 4.07 | 10.51 | --epoch 30 --avg 15|
|
||||||
|
| greedy_search | 4.0 | 10.3 | --epoch 30 --avg 9 |
|
||||||
|
|
||||||
|
The training command is:
|
||||||
|
```bash
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1"
|
||||||
|
python ./zipformer_ctc_streaming/train.py \
|
||||||
|
--world-size 2 \
|
||||||
|
--num-epochs 30 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--exp-dir ./zipformer_ctc_streaming/exp \
|
||||||
|
--max-duration 100
|
||||||
|
```
|
||||||
|
|
||||||
|
The decoding command is:
|
||||||
|
```bash
|
||||||
|
export CUDA_VISIBLE_DEVICES="0"
|
||||||
|
./zipformer_ctc_streaming/decode.py \
|
||||||
|
--epoch 30 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer_ctc_streaming/exp \
|
||||||
|
--max-duration 300 \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
--method ctc-decoding \
|
||||||
|
--lm-dir data/lm \
|
||||||
|
--lang-dir data/lang_bpe_500
|
||||||
|
```
|
||||||
|
|
||||||
### pruned_transducer_stateless7 (Fine-tune with mux)
|
### pruned_transducer_stateless7 (Fine-tune with mux)
|
||||||
|
|
||||||
See <https://github.com/k2-fsa/icefall/pull/1059> for more details.
|
See <https://github.com/k2-fsa/icefall/pull/1059> for more details.
|
||||||
@ -456,6 +488,39 @@ The decoding commands are:
|
|||||||
--max-states 64
|
--max-states 64
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### zipformer ctc streaming
|
||||||
|
|
||||||
|
| decoding method | test-clean | test-other | comment |
|
||||||
|
|----------------------|------------|------------|--------------------|
|
||||||
|
| greedy_search | 4.07 | 10.51 | --epoch 30 --avg 15|
|
||||||
|
| greedy_search | 4.0 | 10.3 | --epoch 30 --avg 9 |
|
||||||
|
|
||||||
|
The training command is:
|
||||||
|
```bash
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1"
|
||||||
|
python ./zipformer_ctc_streaming/train.py \
|
||||||
|
--world-size 2 \
|
||||||
|
--num-epochs 30 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--exp-dir ./zipformer_ctc_streaming/exp \
|
||||||
|
--max-duration 100
|
||||||
|
```
|
||||||
|
|
||||||
|
The decoding command is:
|
||||||
|
```bash
|
||||||
|
export CUDA_VISIBLE_DEVICES="0"
|
||||||
|
./zipformer_ctc_streaming/decode.py \
|
||||||
|
--epoch 30 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer_ctc_streaming/exp \
|
||||||
|
--max-duration 300 \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
--method ctc-decoding \
|
||||||
|
--lm-dir data/lm \
|
||||||
|
--lang-dir data/lang_bpe_500
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
### pruned_transducer_stateless7 (zipformer + multidataset(LibriSpeech + GigaSpeech + CommonVoice 13.0))
|
### pruned_transducer_stateless7 (zipformer + multidataset(LibriSpeech + GigaSpeech + CommonVoice 13.0))
|
||||||
|
|
||||||
See <https://github.com/k2-fsa/icefall/pull/1010> for more details.
|
See <https://github.com/k2-fsa/icefall/pull/1010> for more details.
|
||||||
|
475
egs/librispeech/ASR/zipformer_ctc_streaming/asr_datamodule.py
Normal file
475
egs/librispeech/ASR/zipformer_ctc_streaming/asr_datamodule.py
Normal file
@ -0,0 +1,475 @@
|
|||||||
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import inspect
|
||||||
|
import logging
|
||||||
|
from functools import lru_cache
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Dict, Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
||||||
|
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
||||||
|
CutConcatenate,
|
||||||
|
CutMix,
|
||||||
|
DynamicBucketingSampler,
|
||||||
|
K2SpeechRecognitionDataset,
|
||||||
|
PrecomputedFeatures,
|
||||||
|
SingleCutSampler,
|
||||||
|
SpecAugment,
|
||||||
|
)
|
||||||
|
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||||
|
AudioSamples,
|
||||||
|
OnTheFlyFeatures,
|
||||||
|
)
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
class _SeedWorkers:
|
||||||
|
def __init__(self, seed: int):
|
||||||
|
self.seed = seed
|
||||||
|
|
||||||
|
def __call__(self, worker_id: int):
|
||||||
|
fix_random_seed(self.seed + worker_id)
|
||||||
|
|
||||||
|
|
||||||
|
class LibriSpeechAsrDataModule:
|
||||||
|
"""
|
||||||
|
DataModule for k2 ASR experiments.
|
||||||
|
It assumes there is always one train and valid dataloader,
|
||||||
|
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||||
|
and test-other).
|
||||||
|
|
||||||
|
It contains all the common data pipeline modules used in ASR
|
||||||
|
experiments, e.g.:
|
||||||
|
- dynamic batch size,
|
||||||
|
- bucketing samplers,
|
||||||
|
- cut concatenation,
|
||||||
|
- augmentation,
|
||||||
|
- on-the-fly feature extraction
|
||||||
|
|
||||||
|
This class should be derived for specific corpora used in ASR tasks.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, args: argparse.Namespace):
|
||||||
|
self.args = args
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
|
group = parser.add_argument_group(
|
||||||
|
title="ASR data related options",
|
||||||
|
description="These options are used for the preparation of "
|
||||||
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
|
"augmentations, etc.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--full-libri",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="""Used only when --mini-libri is False.When enabled,
|
||||||
|
use 960h LibriSpeech. Otherwise, use 100h subset.""",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--mini-libri",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="True for mini librispeech",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--manifest-dir",
|
||||||
|
type=Path,
|
||||||
|
default=Path("data/fbank"),
|
||||||
|
help="Path to directory with train/valid/test cuts.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--max-duration",
|
||||||
|
type=int,
|
||||||
|
default=200.0,
|
||||||
|
help="Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--bucketing-sampler",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, the batches will come from buckets of "
|
||||||
|
"similar duration (saves padding frames).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--num-buckets",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="The number of buckets for the DynamicBucketingSampler"
|
||||||
|
"(you might want to increase it for larger datasets).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--concatenate-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, utterances (cuts) will be concatenated "
|
||||||
|
"to minimize the amount of padding.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--duration-factor",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="Determines the maximum duration of a concatenated cut "
|
||||||
|
"relative to the duration of the longest cut in a batch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--gap",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="The amount of padding (in seconds) inserted between "
|
||||||
|
"concatenated cuts. This padding is filled with noise when "
|
||||||
|
"noise augmentation is used.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--on-the-fly-feats",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, use on-the-fly cut mixing and feature "
|
||||||
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
|
"if available.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--shuffle",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled (=default), the examples will be "
|
||||||
|
"shuffled for each epoch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--drop-last",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to drop last batch. Used by sampler.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--return-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, each batch will have the "
|
||||||
|
"field: batch['supervisions']['cut'] with the cuts that "
|
||||||
|
"were used to construct it.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--num-workers",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The number of training dataloader workers that "
|
||||||
|
"collect the batches.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-spec-aug",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, use SpecAugment for training dataset.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--spec-aug-time-warp-factor",
|
||||||
|
type=int,
|
||||||
|
default=80,
|
||||||
|
help="Used only when --enable-spec-aug is True. "
|
||||||
|
"It specifies the factor for time warping in SpecAugment. "
|
||||||
|
"Larger values mean more warping. "
|
||||||
|
"A value less than 1 means to disable time warp.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-musan",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, select noise from MUSAN and mix it"
|
||||||
|
"with training dataset. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--input-strategy",
|
||||||
|
type=str,
|
||||||
|
default="PrecomputedFeatures",
|
||||||
|
help="AudioSamples or PrecomputedFeatures",
|
||||||
|
)
|
||||||
|
|
||||||
|
def train_dataloaders(
|
||||||
|
self,
|
||||||
|
cuts_train: CutSet,
|
||||||
|
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||||
|
) -> DataLoader:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
cuts_train:
|
||||||
|
CutSet for training.
|
||||||
|
sampler_state_dict:
|
||||||
|
The state dict for the training sampler.
|
||||||
|
"""
|
||||||
|
transforms = []
|
||||||
|
if self.args.enable_musan:
|
||||||
|
logging.info("Enable MUSAN")
|
||||||
|
logging.info("About to get Musan cuts")
|
||||||
|
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||||
|
transforms.append(
|
||||||
|
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable MUSAN")
|
||||||
|
|
||||||
|
if self.args.concatenate_cuts:
|
||||||
|
logging.info(
|
||||||
|
f"Using cut concatenation with duration factor "
|
||||||
|
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||||
|
)
|
||||||
|
# Cut concatenation should be the first transform in the list,
|
||||||
|
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||||
|
# different utterances.
|
||||||
|
transforms = [
|
||||||
|
CutConcatenate(
|
||||||
|
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
)
|
||||||
|
] + transforms
|
||||||
|
|
||||||
|
input_transforms = []
|
||||||
|
if self.args.enable_spec_aug:
|
||||||
|
logging.info("Enable SpecAugment")
|
||||||
|
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||||
|
# Set the value of num_frame_masks according to Lhotse's version.
|
||||||
|
# In different Lhotse's versions, the default of num_frame_masks is
|
||||||
|
# different.
|
||||||
|
num_frame_masks = 10
|
||||||
|
num_frame_masks_parameter = inspect.signature(
|
||||||
|
SpecAugment.__init__
|
||||||
|
).parameters["num_frame_masks"]
|
||||||
|
if num_frame_masks_parameter.default == 1:
|
||||||
|
num_frame_masks = 2
|
||||||
|
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||||
|
input_transforms.append(
|
||||||
|
SpecAugment(
|
||||||
|
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||||
|
num_frame_masks=num_frame_masks,
|
||||||
|
features_mask_size=27,
|
||||||
|
num_feature_masks=2,
|
||||||
|
frames_mask_size=100,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable SpecAugment")
|
||||||
|
|
||||||
|
logging.info("About to create train dataset")
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=eval(self.args.input_strategy)(),
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
# NOTE: the PerturbSpeed transform should be added only if we
|
||||||
|
# remove it from data prep stage.
|
||||||
|
# Add on-the-fly speed perturbation; since originally it would
|
||||||
|
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||||
|
# 3x more epochs.
|
||||||
|
# Speed perturbation probably should come first before
|
||||||
|
# concatenation, but in principle the transforms order doesn't have
|
||||||
|
# to be strict (e.g. could be randomized)
|
||||||
|
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||||
|
# Drop feats to be on the safe side.
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.bucketing_sampler:
|
||||||
|
logging.info("Using DynamicBucketingSampler.")
|
||||||
|
train_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
num_buckets=self.args.num_buckets,
|
||||||
|
drop_last=self.args.drop_last,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Using SingleCutSampler.")
|
||||||
|
train_sampler = SingleCutSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
)
|
||||||
|
logging.info("About to create train dataloader")
|
||||||
|
|
||||||
|
if sampler_state_dict is not None:
|
||||||
|
logging.info("Loading sampler state dict")
|
||||||
|
train_sampler.load_state_dict(sampler_state_dict)
|
||||||
|
|
||||||
|
# 'seed' is derived from the current random state, which will have
|
||||||
|
# previously been set in the main process.
|
||||||
|
seed = torch.randint(0, 100000, ()).item()
|
||||||
|
worker_init_fn = _SeedWorkers(seed)
|
||||||
|
|
||||||
|
train_dl = DataLoader(
|
||||||
|
train,
|
||||||
|
sampler=train_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
persistent_workers=False,
|
||||||
|
worker_init_fn=worker_init_fn,
|
||||||
|
)
|
||||||
|
|
||||||
|
return train_dl
|
||||||
|
|
||||||
|
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||||
|
transforms = []
|
||||||
|
if self.args.concatenate_cuts:
|
||||||
|
transforms = [
|
||||||
|
CutConcatenate(
|
||||||
|
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
)
|
||||||
|
] + transforms
|
||||||
|
|
||||||
|
logging.info("About to create dev dataset")
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
valid_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_valid,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
logging.info("About to create dev dataloader")
|
||||||
|
valid_dl = DataLoader(
|
||||||
|
validate,
|
||||||
|
sampler=valid_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=2,
|
||||||
|
persistent_workers=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
return valid_dl
|
||||||
|
|
||||||
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||||
|
logging.debug("About to create test dataset")
|
||||||
|
test = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||||
|
if self.args.on_the_fly_feats
|
||||||
|
else eval(self.args.input_strategy)(),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
sampler = DynamicBucketingSampler(
|
||||||
|
cuts,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
logging.debug("About to create test dataloader")
|
||||||
|
test_dl = DataLoader(
|
||||||
|
test,
|
||||||
|
batch_size=None,
|
||||||
|
sampler=sampler,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
)
|
||||||
|
return test_dl
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_clean_5_cuts(self) -> CutSet:
|
||||||
|
logging.info("mini_librispeech: About to get train-clean-5 cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "librispeech_cuts_train-clean-5.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_clean_100_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get train-clean-100 cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "librispeech_cuts_train-clean-100.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_clean_360_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get train-clean-360 cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "librispeech_cuts_train-clean-360.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_other_500_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get train-other-500 cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "librispeech_cuts_train-other-500.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_all_shuf_cuts(self) -> CutSet:
|
||||||
|
logging.info(
|
||||||
|
"About to get the shuffled train-clean-100, \
|
||||||
|
train-clean-360 and train-other-500 cuts"
|
||||||
|
)
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "librispeech_cuts_train-all-shuf.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def dev_clean_2_cuts(self) -> CutSet:
|
||||||
|
logging.info("mini_librispeech: About to get dev-clean-2 cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "librispeech_cuts_dev-clean-2.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def dev_clean_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get dev-clean cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "librispeech_cuts_dev-clean.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def dev_other_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get dev-other cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "librispeech_cuts_dev-other.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_clean_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get test-clean cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "librispeech_cuts_test-clean.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_other_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get test-other cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "librispeech_cuts_test-other.jsonl.gz"
|
||||||
|
)
|
891
egs/librispeech/ASR/zipformer_ctc_streaming/decode.py
Executable file
891
egs/librispeech/ASR/zipformer_ctc_streaming/decode.py
Executable file
@ -0,0 +1,891 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo, Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
|
from train import add_model_arguments, get_ctc_model, get_params
|
||||||
|
from transformer import encoder_padding_mask
|
||||||
|
|
||||||
|
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.decode import (
|
||||||
|
get_lattice,
|
||||||
|
nbest_decoding,
|
||||||
|
nbest_oracle,
|
||||||
|
one_best_decoding,
|
||||||
|
rescore_with_attention_decoder,
|
||||||
|
rescore_with_n_best_list,
|
||||||
|
rescore_with_rnn_lm,
|
||||||
|
rescore_with_whole_lattice,
|
||||||
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.rnn_lm.model import RnnLmModel
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
get_texts,
|
||||||
|
load_averaged_model,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=77,
|
||||||
|
help="It specifies the checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=55,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch'. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--method",
|
||||||
|
type=str,
|
||||||
|
default="attention-decoder",
|
||||||
|
help="""Decoding method.
|
||||||
|
Supported values are:
|
||||||
|
- (0) ctc-decoding. Use CTC decoding. It uses a sentence piece
|
||||||
|
model, i.e., lang_dir/bpe.model, to convert word pieces to words.
|
||||||
|
It needs neither a lexicon nor an n-gram LM.
|
||||||
|
- (1) 1best. Extract the best path from the decoding lattice as the
|
||||||
|
decoding result.
|
||||||
|
- (2) nbest. Extract n paths from the decoding lattice; the path
|
||||||
|
with the highest score is the decoding result.
|
||||||
|
- (3) nbest-rescoring. Extract n paths from the decoding lattice,
|
||||||
|
rescore them with an n-gram LM (e.g., a 4-gram LM), the path with
|
||||||
|
the highest score is the decoding result.
|
||||||
|
- (4) whole-lattice-rescoring. Rescore the decoding lattice with an
|
||||||
|
n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice
|
||||||
|
is the decoding result.
|
||||||
|
- (5) attention-decoder. Extract n paths from the LM rescored
|
||||||
|
lattice, the path with the highest score is the decoding result.
|
||||||
|
- (6) rnn-lm. Rescoring with attention-decoder and RNN LM. We assume
|
||||||
|
you have trained an RNN LM using ./rnn_lm/train.py
|
||||||
|
- (7) nbest-oracle. Its WER is the lower bound of any n-best
|
||||||
|
rescoring method can achieve. Useful for debugging n-best
|
||||||
|
rescoring method.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-paths",
|
||||||
|
type=int,
|
||||||
|
default=100,
|
||||||
|
help="""Number of paths for n-best based decoding method.
|
||||||
|
Used only when "method" is one of the following values:
|
||||||
|
nbest, nbest-rescoring, attention-decoder, rnn-lm, and nbest-oracle
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--nbest-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.5,
|
||||||
|
help="""The scale to be applied to `lattice.scores`.
|
||||||
|
It's needed if you use any kinds of n-best based rescoring.
|
||||||
|
Used only when "method" is one of the following values:
|
||||||
|
nbest, nbest-rescoring, attention-decoder, rnn-lm, and nbest-oracle
|
||||||
|
A smaller value results in more unique paths.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="zipformer_ctc/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500",
|
||||||
|
help="The lang dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lm-dir",
|
||||||
|
type=str,
|
||||||
|
default="data/lm",
|
||||||
|
help="""The n-gram LM dir.
|
||||||
|
It should contain either G_3_gram.pt or G_3_gram.fst.txt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--rnn-lm-exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="rnn_lm/exp",
|
||||||
|
help="""Used only when --method is rnn-lm.
|
||||||
|
It specifies the path to RNN LM exp dir.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--rnn-lm-epoch",
|
||||||
|
type=int,
|
||||||
|
default=7,
|
||||||
|
help="""Used only when --method is rnn-lm.
|
||||||
|
It specifies the checkpoint to use.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--rnn-lm-avg",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="""Used only when --method is rnn-lm.
|
||||||
|
It specifies the number of checkpoints to average.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--rnn-lm-embedding-dim",
|
||||||
|
type=int,
|
||||||
|
default=2048,
|
||||||
|
help="Embedding dim of the model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--rnn-lm-hidden-dim",
|
||||||
|
type=int,
|
||||||
|
default=2048,
|
||||||
|
help="Hidden dim of the model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--rnn-lm-num-layers",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="Number of RNN layers the model",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--rnn-lm-tie-weights",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""True to share the weights between the input embedding layer and the
|
||||||
|
last output linear layer
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
rnn_lm_model: Optional[nn.Module],
|
||||||
|
HLG: Optional[k2.Fsa],
|
||||||
|
H: Optional[k2.Fsa],
|
||||||
|
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||||
|
batch: dict,
|
||||||
|
word_table: k2.SymbolTable,
|
||||||
|
sos_id: int,
|
||||||
|
eos_id: int,
|
||||||
|
G: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[List[str]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: It indicates the setting used for decoding. For example,
|
||||||
|
if no rescoring is used, the key is the string `no_rescore`.
|
||||||
|
If LM rescoring is used, the key is the string `lm_scale_xxx`,
|
||||||
|
where `xxx` is the value of `lm_scale`. An example key is
|
||||||
|
`lm_scale_0.7`
|
||||||
|
- value: It contains the decoding result. `len(value)` equals to
|
||||||
|
batch size. `value[i]` is the decoding result for the i-th
|
||||||
|
utterance in the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
|
||||||
|
- params.method is "1best", it uses 1best decoding without LM rescoring.
|
||||||
|
- params.method is "nbest", it uses nbest decoding without LM rescoring.
|
||||||
|
- params.method is "nbest-rescoring", it uses nbest LM rescoring.
|
||||||
|
- params.method is "whole-lattice-rescoring", it uses whole lattice LM
|
||||||
|
rescoring.
|
||||||
|
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
rnn_lm_model:
|
||||||
|
The neural model for RNN LM.
|
||||||
|
HLG:
|
||||||
|
The decoding graph. Used only when params.method is NOT ctc-decoding.
|
||||||
|
H:
|
||||||
|
The ctc topo. Used only when params.method is ctc-decoding.
|
||||||
|
bpe_model:
|
||||||
|
The BPE model. Used only when params.method is ctc-decoding.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
word_table:
|
||||||
|
The word symbol table.
|
||||||
|
sos_id:
|
||||||
|
The token ID of the SOS.
|
||||||
|
eos_id:
|
||||||
|
The token ID of the EOS.
|
||||||
|
G:
|
||||||
|
An LM. It is not None when params.method is "nbest-rescoring"
|
||||||
|
or "whole-lattice-rescoring". In general, the G in HLG
|
||||||
|
is a 3-gram LM, while this G is a 4-gram LM.
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. See above description for the format of
|
||||||
|
the returned dict. Note: If it decodes to nothing, then return None.
|
||||||
|
"""
|
||||||
|
if HLG is not None:
|
||||||
|
device = HLG.device
|
||||||
|
else:
|
||||||
|
device = H.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device)
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
|
nnet_output, _ = model.encoder(feature, feature_lens)
|
||||||
|
ctc_output = model.ctc_output(nnet_output)
|
||||||
|
# nnet_output is (N, T, C)
|
||||||
|
|
||||||
|
supervision_segments = torch.stack(
|
||||||
|
(
|
||||||
|
supervisions["sequence_idx"],
|
||||||
|
supervisions["start_frame"] // params.subsampling_factor,
|
||||||
|
supervisions["num_frames"] // params.subsampling_factor,
|
||||||
|
),
|
||||||
|
1,
|
||||||
|
).to(torch.int32)
|
||||||
|
|
||||||
|
if H is None:
|
||||||
|
assert HLG is not None
|
||||||
|
decoding_graph = HLG
|
||||||
|
else:
|
||||||
|
assert HLG is None
|
||||||
|
assert bpe_model is not None
|
||||||
|
decoding_graph = H
|
||||||
|
|
||||||
|
lattice = get_lattice(
|
||||||
|
nnet_output=ctc_output,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
supervision_segments=supervision_segments,
|
||||||
|
search_beam=params.search_beam,
|
||||||
|
output_beam=params.output_beam,
|
||||||
|
min_active_states=params.min_active_states,
|
||||||
|
max_active_states=params.max_active_states,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.method == "ctc-decoding":
|
||||||
|
best_path = one_best_decoding(
|
||||||
|
lattice=lattice, use_double_scores=params.use_double_scores
|
||||||
|
)
|
||||||
|
# Note: `best_path.aux_labels` contains token IDs, not word IDs
|
||||||
|
# since we are using H, not HLG here.
|
||||||
|
#
|
||||||
|
# token_ids is a lit-of-list of IDs
|
||||||
|
token_ids = get_texts(best_path)
|
||||||
|
|
||||||
|
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
|
||||||
|
hyps = bpe_model.decode(token_ids)
|
||||||
|
|
||||||
|
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
|
||||||
|
hyps = [s.split() for s in hyps]
|
||||||
|
key = "ctc-decoding"
|
||||||
|
return {key: hyps}
|
||||||
|
|
||||||
|
if params.method == "nbest-oracle":
|
||||||
|
# Note: You can also pass rescored lattices to it.
|
||||||
|
# We choose the HLG decoded lattice for speed reasons
|
||||||
|
# as HLG decoding is faster and the oracle WER
|
||||||
|
# is only slightly worse than that of rescored lattices.
|
||||||
|
best_path = nbest_oracle(
|
||||||
|
lattice=lattice,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
ref_texts=supervisions["text"],
|
||||||
|
word_table=word_table,
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
oov="<UNK>",
|
||||||
|
)
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||||
|
key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}" # noqa
|
||||||
|
return {key: hyps}
|
||||||
|
|
||||||
|
if params.method in ["1best", "nbest"]:
|
||||||
|
if params.method == "1best":
|
||||||
|
best_path = one_best_decoding(
|
||||||
|
lattice=lattice, use_double_scores=params.use_double_scores
|
||||||
|
)
|
||||||
|
key = "no_rescore"
|
||||||
|
else:
|
||||||
|
best_path = nbest_decoding(
|
||||||
|
lattice=lattice,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
use_double_scores=params.use_double_scores,
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}" # noqa
|
||||||
|
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||||
|
return {key: hyps}
|
||||||
|
|
||||||
|
assert params.method in [
|
||||||
|
"nbest-rescoring",
|
||||||
|
"whole-lattice-rescoring",
|
||||||
|
"attention-decoder",
|
||||||
|
"rnn-lm",
|
||||||
|
]
|
||||||
|
|
||||||
|
lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
|
||||||
|
|
||||||
|
nnet_output = nnet_output.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||||
|
mask = encoder_padding_mask(nnet_output.size(0), supervisions)
|
||||||
|
mask = mask.to(nnet_output.device) if mask is not None else None
|
||||||
|
mmodel = model.decoder.module if hasattr(model.decoder, "module") else model.decoder
|
||||||
|
|
||||||
|
if params.method == "nbest-rescoring":
|
||||||
|
best_path_dict = rescore_with_n_best_list(
|
||||||
|
lattice=lattice,
|
||||||
|
G=G,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
lm_scale_list=lm_scale_list,
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
elif params.method == "whole-lattice-rescoring":
|
||||||
|
best_path_dict = rescore_with_whole_lattice(
|
||||||
|
lattice=lattice,
|
||||||
|
G_with_epsilon_loops=G,
|
||||||
|
lm_scale_list=lm_scale_list,
|
||||||
|
)
|
||||||
|
elif params.method == "attention-decoder":
|
||||||
|
# lattice uses a 3-gram Lm. We rescore it with a 4-gram LM.
|
||||||
|
rescored_lattice = rescore_with_whole_lattice(
|
||||||
|
lattice=lattice,
|
||||||
|
G_with_epsilon_loops=G,
|
||||||
|
lm_scale_list=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
best_path_dict = rescore_with_attention_decoder(
|
||||||
|
lattice=rescored_lattice,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
model=mmodel,
|
||||||
|
memory=nnet_output,
|
||||||
|
memory_key_padding_mask=mask,
|
||||||
|
sos_id=sos_id,
|
||||||
|
eos_id=eos_id,
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
elif params.method == "rnn-lm":
|
||||||
|
# lattice uses a 3-gram Lm. We rescore it with a 4-gram LM.
|
||||||
|
rescored_lattice = rescore_with_whole_lattice(
|
||||||
|
lattice=lattice,
|
||||||
|
G_with_epsilon_loops=G,
|
||||||
|
lm_scale_list=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
best_path_dict = rescore_with_rnn_lm(
|
||||||
|
lattice=rescored_lattice,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
rnn_lm_model=rnn_lm_model,
|
||||||
|
model=mmodel,
|
||||||
|
memory=nnet_output,
|
||||||
|
memory_key_padding_mask=mask,
|
||||||
|
sos_id=sos_id,
|
||||||
|
eos_id=eos_id,
|
||||||
|
blank_id=0,
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert False, f"Unsupported decoding method: {params.method}"
|
||||||
|
|
||||||
|
ans = dict()
|
||||||
|
if best_path_dict is not None:
|
||||||
|
for lm_scale_str, best_path in best_path_dict.items():
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||||
|
ans[lm_scale_str] = hyps
|
||||||
|
else:
|
||||||
|
ans = None
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
rnn_lm_model: Optional[nn.Module],
|
||||||
|
HLG: Optional[k2.Fsa],
|
||||||
|
H: Optional[k2.Fsa],
|
||||||
|
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||||
|
word_table: k2.SymbolTable,
|
||||||
|
sos_id: int,
|
||||||
|
eos_id: int,
|
||||||
|
G: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
rnn_lm_model:
|
||||||
|
The neural model for RNN LM.
|
||||||
|
HLG:
|
||||||
|
The decoding graph. Used only when params.method is NOT ctc-decoding.
|
||||||
|
H:
|
||||||
|
The ctc topo. Used only when params.method is ctc-decoding.
|
||||||
|
bpe_model:
|
||||||
|
The BPE model. Used only when params.method is ctc-decoding.
|
||||||
|
word_table:
|
||||||
|
It is the word symbol table.
|
||||||
|
sos_id:
|
||||||
|
The token ID for SOS.
|
||||||
|
eos_id:
|
||||||
|
The token ID for EOS.
|
||||||
|
G:
|
||||||
|
An LM. It is not None when params.method is "nbest-rescoring"
|
||||||
|
or "whole-lattice-rescoring". In general, the G in HLG
|
||||||
|
is a 3-gram LM, while this G is a 4-gram LM.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "no-rescore" if no LM rescoring
|
||||||
|
is used, or it may be "lm_scale_0.7" if LM rescoring is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||||
|
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
rnn_lm_model=rnn_lm_model,
|
||||||
|
HLG=HLG,
|
||||||
|
H=H,
|
||||||
|
bpe_model=bpe_model,
|
||||||
|
batch=batch,
|
||||||
|
word_table=word_table,
|
||||||
|
G=G,
|
||||||
|
sos_id=sos_id,
|
||||||
|
eos_id=eos_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
if hyps_dict is not None:
|
||||||
|
for lm_scale, hyps in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||||
|
ref_words = ref_text.split()
|
||||||
|
this_batch.append((cut_id, ref_words, hyp_words))
|
||||||
|
|
||||||
|
results[lm_scale].extend(this_batch)
|
||||||
|
else:
|
||||||
|
assert len(results) > 0, "It should not decode to empty in the first batch!"
|
||||||
|
this_batch = []
|
||||||
|
hyp_words = []
|
||||||
|
for ref_text in texts:
|
||||||
|
ref_words = ref_text.split()
|
||||||
|
this_batch.append((ref_words, hyp_words))
|
||||||
|
|
||||||
|
for lm_scale in results.keys():
|
||||||
|
results[lm_scale].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(texts)
|
||||||
|
|
||||||
|
if batch_idx % 100 == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[str, List[int], List[int]]]],
|
||||||
|
):
|
||||||
|
if params.method in ("attention-decoder", "rnn-lm"):
|
||||||
|
# Set it to False since there are too many logs.
|
||||||
|
enable_log = False
|
||||||
|
else:
|
||||||
|
enable_log = True
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt"
|
||||||
|
results = sorted(results)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
if enable_log:
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=enable_log
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
if enable_log:
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = params.exp_dir / f"wer-summary-{test_set_name}.txt"
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
args.lang_dir = Path(args.lang_dir)
|
||||||
|
args.lm_dir = Path(args.lm_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log-{params.method}/log-decode")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
max_token_id = max(lexicon.tokens)
|
||||||
|
num_classes = max_token_id + 1 # +1 for the blank
|
||||||
|
params.vocab_size = num_classes
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
graph_compiler = BpeCtcTrainingGraphCompiler(
|
||||||
|
params.lang_dir,
|
||||||
|
device=device,
|
||||||
|
sos_token="<sos/eos>",
|
||||||
|
eos_token="<sos/eos>",
|
||||||
|
)
|
||||||
|
sos_id = graph_compiler.sos_id
|
||||||
|
eos_id = graph_compiler.eos_id
|
||||||
|
|
||||||
|
params.num_classes = num_classes
|
||||||
|
params.sos_id = sos_id
|
||||||
|
params.eos_id = eos_id
|
||||||
|
|
||||||
|
if params.method == "ctc-decoding":
|
||||||
|
HLG = None
|
||||||
|
H = k2.ctc_topo(
|
||||||
|
max_token=max_token_id,
|
||||||
|
modified=False,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
bpe_model = spm.SentencePieceProcessor()
|
||||||
|
bpe_model.load(str(params.lang_dir / "bpe.model"))
|
||||||
|
else:
|
||||||
|
H = None
|
||||||
|
bpe_model = None
|
||||||
|
HLG = k2.Fsa.from_dict(
|
||||||
|
torch.load(f"{params.lang_dir}/HLG.pt", map_location=device)
|
||||||
|
)
|
||||||
|
assert HLG.requires_grad is False
|
||||||
|
|
||||||
|
if not hasattr(HLG, "lm_scores"):
|
||||||
|
HLG.lm_scores = HLG.scores.clone()
|
||||||
|
|
||||||
|
if params.method in (
|
||||||
|
"nbest-rescoring",
|
||||||
|
"whole-lattice-rescoring",
|
||||||
|
"attention-decoder",
|
||||||
|
"rnn-lm",
|
||||||
|
):
|
||||||
|
if not (params.lm_dir / "G_3_gram.pt").is_file():
|
||||||
|
logging.info("Loading G_3_gram.fst.txt")
|
||||||
|
logging.warning("It may take 8 minutes.")
|
||||||
|
with open(params.lm_dir / "G_3_gram.fst.txt") as f:
|
||||||
|
#with open(params.lm_dir / "G_3_gram.fst.txt") as f:
|
||||||
|
first_word_disambig_id = lexicon.word_table["#0"]
|
||||||
|
|
||||||
|
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||||
|
# G.aux_labels is not needed in later computations, so
|
||||||
|
# remove it here.
|
||||||
|
del G.aux_labels
|
||||||
|
# CAUTION: The following line is crucial.
|
||||||
|
# Arcs entering the back-off state have label equal to #0.
|
||||||
|
# We have to change it to 0 here.
|
||||||
|
G.labels[G.labels >= first_word_disambig_id] = 0
|
||||||
|
# See https://github.com/k2-fsa/k2/issues/874
|
||||||
|
# for why we need to set G.properties to None
|
||||||
|
G.__dict__["_properties"] = None
|
||||||
|
G = k2.Fsa.from_fsas([G]).to(device)
|
||||||
|
G = k2.arc_sort(G)
|
||||||
|
# Save a dummy value so that it can be loaded in C++.
|
||||||
|
# See https://github.com/pytorch/pytorch/issues/67902
|
||||||
|
# for why we need to do this.
|
||||||
|
G.dummy = 1
|
||||||
|
|
||||||
|
torch.save(G.as_dict(), params.lm_dir / "G_3_gram.pt")
|
||||||
|
else:
|
||||||
|
logging.info("Loading pre-compiled G_3_gram.pt")
|
||||||
|
d = torch.load(params.lm_dir / "G_3_gram.pt", map_location=device)
|
||||||
|
G = k2.Fsa.from_dict(d)
|
||||||
|
|
||||||
|
if params.method in [
|
||||||
|
"whole-lattice-rescoring",
|
||||||
|
"attention-decoder",
|
||||||
|
"rnn-lm",
|
||||||
|
]:
|
||||||
|
# Add epsilon self-loops to G as we will compose
|
||||||
|
# it with the whole lattice later
|
||||||
|
G = k2.add_epsilon_self_loops(G)
|
||||||
|
G = k2.arc_sort(G)
|
||||||
|
G = G.to(device)
|
||||||
|
|
||||||
|
# G.lm_scores is used to replace HLG.lm_scores during
|
||||||
|
# LM rescoring.
|
||||||
|
G.lm_scores = G.scores.clone()
|
||||||
|
else:
|
||||||
|
G = None
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_ctc_model(params)
|
||||||
|
assert model.encoder.decode_chunk_size == params.decode_chunk_len // 2, (
|
||||||
|
model.encoder.decode_chunk_size,
|
||||||
|
params.decode_chunk_len,
|
||||||
|
)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if i >= 1:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
rnn_lm_model = None
|
||||||
|
if params.method == "rnn-lm":
|
||||||
|
rnn_lm_model = RnnLmModel(
|
||||||
|
vocab_size=params.num_classes,
|
||||||
|
embedding_dim=params.rnn_lm_embedding_dim,
|
||||||
|
hidden_dim=params.rnn_lm_hidden_dim,
|
||||||
|
num_layers=params.rnn_lm_num_layers,
|
||||||
|
tie_weights=params.rnn_lm_tie_weights,
|
||||||
|
)
|
||||||
|
if params.rnn_lm_avg == 1:
|
||||||
|
load_checkpoint(
|
||||||
|
f"{params.rnn_lm_exp_dir}/epoch-{params.rnn_lm_epoch}.pt",
|
||||||
|
rnn_lm_model,
|
||||||
|
)
|
||||||
|
rnn_lm_model.to(device)
|
||||||
|
else:
|
||||||
|
rnn_lm_model = load_averaged_model(
|
||||||
|
params.rnn_lm_exp_dir,
|
||||||
|
rnn_lm_model,
|
||||||
|
params.rnn_lm_epoch,
|
||||||
|
params.rnn_lm_avg,
|
||||||
|
device,
|
||||||
|
)
|
||||||
|
rnn_lm_model.eval()
|
||||||
|
|
||||||
|
# we need cut ids to display recognition results.
|
||||||
|
args.return_cuts = True
|
||||||
|
librispeech = LibriSpeechAsrDataModule(args)
|
||||||
|
|
||||||
|
test_clean_cuts = librispeech.test_clean_cuts()
|
||||||
|
test_other_cuts = librispeech.test_other_cuts()
|
||||||
|
|
||||||
|
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
|
||||||
|
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
|
||||||
|
|
||||||
|
test_sets = ["test-clean", "test-other"]
|
||||||
|
test_dl = [test_clean_dl, test_other_dl]
|
||||||
|
|
||||||
|
for test_set, test_dl in zip(test_sets, test_dl):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
rnn_lm_model=rnn_lm_model,
|
||||||
|
HLG=HLG,
|
||||||
|
H=H,
|
||||||
|
bpe_model=bpe_model,
|
||||||
|
word_table=lexicon.word_table,
|
||||||
|
G=G,
|
||||||
|
sos_id=sos_id,
|
||||||
|
eos_id=eos_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(params=params, test_set_name=test_set, results_dict=results_dict)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
887
egs/librispeech/ASR/zipformer_ctc_streaming/decode_G_4gram.py
Executable file
887
egs/librispeech/ASR/zipformer_ctc_streaming/decode_G_4gram.py
Executable file
@ -0,0 +1,887 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo, Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
|
from train import add_model_arguments, get_ctc_model, get_params
|
||||||
|
from transformer import encoder_padding_mask
|
||||||
|
|
||||||
|
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.decode import (
|
||||||
|
get_lattice,
|
||||||
|
nbest_decoding,
|
||||||
|
nbest_oracle,
|
||||||
|
one_best_decoding,
|
||||||
|
rescore_with_attention_decoder,
|
||||||
|
rescore_with_n_best_list,
|
||||||
|
rescore_with_rnn_lm,
|
||||||
|
rescore_with_whole_lattice,
|
||||||
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.rnn_lm.model import RnnLmModel
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
get_texts,
|
||||||
|
load_averaged_model,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=77,
|
||||||
|
help="It specifies the checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=55,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch'. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--method",
|
||||||
|
type=str,
|
||||||
|
default="attention-decoder",
|
||||||
|
help="""Decoding method.
|
||||||
|
Supported values are:
|
||||||
|
- (0) ctc-decoding. Use CTC decoding. It uses a sentence piece
|
||||||
|
model, i.e., lang_dir/bpe.model, to convert word pieces to words.
|
||||||
|
It needs neither a lexicon nor an n-gram LM.
|
||||||
|
- (1) 1best. Extract the best path from the decoding lattice as the
|
||||||
|
decoding result.
|
||||||
|
- (2) nbest. Extract n paths from the decoding lattice; the path
|
||||||
|
with the highest score is the decoding result.
|
||||||
|
- (3) nbest-rescoring. Extract n paths from the decoding lattice,
|
||||||
|
rescore them with an n-gram LM (e.g., a 4-gram LM), the path with
|
||||||
|
the highest score is the decoding result.
|
||||||
|
- (4) whole-lattice-rescoring. Rescore the decoding lattice with an
|
||||||
|
n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice
|
||||||
|
is the decoding result.
|
||||||
|
- (5) attention-decoder. Extract n paths from the LM rescored
|
||||||
|
lattice, the path with the highest score is the decoding result.
|
||||||
|
- (6) rnn-lm. Rescoring with attention-decoder and RNN LM. We assume
|
||||||
|
you have trained an RNN LM using ./rnn_lm/train.py
|
||||||
|
- (7) nbest-oracle. Its WER is the lower bound of any n-best
|
||||||
|
rescoring method can achieve. Useful for debugging n-best
|
||||||
|
rescoring method.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-paths",
|
||||||
|
type=int,
|
||||||
|
default=100,
|
||||||
|
help="""Number of paths for n-best based decoding method.
|
||||||
|
Used only when "method" is one of the following values:
|
||||||
|
nbest, nbest-rescoring, attention-decoder, rnn-lm, and nbest-oracle
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--nbest-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.5,
|
||||||
|
help="""The scale to be applied to `lattice.scores`.
|
||||||
|
It's needed if you use any kinds of n-best based rescoring.
|
||||||
|
Used only when "method" is one of the following values:
|
||||||
|
nbest, nbest-rescoring, attention-decoder, rnn-lm, and nbest-oracle
|
||||||
|
A smaller value results in more unique paths.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="zipformer_ctc/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500",
|
||||||
|
help="The lang dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lm-dir",
|
||||||
|
type=str,
|
||||||
|
default="data/lm",
|
||||||
|
help="""The n-gram LM dir.
|
||||||
|
It should contain either G_4_gram.pt or G_4_gram.fst.txt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--rnn-lm-exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="rnn_lm/exp",
|
||||||
|
help="""Used only when --method is rnn-lm.
|
||||||
|
It specifies the path to RNN LM exp dir.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--rnn-lm-epoch",
|
||||||
|
type=int,
|
||||||
|
default=7,
|
||||||
|
help="""Used only when --method is rnn-lm.
|
||||||
|
It specifies the checkpoint to use.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--rnn-lm-avg",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="""Used only when --method is rnn-lm.
|
||||||
|
It specifies the number of checkpoints to average.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--rnn-lm-embedding-dim",
|
||||||
|
type=int,
|
||||||
|
default=2048,
|
||||||
|
help="Embedding dim of the model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--rnn-lm-hidden-dim",
|
||||||
|
type=int,
|
||||||
|
default=2048,
|
||||||
|
help="Hidden dim of the model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--rnn-lm-num-layers",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="Number of RNN layers the model",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--rnn-lm-tie-weights",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""True to share the weights between the input embedding layer and the
|
||||||
|
last output linear layer
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
rnn_lm_model: Optional[nn.Module],
|
||||||
|
HLG: Optional[k2.Fsa],
|
||||||
|
H: Optional[k2.Fsa],
|
||||||
|
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||||
|
batch: dict,
|
||||||
|
word_table: k2.SymbolTable,
|
||||||
|
sos_id: int,
|
||||||
|
eos_id: int,
|
||||||
|
G: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[List[str]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: It indicates the setting used for decoding. For example,
|
||||||
|
if no rescoring is used, the key is the string `no_rescore`.
|
||||||
|
If LM rescoring is used, the key is the string `lm_scale_xxx`,
|
||||||
|
where `xxx` is the value of `lm_scale`. An example key is
|
||||||
|
`lm_scale_0.7`
|
||||||
|
- value: It contains the decoding result. `len(value)` equals to
|
||||||
|
batch size. `value[i]` is the decoding result for the i-th
|
||||||
|
utterance in the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
|
||||||
|
- params.method is "1best", it uses 1best decoding without LM rescoring.
|
||||||
|
- params.method is "nbest", it uses nbest decoding without LM rescoring.
|
||||||
|
- params.method is "nbest-rescoring", it uses nbest LM rescoring.
|
||||||
|
- params.method is "whole-lattice-rescoring", it uses whole lattice LM
|
||||||
|
rescoring.
|
||||||
|
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
rnn_lm_model:
|
||||||
|
The neural model for RNN LM.
|
||||||
|
HLG:
|
||||||
|
The decoding graph. Used only when params.method is NOT ctc-decoding.
|
||||||
|
H:
|
||||||
|
The ctc topo. Used only when params.method is ctc-decoding.
|
||||||
|
bpe_model:
|
||||||
|
The BPE model. Used only when params.method is ctc-decoding.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
word_table:
|
||||||
|
The word symbol table.
|
||||||
|
sos_id:
|
||||||
|
The token ID of the SOS.
|
||||||
|
eos_id:
|
||||||
|
The token ID of the EOS.
|
||||||
|
G:
|
||||||
|
An LM. It is not None when params.method is "nbest-rescoring"
|
||||||
|
or "whole-lattice-rescoring". In general, the G in HLG
|
||||||
|
is a 3-gram LM, while this G is a 4-gram LM.
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. See above description for the format of
|
||||||
|
the returned dict. Note: If it decodes to nothing, then return None.
|
||||||
|
"""
|
||||||
|
if HLG is not None:
|
||||||
|
device = HLG.device
|
||||||
|
else:
|
||||||
|
device = H.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device)
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
|
nnet_output, _ = model.encoder(feature, feature_lens)
|
||||||
|
ctc_output = model.ctc_output(nnet_output)
|
||||||
|
# nnet_output is (N, T, C)
|
||||||
|
|
||||||
|
supervision_segments = torch.stack(
|
||||||
|
(
|
||||||
|
supervisions["sequence_idx"],
|
||||||
|
supervisions["start_frame"] // params.subsampling_factor,
|
||||||
|
supervisions["num_frames"] // params.subsampling_factor,
|
||||||
|
),
|
||||||
|
1,
|
||||||
|
).to(torch.int32)
|
||||||
|
|
||||||
|
if H is None:
|
||||||
|
assert HLG is not None
|
||||||
|
decoding_graph = HLG
|
||||||
|
else:
|
||||||
|
assert HLG is None
|
||||||
|
assert bpe_model is not None
|
||||||
|
decoding_graph = H
|
||||||
|
|
||||||
|
lattice = get_lattice(
|
||||||
|
nnet_output=ctc_output,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
supervision_segments=supervision_segments,
|
||||||
|
search_beam=params.search_beam,
|
||||||
|
output_beam=params.output_beam,
|
||||||
|
min_active_states=params.min_active_states,
|
||||||
|
max_active_states=params.max_active_states,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.method == "ctc-decoding":
|
||||||
|
best_path = one_best_decoding(
|
||||||
|
lattice=lattice, use_double_scores=params.use_double_scores
|
||||||
|
)
|
||||||
|
# Note: `best_path.aux_labels` contains token IDs, not word IDs
|
||||||
|
# since we are using H, not HLG here.
|
||||||
|
#
|
||||||
|
# token_ids is a lit-of-list of IDs
|
||||||
|
token_ids = get_texts(best_path)
|
||||||
|
|
||||||
|
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
|
||||||
|
hyps = bpe_model.decode(token_ids)
|
||||||
|
|
||||||
|
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
|
||||||
|
hyps = [s.split() for s in hyps]
|
||||||
|
key = "ctc-decoding"
|
||||||
|
return {key: hyps}
|
||||||
|
|
||||||
|
if params.method == "nbest-oracle":
|
||||||
|
# Note: You can also pass rescored lattices to it.
|
||||||
|
# We choose the HLG decoded lattice for speed reasons
|
||||||
|
# as HLG decoding is faster and the oracle WER
|
||||||
|
# is only slightly worse than that of rescored lattices.
|
||||||
|
best_path = nbest_oracle(
|
||||||
|
lattice=lattice,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
ref_texts=supervisions["text"],
|
||||||
|
word_table=word_table,
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
oov="<UNK>",
|
||||||
|
)
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||||
|
key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}" # noqa
|
||||||
|
return {key: hyps}
|
||||||
|
|
||||||
|
if params.method in ["1best", "nbest"]:
|
||||||
|
if params.method == "1best":
|
||||||
|
best_path = one_best_decoding(
|
||||||
|
lattice=lattice, use_double_scores=params.use_double_scores
|
||||||
|
)
|
||||||
|
key = "no_rescore"
|
||||||
|
else:
|
||||||
|
best_path = nbest_decoding(
|
||||||
|
lattice=lattice,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
use_double_scores=params.use_double_scores,
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}" # noqa
|
||||||
|
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||||
|
return {key: hyps}
|
||||||
|
|
||||||
|
assert params.method in [
|
||||||
|
"nbest-rescoring",
|
||||||
|
"whole-lattice-rescoring",
|
||||||
|
"attention-decoder",
|
||||||
|
"rnn-lm",
|
||||||
|
]
|
||||||
|
|
||||||
|
lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
|
||||||
|
|
||||||
|
nnet_output = nnet_output.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||||
|
mask = encoder_padding_mask(nnet_output.size(0), supervisions)
|
||||||
|
mask = mask.to(nnet_output.device) if mask is not None else None
|
||||||
|
mmodel = model.decoder.module if hasattr(model.decoder, "module") else model.decoder
|
||||||
|
|
||||||
|
if params.method == "nbest-rescoring":
|
||||||
|
best_path_dict = rescore_with_n_best_list(
|
||||||
|
lattice=lattice,
|
||||||
|
G=G,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
lm_scale_list=lm_scale_list,
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
elif params.method == "whole-lattice-rescoring":
|
||||||
|
best_path_dict = rescore_with_whole_lattice(
|
||||||
|
lattice=lattice,
|
||||||
|
G_with_epsilon_loops=G,
|
||||||
|
lm_scale_list=lm_scale_list,
|
||||||
|
)
|
||||||
|
elif params.method == "attention-decoder":
|
||||||
|
# lattice uses a 3-gram Lm. We rescore it with a 4-gram LM.
|
||||||
|
rescored_lattice = rescore_with_whole_lattice(
|
||||||
|
lattice=lattice,
|
||||||
|
G_with_epsilon_loops=G,
|
||||||
|
lm_scale_list=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
best_path_dict = rescore_with_attention_decoder(
|
||||||
|
lattice=rescored_lattice,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
model=mmodel,
|
||||||
|
memory=nnet_output,
|
||||||
|
memory_key_padding_mask=mask,
|
||||||
|
sos_id=sos_id,
|
||||||
|
eos_id=eos_id,
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
elif params.method == "rnn-lm":
|
||||||
|
# lattice uses a 3-gram Lm. We rescore it with a 4-gram LM.
|
||||||
|
rescored_lattice = rescore_with_whole_lattice(
|
||||||
|
lattice=lattice,
|
||||||
|
G_with_epsilon_loops=G,
|
||||||
|
lm_scale_list=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
best_path_dict = rescore_with_rnn_lm(
|
||||||
|
lattice=rescored_lattice,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
rnn_lm_model=rnn_lm_model,
|
||||||
|
model=mmodel,
|
||||||
|
memory=nnet_output,
|
||||||
|
memory_key_padding_mask=mask,
|
||||||
|
sos_id=sos_id,
|
||||||
|
eos_id=eos_id,
|
||||||
|
blank_id=0,
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert False, f"Unsupported decoding method: {params.method}"
|
||||||
|
|
||||||
|
ans = dict()
|
||||||
|
if best_path_dict is not None:
|
||||||
|
for lm_scale_str, best_path in best_path_dict.items():
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||||
|
ans[lm_scale_str] = hyps
|
||||||
|
else:
|
||||||
|
ans = None
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
rnn_lm_model: Optional[nn.Module],
|
||||||
|
HLG: Optional[k2.Fsa],
|
||||||
|
H: Optional[k2.Fsa],
|
||||||
|
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||||
|
word_table: k2.SymbolTable,
|
||||||
|
sos_id: int,
|
||||||
|
eos_id: int,
|
||||||
|
G: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
rnn_lm_model:
|
||||||
|
The neural model for RNN LM.
|
||||||
|
HLG:
|
||||||
|
The decoding graph. Used only when params.method is NOT ctc-decoding.
|
||||||
|
H:
|
||||||
|
The ctc topo. Used only when params.method is ctc-decoding.
|
||||||
|
bpe_model:
|
||||||
|
The BPE model. Used only when params.method is ctc-decoding.
|
||||||
|
word_table:
|
||||||
|
It is the word symbol table.
|
||||||
|
sos_id:
|
||||||
|
The token ID for SOS.
|
||||||
|
eos_id:
|
||||||
|
The token ID for EOS.
|
||||||
|
G:
|
||||||
|
An LM. It is not None when params.method is "nbest-rescoring"
|
||||||
|
or "whole-lattice-rescoring". In general, the G in HLG
|
||||||
|
is a 3-gram LM, while this G is a 4-gram LM.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "no-rescore" if no LM rescoring
|
||||||
|
is used, or it may be "lm_scale_0.7" if LM rescoring is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||||
|
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
rnn_lm_model=rnn_lm_model,
|
||||||
|
HLG=HLG,
|
||||||
|
H=H,
|
||||||
|
bpe_model=bpe_model,
|
||||||
|
batch=batch,
|
||||||
|
word_table=word_table,
|
||||||
|
G=G,
|
||||||
|
sos_id=sos_id,
|
||||||
|
eos_id=eos_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
if hyps_dict is not None:
|
||||||
|
for lm_scale, hyps in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||||
|
ref_words = ref_text.split()
|
||||||
|
this_batch.append((cut_id, ref_words, hyp_words))
|
||||||
|
|
||||||
|
results[lm_scale].extend(this_batch)
|
||||||
|
else:
|
||||||
|
assert len(results) > 0, "It should not decode to empty in the first batch!"
|
||||||
|
this_batch = []
|
||||||
|
hyp_words = []
|
||||||
|
for ref_text in texts:
|
||||||
|
ref_words = ref_text.split()
|
||||||
|
this_batch.append((ref_words, hyp_words))
|
||||||
|
|
||||||
|
for lm_scale in results.keys():
|
||||||
|
results[lm_scale].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(texts)
|
||||||
|
|
||||||
|
if batch_idx % 100 == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[str, List[int], List[int]]]],
|
||||||
|
):
|
||||||
|
if params.method in ("attention-decoder", "rnn-lm"):
|
||||||
|
# Set it to False since there are too many logs.
|
||||||
|
enable_log = False
|
||||||
|
else:
|
||||||
|
enable_log = True
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt"
|
||||||
|
results = sorted(results)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
if enable_log:
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=enable_log
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
if enable_log:
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = params.exp_dir / f"wer-summary-{test_set_name}.txt"
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
args.lang_dir = Path(args.lang_dir)
|
||||||
|
args.lm_dir = Path(args.lm_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log-{params.method}/log-decode")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
max_token_id = max(lexicon.tokens)
|
||||||
|
num_classes = max_token_id + 1 # +1 for the blank
|
||||||
|
params.vocab_size = num_classes
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
graph_compiler = BpeCtcTrainingGraphCompiler(
|
||||||
|
params.lang_dir,
|
||||||
|
device=device,
|
||||||
|
sos_token="<sos/eos>",
|
||||||
|
eos_token="<sos/eos>",
|
||||||
|
)
|
||||||
|
sos_id = graph_compiler.sos_id
|
||||||
|
eos_id = graph_compiler.eos_id
|
||||||
|
|
||||||
|
params.num_classes = num_classes
|
||||||
|
params.sos_id = sos_id
|
||||||
|
params.eos_id = eos_id
|
||||||
|
|
||||||
|
if params.method == "ctc-decoding":
|
||||||
|
HLG = None
|
||||||
|
H = k2.ctc_topo(
|
||||||
|
max_token=max_token_id,
|
||||||
|
modified=False,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
bpe_model = spm.SentencePieceProcessor()
|
||||||
|
bpe_model.load(str(params.lang_dir / "bpe.model"))
|
||||||
|
else:
|
||||||
|
H = None
|
||||||
|
bpe_model = None
|
||||||
|
HLG = k2.Fsa.from_dict(
|
||||||
|
torch.load(f"{params.lang_dir}/HLG.pt", map_location=device)
|
||||||
|
)
|
||||||
|
assert HLG.requires_grad is False
|
||||||
|
|
||||||
|
if not hasattr(HLG, "lm_scores"):
|
||||||
|
HLG.lm_scores = HLG.scores.clone()
|
||||||
|
|
||||||
|
if params.method in (
|
||||||
|
"nbest-rescoring",
|
||||||
|
"whole-lattice-rescoring",
|
||||||
|
"attention-decoder",
|
||||||
|
"rnn-lm",
|
||||||
|
):
|
||||||
|
if not (params.lm_dir / "G_4_gram.pt").is_file():
|
||||||
|
logging.info("Loading G_4_gram.fst.txt")
|
||||||
|
logging.warning("It may take 8 minutes.")
|
||||||
|
with open(params.lm_dir / "G_4_gram.fst.txt") as f:
|
||||||
|
#with open(params.lm_dir / "G_3_gram.fst.txt") as f:
|
||||||
|
first_word_disambig_id = lexicon.word_table["#0"]
|
||||||
|
|
||||||
|
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||||
|
# G.aux_labels is not needed in later computations, so
|
||||||
|
# remove it here.
|
||||||
|
del G.aux_labels
|
||||||
|
# CAUTION: The following line is crucial.
|
||||||
|
# Arcs entering the back-off state have label equal to #0.
|
||||||
|
# We have to change it to 0 here.
|
||||||
|
G.labels[G.labels >= first_word_disambig_id] = 0
|
||||||
|
# See https://github.com/k2-fsa/k2/issues/874
|
||||||
|
# for why we need to set G.properties to None
|
||||||
|
G.__dict__["_properties"] = None
|
||||||
|
G = k2.Fsa.from_fsas([G]).to(device)
|
||||||
|
G = k2.arc_sort(G)
|
||||||
|
# Save a dummy value so that it can be loaded in C++.
|
||||||
|
# See https://github.com/pytorch/pytorch/issues/67902
|
||||||
|
# for why we need to do this.
|
||||||
|
G.dummy = 1
|
||||||
|
|
||||||
|
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
|
||||||
|
else:
|
||||||
|
logging.info("Loading pre-compiled G_4_gram.pt")
|
||||||
|
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location=device)
|
||||||
|
G = k2.Fsa.from_dict(d)
|
||||||
|
|
||||||
|
if params.method in [
|
||||||
|
"whole-lattice-rescoring",
|
||||||
|
"attention-decoder",
|
||||||
|
"rnn-lm",
|
||||||
|
]:
|
||||||
|
# Add epsilon self-loops to G as we will compose
|
||||||
|
# it with the whole lattice later
|
||||||
|
G = k2.add_epsilon_self_loops(G)
|
||||||
|
G = k2.arc_sort(G)
|
||||||
|
G = G.to(device)
|
||||||
|
|
||||||
|
# G.lm_scores is used to replace HLG.lm_scores during
|
||||||
|
# LM rescoring.
|
||||||
|
G.lm_scores = G.scores.clone()
|
||||||
|
else:
|
||||||
|
G = None
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_ctc_model(params)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if i >= 1:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
rnn_lm_model = None
|
||||||
|
if params.method == "rnn-lm":
|
||||||
|
rnn_lm_model = RnnLmModel(
|
||||||
|
vocab_size=params.num_classes,
|
||||||
|
embedding_dim=params.rnn_lm_embedding_dim,
|
||||||
|
hidden_dim=params.rnn_lm_hidden_dim,
|
||||||
|
num_layers=params.rnn_lm_num_layers,
|
||||||
|
tie_weights=params.rnn_lm_tie_weights,
|
||||||
|
)
|
||||||
|
if params.rnn_lm_avg == 1:
|
||||||
|
load_checkpoint(
|
||||||
|
f"{params.rnn_lm_exp_dir}/epoch-{params.rnn_lm_epoch}.pt",
|
||||||
|
rnn_lm_model,
|
||||||
|
)
|
||||||
|
rnn_lm_model.to(device)
|
||||||
|
else:
|
||||||
|
rnn_lm_model = load_averaged_model(
|
||||||
|
params.rnn_lm_exp_dir,
|
||||||
|
rnn_lm_model,
|
||||||
|
params.rnn_lm_epoch,
|
||||||
|
params.rnn_lm_avg,
|
||||||
|
device,
|
||||||
|
)
|
||||||
|
rnn_lm_model.eval()
|
||||||
|
|
||||||
|
# we need cut ids to display recognition results.
|
||||||
|
args.return_cuts = True
|
||||||
|
librispeech = LibriSpeechAsrDataModule(args)
|
||||||
|
|
||||||
|
test_clean_cuts = librispeech.test_clean_cuts()
|
||||||
|
test_other_cuts = librispeech.test_other_cuts()
|
||||||
|
|
||||||
|
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
|
||||||
|
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
|
||||||
|
|
||||||
|
test_sets = ["test-clean", "test-other"]
|
||||||
|
test_dl = [test_clean_dl, test_other_dl]
|
||||||
|
|
||||||
|
for test_set, test_dl in zip(test_sets, test_dl):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
rnn_lm_model=rnn_lm_model,
|
||||||
|
HLG=HLG,
|
||||||
|
H=H,
|
||||||
|
bpe_model=bpe_model,
|
||||||
|
word_table=lexicon.word_table,
|
||||||
|
G=G,
|
||||||
|
sos_id=sos_id,
|
||||||
|
eos_id=eos_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(params=params, test_set_name=test_set, results_dict=results_dict)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
298
egs/librispeech/ASR/zipformer_ctc_streaming/decoder.py
Normal file
298
egs/librispeech/ASR/zipformer_ctc_streaming/decoder.py
Normal file
@ -0,0 +1,298 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from label_smoothing import LabelSmoothingLoss
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from transformer import PositionalEncoding, TransformerDecoderLayer
|
||||||
|
|
||||||
|
|
||||||
|
class Decoder(nn.Module):
|
||||||
|
"""This class implements Transformer based decoder for an attention-based encoder-decoder
|
||||||
|
model.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
num_layers: int,
|
||||||
|
num_classes: int,
|
||||||
|
d_model: int = 256,
|
||||||
|
nhead: int = 4,
|
||||||
|
dim_feedforward: int = 2048,
|
||||||
|
dropout: float = 0.1,
|
||||||
|
normalize_before: bool = True,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
num_layers:
|
||||||
|
Number of layers.
|
||||||
|
num_classes:
|
||||||
|
Number of tokens of the modeling unit including blank.
|
||||||
|
d_model:
|
||||||
|
Dimension of the input embedding, and of the decoder output.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
if num_layers > 0:
|
||||||
|
self.decoder_num_class = num_classes # bpe model already has sos/eos symbol
|
||||||
|
|
||||||
|
self.decoder_embed = nn.Embedding(
|
||||||
|
num_embeddings=self.decoder_num_class, embedding_dim=d_model
|
||||||
|
)
|
||||||
|
self.decoder_pos = PositionalEncoding(d_model, dropout)
|
||||||
|
|
||||||
|
decoder_layer = TransformerDecoderLayer(
|
||||||
|
d_model=d_model,
|
||||||
|
nhead=nhead,
|
||||||
|
dim_feedforward=dim_feedforward,
|
||||||
|
dropout=dropout,
|
||||||
|
normalize_before=normalize_before,
|
||||||
|
)
|
||||||
|
|
||||||
|
if normalize_before:
|
||||||
|
decoder_norm = nn.LayerNorm(d_model)
|
||||||
|
else:
|
||||||
|
decoder_norm = None
|
||||||
|
|
||||||
|
self.decoder = nn.TransformerDecoder(
|
||||||
|
decoder_layer=decoder_layer,
|
||||||
|
num_layers=num_layers,
|
||||||
|
norm=decoder_norm,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.decoder_output_layer = torch.nn.Linear(d_model, self.decoder_num_class)
|
||||||
|
self.decoder_criterion = LabelSmoothingLoss()
|
||||||
|
else:
|
||||||
|
self.decoder_criterion = None
|
||||||
|
|
||||||
|
@torch.jit.export
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
memory: torch.Tensor,
|
||||||
|
memory_key_padding_mask: torch.Tensor,
|
||||||
|
token_ids: List[List[int]],
|
||||||
|
sos_id: int,
|
||||||
|
eos_id: int,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
memory:
|
||||||
|
It's the output of the encoder with shape (T, N, C)
|
||||||
|
memory_key_padding_mask:
|
||||||
|
The padding mask from the encoder.
|
||||||
|
token_ids:
|
||||||
|
A list-of-list IDs. Each sublist contains IDs for an utterance.
|
||||||
|
The IDs can be either phone IDs or word piece IDs.
|
||||||
|
sos_id:
|
||||||
|
sos token id
|
||||||
|
eos_id:
|
||||||
|
eos token id
|
||||||
|
Returns:
|
||||||
|
A scalar, the **sum** of label smoothing loss over utterances
|
||||||
|
in the batch without any normalization.
|
||||||
|
"""
|
||||||
|
ys_in = add_sos(token_ids, sos_id=sos_id)
|
||||||
|
ys_in = [torch.tensor(y) for y in ys_in]
|
||||||
|
ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id))
|
||||||
|
|
||||||
|
ys_out = add_eos(token_ids, eos_id=eos_id)
|
||||||
|
ys_out = [torch.tensor(y) for y in ys_out]
|
||||||
|
ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1))
|
||||||
|
|
||||||
|
device = memory.device
|
||||||
|
ys_in_pad = ys_in_pad.to(device)
|
||||||
|
ys_out_pad = ys_out_pad.to(device)
|
||||||
|
|
||||||
|
tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device)
|
||||||
|
|
||||||
|
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
||||||
|
# TODO: Use length information to create the decoder padding mask
|
||||||
|
# We set the first column to False since the first column in ys_in_pad
|
||||||
|
# contains sos_id, which is the same as eos_id in our current setting.
|
||||||
|
tgt_key_padding_mask[:, 0] = False
|
||||||
|
|
||||||
|
tgt = self.decoder_embed(ys_in_pad) # (N, T) -> (N, T, C)
|
||||||
|
tgt = self.decoder_pos(tgt)
|
||||||
|
tgt = tgt.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||||
|
pred_pad = self.decoder(
|
||||||
|
tgt=tgt,
|
||||||
|
memory=memory,
|
||||||
|
tgt_mask=tgt_mask,
|
||||||
|
tgt_key_padding_mask=tgt_key_padding_mask,
|
||||||
|
memory_key_padding_mask=memory_key_padding_mask,
|
||||||
|
) # (T, N, C)
|
||||||
|
pred_pad = pred_pad.permute(1, 0, 2) # (T, N, C) -> (N, T, C)
|
||||||
|
pred_pad = self.decoder_output_layer(pred_pad) # (N, T, C)
|
||||||
|
|
||||||
|
decoder_loss = self.decoder_criterion(pred_pad, ys_out_pad)
|
||||||
|
|
||||||
|
return decoder_loss
|
||||||
|
|
||||||
|
@torch.jit.export
|
||||||
|
def decoder_nll(
|
||||||
|
self,
|
||||||
|
memory: torch.Tensor,
|
||||||
|
memory_key_padding_mask: torch.Tensor,
|
||||||
|
token_ids: List[torch.Tensor],
|
||||||
|
sos_id: int,
|
||||||
|
eos_id: int,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
memory:
|
||||||
|
It's the output of the encoder with shape (T, N, C)
|
||||||
|
memory_key_padding_mask:
|
||||||
|
The padding mask from the encoder.
|
||||||
|
token_ids:
|
||||||
|
A list-of-list IDs (e.g., word piece IDs).
|
||||||
|
Each sublist represents an utterance.
|
||||||
|
sos_id:
|
||||||
|
The token ID for SOS.
|
||||||
|
eos_id:
|
||||||
|
The token ID for EOS.
|
||||||
|
Returns:
|
||||||
|
A 2-D tensor of shape (len(token_ids), max_token_length)
|
||||||
|
representing the cross entropy loss (i.e., negative log-likelihood).
|
||||||
|
"""
|
||||||
|
# The common part between this function and decoder_forward could be
|
||||||
|
# extracted as a separate function.
|
||||||
|
if isinstance(token_ids[0], torch.Tensor):
|
||||||
|
# This branch is executed by torchscript in C++.
|
||||||
|
# See https://github.com/k2-fsa/k2/pull/870
|
||||||
|
# https://github.com/k2-fsa/k2/blob/3c1c18400060415b141ccea0115fd4bf0ad6234e/k2/torch/bin/attention_rescore.cu#L286
|
||||||
|
token_ids = [tolist(t) for t in token_ids]
|
||||||
|
|
||||||
|
ys_in = add_sos(token_ids, sos_id=sos_id)
|
||||||
|
ys_in = [torch.tensor(y) for y in ys_in]
|
||||||
|
ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id))
|
||||||
|
|
||||||
|
ys_out = add_eos(token_ids, eos_id=eos_id)
|
||||||
|
ys_out = [torch.tensor(y) for y in ys_out]
|
||||||
|
ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1))
|
||||||
|
|
||||||
|
device = memory.device
|
||||||
|
ys_in_pad = ys_in_pad.to(device, dtype=torch.int64)
|
||||||
|
ys_out_pad = ys_out_pad.to(device, dtype=torch.int64)
|
||||||
|
|
||||||
|
tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device)
|
||||||
|
|
||||||
|
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
||||||
|
# TODO: Use length information to create the decoder padding mask
|
||||||
|
# We set the first column to False since the first column in ys_in_pad
|
||||||
|
# contains sos_id, which is the same as eos_id in our current setting.
|
||||||
|
tgt_key_padding_mask[:, 0] = False
|
||||||
|
|
||||||
|
tgt = self.decoder_embed(ys_in_pad) # (B, T) -> (B, T, F)
|
||||||
|
tgt = self.decoder_pos(tgt)
|
||||||
|
tgt = tgt.permute(1, 0, 2) # (B, T, F) -> (T, B, F)
|
||||||
|
pred_pad = self.decoder(
|
||||||
|
tgt=tgt,
|
||||||
|
memory=memory,
|
||||||
|
tgt_mask=tgt_mask,
|
||||||
|
tgt_key_padding_mask=tgt_key_padding_mask,
|
||||||
|
memory_key_padding_mask=memory_key_padding_mask,
|
||||||
|
) # (T, B, F)
|
||||||
|
pred_pad = pred_pad.permute(1, 0, 2) # (T, B, F) -> (B, T, F)
|
||||||
|
pred_pad = self.decoder_output_layer(pred_pad) # (B, T, F)
|
||||||
|
# nll: negative log-likelihood
|
||||||
|
nll = torch.nn.functional.cross_entropy(
|
||||||
|
pred_pad.view(-1, self.decoder_num_class),
|
||||||
|
ys_out_pad.view(-1),
|
||||||
|
ignore_index=-1,
|
||||||
|
reduction="none",
|
||||||
|
)
|
||||||
|
|
||||||
|
nll = nll.view(pred_pad.shape[0], -1)
|
||||||
|
|
||||||
|
return nll
|
||||||
|
|
||||||
|
|
||||||
|
def add_sos(token_ids: List[List[int]], sos_id: int) -> List[List[int]]:
|
||||||
|
"""Prepend sos_id to each utterance.
|
||||||
|
Args:
|
||||||
|
token_ids:
|
||||||
|
A list-of-list of token IDs. Each sublist contains
|
||||||
|
token IDs (e.g., word piece IDs) of an utterance.
|
||||||
|
sos_id:
|
||||||
|
The ID of the SOS token.
|
||||||
|
Return:
|
||||||
|
Return a new list-of-list, where each sublist starts
|
||||||
|
with SOS ID.
|
||||||
|
"""
|
||||||
|
return [[sos_id] + utt for utt in token_ids]
|
||||||
|
|
||||||
|
|
||||||
|
def add_eos(token_ids: List[List[int]], eos_id: int) -> List[List[int]]:
|
||||||
|
"""Append eos_id to each utterance.
|
||||||
|
Args:
|
||||||
|
token_ids:
|
||||||
|
A list-of-list of token IDs. Each sublist contains
|
||||||
|
token IDs (e.g., word piece IDs) of an utterance.
|
||||||
|
eos_id:
|
||||||
|
The ID of the EOS token.
|
||||||
|
Return:
|
||||||
|
Return a new list-of-list, where each sublist ends
|
||||||
|
with EOS ID.
|
||||||
|
"""
|
||||||
|
return [utt + [eos_id] for utt in token_ids]
|
||||||
|
|
||||||
|
|
||||||
|
def decoder_padding_mask(ys_pad: torch.Tensor, ignore_id: int = -1) -> torch.Tensor:
|
||||||
|
"""Generate a length mask for input.
|
||||||
|
The masked position are filled with True,
|
||||||
|
Unmasked positions are filled with False.
|
||||||
|
Args:
|
||||||
|
ys_pad:
|
||||||
|
padded tensor of dimension (batch_size, input_length).
|
||||||
|
ignore_id:
|
||||||
|
the ignored number (the padding number) in ys_pad
|
||||||
|
Returns:
|
||||||
|
Tensor:
|
||||||
|
a bool tensor of the same shape as the input tensor.
|
||||||
|
"""
|
||||||
|
ys_mask = ys_pad == ignore_id
|
||||||
|
return ys_mask
|
||||||
|
|
||||||
|
|
||||||
|
def generate_square_subsequent_mask(sz: int) -> torch.Tensor:
|
||||||
|
"""Generate a square mask for the sequence. The masked positions are
|
||||||
|
filled with float('-inf'). Unmasked positions are filled with float(0.0).
|
||||||
|
The mask can be used for masked self-attention.
|
||||||
|
For instance, if sz is 3, it returns::
|
||||||
|
tensor([[0., -inf, -inf],
|
||||||
|
[0., 0., -inf],
|
||||||
|
[0., 0., 0]])
|
||||||
|
Args:
|
||||||
|
sz: mask size
|
||||||
|
Returns:
|
||||||
|
A square mask of dimension (sz, sz)
|
||||||
|
"""
|
||||||
|
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
|
||||||
|
mask = (
|
||||||
|
mask.float()
|
||||||
|
.masked_fill(mask == 0, float("-inf"))
|
||||||
|
.masked_fill(mask == 1, float(0.0))
|
||||||
|
)
|
||||||
|
return mask
|
||||||
|
|
||||||
|
|
||||||
|
def tolist(t: torch.Tensor) -> List[int]:
|
||||||
|
"""Used by jit"""
|
||||||
|
return torch.jit.annotate(List[int], t.tolist())
|
@ -0,0 +1,43 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
|
class EncoderInterface(nn.Module):
|
||||||
|
def forward(
|
||||||
|
self, x: torch.Tensor, x_lens: torch.Tensor
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
A tensor of shape (batch_size, input_seq_len, num_features)
|
||||||
|
containing the input features.
|
||||||
|
x_lens:
|
||||||
|
A tensor of shape (batch_size,) containing the number of frames
|
||||||
|
in `x` before padding.
|
||||||
|
Returns:
|
||||||
|
Return a tuple containing two tensors:
|
||||||
|
- encoder_out, a tensor of (batch_size, out_seq_len, output_dim)
|
||||||
|
containing unnormalized probabilities, i.e., the output of a
|
||||||
|
linear layer.
|
||||||
|
- encoder_out_lens, a tensor of shape (batch_size,) containing
|
||||||
|
the number of frames in `encoder_out` before padding.
|
||||||
|
"""
|
||||||
|
raise NotImplementedError("Please implement it in a subclass")
|
240
egs/librispeech/ASR/zipformer_ctc_streaming/export.py
Executable file
240
egs/librispeech/ASR/zipformer_ctc_streaming/export.py
Executable file
@ -0,0 +1,240 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
# This script converts several saved checkpoints
|
||||||
|
# to a single one using model averaging.
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from scaling_converter import convert_scaled_to_non_scaled
|
||||||
|
from train import add_model_arguments, get_ctc_model, get_params
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="It specifies the checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=9,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch'. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="zipformer_ctc/exp",
|
||||||
|
help="""It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500",
|
||||||
|
help="""It contains language related input files such as "lexicon.txt"
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--jit",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="""True to save a model after applying torch.jit.script.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_parser().parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
args.lang_dir = Path(args.lang_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
max_token_id = max(lexicon.tokens)
|
||||||
|
num_classes = max_token_id + 1 # +1 for the blank
|
||||||
|
params.vocab_size = num_classes
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
model = get_ctc_model(params)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if i >= 1:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to("cpu")
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
if params.jit:
|
||||||
|
logging.info("Using torch.jit.script")
|
||||||
|
# We won't use the forward() method of the model in C++, so just ignore
|
||||||
|
# it here.
|
||||||
|
# Otherwise, one of its arguments is a ragged tensor and is not
|
||||||
|
# torch scriptabe.
|
||||||
|
convert_scaled_to_non_scaled(model, inplace=True)
|
||||||
|
model = torch.jit.script(model)
|
||||||
|
filename = params.exp_dir / "cpu_jit.pt"
|
||||||
|
model.save(str(filename))
|
||||||
|
logging.info(f"Saved to {filename}")
|
||||||
|
else:
|
||||||
|
logging.info("Not using torch.jit.script")
|
||||||
|
# Save it using a format so that it can be loaded
|
||||||
|
# by :func:`load_checkpoint`
|
||||||
|
filename = params.exp_dir / "pretrained.pt"
|
||||||
|
torch.save({"model": model.state_dict()}, str(filename))
|
||||||
|
logging.info(f"Saved to {filename}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
109
egs/librispeech/ASR/zipformer_ctc_streaming/label_smoothing.py
Normal file
109
egs/librispeech/ASR/zipformer_ctc_streaming/label_smoothing.py
Normal file
@ -0,0 +1,109 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
class LabelSmoothingLoss(torch.nn.Module):
|
||||||
|
"""
|
||||||
|
Implement the LabelSmoothingLoss proposed in the following paper
|
||||||
|
https://arxiv.org/pdf/1512.00567.pdf
|
||||||
|
(Rethinking the Inception Architecture for Computer Vision)
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
ignore_index: int = -1,
|
||||||
|
label_smoothing: float = 0.1,
|
||||||
|
reduction: str = "sum",
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
ignore_index:
|
||||||
|
ignored class id
|
||||||
|
label_smoothing:
|
||||||
|
smoothing rate (0.0 means the conventional cross entropy loss)
|
||||||
|
reduction:
|
||||||
|
It has the same meaning as the reduction in
|
||||||
|
`torch.nn.CrossEntropyLoss`. It can be one of the following three
|
||||||
|
values: (1) "none": No reduction will be applied. (2) "mean": the
|
||||||
|
mean of the output is taken. (3) "sum": the output will be summed.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
assert 0.0 <= label_smoothing < 1.0, f"{label_smoothing}"
|
||||||
|
assert reduction in ("none", "sum", "mean"), reduction
|
||||||
|
self.ignore_index = ignore_index
|
||||||
|
self.label_smoothing = label_smoothing
|
||||||
|
self.reduction = reduction
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Compute loss between x and target.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
prediction of dimension
|
||||||
|
(batch_size, input_length, number_of_classes).
|
||||||
|
target:
|
||||||
|
target masked with self.ignore_index of
|
||||||
|
dimension (batch_size, input_length).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A scalar tensor containing the loss without normalization.
|
||||||
|
"""
|
||||||
|
assert x.ndim == 3
|
||||||
|
assert target.ndim == 2
|
||||||
|
assert x.shape[:2] == target.shape
|
||||||
|
num_classes = x.size(-1)
|
||||||
|
x = x.reshape(-1, num_classes)
|
||||||
|
# Now x is of shape (N*T, C)
|
||||||
|
|
||||||
|
# We don't want to change target in-place below,
|
||||||
|
# so we make a copy of it here
|
||||||
|
target = target.clone().reshape(-1)
|
||||||
|
|
||||||
|
ignored = target == self.ignore_index
|
||||||
|
|
||||||
|
# See https://github.com/k2-fsa/icefall/issues/240
|
||||||
|
# and https://github.com/k2-fsa/icefall/issues/297
|
||||||
|
# for why we don't use target[ignored] = 0 here
|
||||||
|
target = torch.where(ignored, torch.zeros_like(target), target)
|
||||||
|
|
||||||
|
true_dist = torch.nn.functional.one_hot(target, num_classes=num_classes).to(x)
|
||||||
|
|
||||||
|
true_dist = (
|
||||||
|
true_dist * (1 - self.label_smoothing) + self.label_smoothing / num_classes
|
||||||
|
)
|
||||||
|
|
||||||
|
# Set the value of ignored indexes to 0
|
||||||
|
#
|
||||||
|
# See https://github.com/k2-fsa/icefall/issues/240
|
||||||
|
# and https://github.com/k2-fsa/icefall/issues/297
|
||||||
|
# for why we don't use true_dist[ignored] = 0 here
|
||||||
|
true_dist = torch.where(
|
||||||
|
ignored.unsqueeze(1).repeat(1, true_dist.shape[1]),
|
||||||
|
torch.zeros_like(true_dist),
|
||||||
|
true_dist,
|
||||||
|
)
|
||||||
|
|
||||||
|
loss = -1 * (torch.log_softmax(x, dim=1) * true_dist)
|
||||||
|
if self.reduction == "sum":
|
||||||
|
return loss.sum()
|
||||||
|
elif self.reduction == "mean":
|
||||||
|
return loss.sum() / (~ignored).sum()
|
||||||
|
else:
|
||||||
|
return loss.sum(dim=-1)
|
158
egs/librispeech/ASR/zipformer_ctc_streaming/model.py
Normal file
158
egs/librispeech/ASR/zipformer_ctc_streaming/model.py
Normal file
@ -0,0 +1,158 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from encoder_interface import EncoderInterface
|
||||||
|
from transformer import encoder_padding_mask
|
||||||
|
|
||||||
|
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||||
|
from icefall.utils import encode_supervisions
|
||||||
|
|
||||||
|
|
||||||
|
class CTCModel(nn.Module):
|
||||||
|
"""It implements a CTC model with an auxiliary attention head."""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
encoder: EncoderInterface,
|
||||||
|
decoder: nn.Module,
|
||||||
|
encoder_dim: int,
|
||||||
|
vocab_size: int,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
encoder:
|
||||||
|
An instance of `EncoderInterface`. The shared encoder for the CTC and attention
|
||||||
|
branches
|
||||||
|
decoder:
|
||||||
|
An instance of `nn.Module`. This is the decoder for the attention branch.
|
||||||
|
encoder_dim:
|
||||||
|
Dimension of the encoder output.
|
||||||
|
decoder_dim:
|
||||||
|
Dimension of the decoder output.
|
||||||
|
vocab_size:
|
||||||
|
Number of tokens of the modeling unit including blank.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
assert isinstance(encoder, EncoderInterface), type(encoder)
|
||||||
|
|
||||||
|
self.encoder = encoder
|
||||||
|
self.ctc_output = nn.Sequential(
|
||||||
|
nn.Dropout(p=0.1),
|
||||||
|
nn.Linear(encoder_dim, vocab_size),
|
||||||
|
nn.LogSoftmax(dim=-1),
|
||||||
|
)
|
||||||
|
self.decoder = decoder
|
||||||
|
|
||||||
|
@torch.jit.ignore
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x: torch.Tensor,
|
||||||
|
x_lens: torch.Tensor,
|
||||||
|
supervisions: torch.Tensor,
|
||||||
|
graph_compiler: BpeCtcTrainingGraphCompiler,
|
||||||
|
subsampling_factor: int = 1,
|
||||||
|
beam_size: int = 10,
|
||||||
|
reduction: str = "sum",
|
||||||
|
use_double_scores: bool = False,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
Tensor of dimension (N, T, C) where N is the batch size,
|
||||||
|
T is the number of frames, and C is the feature dimension.
|
||||||
|
x_lens:
|
||||||
|
Tensor of dimension (N,) where N is the batch size.
|
||||||
|
supervisions:
|
||||||
|
Supervisions are used in training.
|
||||||
|
graph_compiler:
|
||||||
|
It is used to compile a decoding graph from texts.
|
||||||
|
subsampling_factor:
|
||||||
|
It is used to compute the `supervisions` for the encoder.
|
||||||
|
beam_size:
|
||||||
|
Beam size used in `k2.ctc_loss`.
|
||||||
|
reduction:
|
||||||
|
Reduction method used in `k2.ctc_loss`.
|
||||||
|
use_double_scores:
|
||||||
|
If True, use double precision in `k2.ctc_loss`.
|
||||||
|
Returns:
|
||||||
|
Return the CTC loss, attention loss, and the total number of frames.
|
||||||
|
"""
|
||||||
|
assert x.ndim == 3, x.shape
|
||||||
|
assert x_lens.ndim == 1, x_lens.shape
|
||||||
|
|
||||||
|
nnet_output, x_lens = self.encoder(x, x_lens)
|
||||||
|
assert torch.all(x_lens > 0)
|
||||||
|
# compute ctc log-probs
|
||||||
|
ctc_output = self.ctc_output(nnet_output)
|
||||||
|
|
||||||
|
# NOTE: We need `encode_supervisions` to sort sequences with
|
||||||
|
# different duration in decreasing order, required by
|
||||||
|
# `k2.intersect_dense` called in `k2.ctc_loss`
|
||||||
|
supervision_segments, texts = encode_supervisions(
|
||||||
|
supervisions, subsampling_factor=subsampling_factor
|
||||||
|
)
|
||||||
|
num_frames = supervision_segments[:, 2].sum().item()
|
||||||
|
|
||||||
|
# Works with a BPE model
|
||||||
|
token_ids = graph_compiler.texts_to_ids(texts)
|
||||||
|
decoding_graph = graph_compiler.compile(token_ids)
|
||||||
|
|
||||||
|
dense_fsa_vec = k2.DenseFsaVec(
|
||||||
|
ctc_output,
|
||||||
|
supervision_segments.cpu(),
|
||||||
|
allow_truncate=subsampling_factor - 1,
|
||||||
|
)
|
||||||
|
|
||||||
|
ctc_loss = k2.ctc_loss(
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
dense_fsa_vec=dense_fsa_vec,
|
||||||
|
output_beam=beam_size,
|
||||||
|
reduction=reduction,
|
||||||
|
use_double_scores=use_double_scores,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.decoder is not None:
|
||||||
|
nnet_output = nnet_output.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||||
|
mmodel = (
|
||||||
|
self.decoder.module if hasattr(self.decoder, "module") else self.decoder
|
||||||
|
)
|
||||||
|
# Note: We need to generate an unsorted version of token_ids
|
||||||
|
# `encode_supervisions()` called above sorts text, but
|
||||||
|
# encoder_memory and memory_mask are not sorted, so we
|
||||||
|
# use an unsorted version `supervisions["text"]` to regenerate
|
||||||
|
# the token_ids
|
||||||
|
#
|
||||||
|
# See https://github.com/k2-fsa/icefall/issues/97
|
||||||
|
# for more details
|
||||||
|
unsorted_token_ids = graph_compiler.texts_to_ids(supervisions["text"])
|
||||||
|
mask = encoder_padding_mask(nnet_output.size(0), supervisions)
|
||||||
|
mask = mask.to(nnet_output.device) if mask is not None else None
|
||||||
|
att_loss = mmodel.forward(
|
||||||
|
nnet_output,
|
||||||
|
mask,
|
||||||
|
token_ids=unsorted_token_ids,
|
||||||
|
sos_id=graph_compiler.sos_id,
|
||||||
|
eos_id=graph_compiler.eos_id,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
att_loss = torch.tensor([0])
|
||||||
|
|
||||||
|
return ctc_loss, att_loss, num_frames
|
1061
egs/librispeech/ASR/zipformer_ctc_streaming/optim.py
Normal file
1061
egs/librispeech/ASR/zipformer_ctc_streaming/optim.py
Normal file
File diff suppressed because it is too large
Load Diff
1179
egs/librispeech/ASR/zipformer_ctc_streaming/scaling.py
Normal file
1179
egs/librispeech/ASR/zipformer_ctc_streaming/scaling.py
Normal file
File diff suppressed because it is too large
Load Diff
114
egs/librispeech/ASR/zipformer_ctc_streaming/scaling_converter.py
Normal file
114
egs/librispeech/ASR/zipformer_ctc_streaming/scaling_converter.py
Normal file
@ -0,0 +1,114 @@
|
|||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file replaces various modules in a model.
|
||||||
|
Specifically, ActivationBalancer is replaced with an identity operator;
|
||||||
|
Whiten is also replaced with an identity operator;
|
||||||
|
BasicNorm is replaced by a module with `exp` removed.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import copy
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from scaling import ActivationBalancer, BasicNorm, Whiten
|
||||||
|
|
||||||
|
|
||||||
|
class NonScaledNorm(nn.Module):
|
||||||
|
"""See BasicNorm for doc"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
num_channels: int,
|
||||||
|
eps_exp: float,
|
||||||
|
channel_dim: int = -1, # CAUTION: see documentation.
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.num_channels = num_channels
|
||||||
|
self.channel_dim = channel_dim
|
||||||
|
self.eps_exp = eps_exp
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
if not torch.jit.is_tracing():
|
||||||
|
assert x.shape[self.channel_dim] == self.num_channels
|
||||||
|
scales = (
|
||||||
|
torch.mean(x * x, dim=self.channel_dim, keepdim=True) + self.eps_exp
|
||||||
|
).pow(-0.5)
|
||||||
|
return x * scales
|
||||||
|
|
||||||
|
|
||||||
|
def convert_basic_norm(basic_norm: BasicNorm) -> NonScaledNorm:
|
||||||
|
assert isinstance(basic_norm, BasicNorm), type(BasicNorm)
|
||||||
|
norm = NonScaledNorm(
|
||||||
|
num_channels=basic_norm.num_channels,
|
||||||
|
eps_exp=basic_norm.eps.data.exp().item(),
|
||||||
|
channel_dim=basic_norm.channel_dim,
|
||||||
|
)
|
||||||
|
return norm
|
||||||
|
|
||||||
|
|
||||||
|
# Copied from https://pytorch.org/docs/1.9.0/_modules/torch/nn/modules/module.html#Module.get_submodule # noqa
|
||||||
|
# get_submodule was added to nn.Module at v1.9.0
|
||||||
|
def get_submodule(model, target):
|
||||||
|
if target == "":
|
||||||
|
return model
|
||||||
|
atoms: List[str] = target.split(".")
|
||||||
|
mod: torch.nn.Module = model
|
||||||
|
for item in atoms:
|
||||||
|
if not hasattr(mod, item):
|
||||||
|
raise AttributeError(
|
||||||
|
mod._get_name() + " has no " "attribute `" + item + "`"
|
||||||
|
)
|
||||||
|
mod = getattr(mod, item)
|
||||||
|
if not isinstance(mod, torch.nn.Module):
|
||||||
|
raise AttributeError("`" + item + "` is not " "an nn.Module")
|
||||||
|
return mod
|
||||||
|
|
||||||
|
|
||||||
|
def convert_scaled_to_non_scaled(
|
||||||
|
model: nn.Module,
|
||||||
|
inplace: bool = False,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
The model to be converted.
|
||||||
|
inplace:
|
||||||
|
If True, the input model is modified inplace.
|
||||||
|
If False, the input model is copied and we modify the copied version.
|
||||||
|
Return:
|
||||||
|
Return a model without scaled layers.
|
||||||
|
"""
|
||||||
|
if not inplace:
|
||||||
|
model = copy.deepcopy(model)
|
||||||
|
|
||||||
|
d = {}
|
||||||
|
for name, m in model.named_modules():
|
||||||
|
if isinstance(m, BasicNorm):
|
||||||
|
d[name] = convert_basic_norm(m)
|
||||||
|
elif isinstance(m, (ActivationBalancer, Whiten)):
|
||||||
|
d[name] = nn.Identity()
|
||||||
|
|
||||||
|
for k, v in d.items():
|
||||||
|
if "." in k:
|
||||||
|
parent, child = k.rsplit(".", maxsplit=1)
|
||||||
|
setattr(get_submodule(model, parent), child, v)
|
||||||
|
else:
|
||||||
|
setattr(model, k, v)
|
||||||
|
|
||||||
|
return model
|
153
egs/librispeech/ASR/zipformer_ctc_streaming/subsampling.py
Normal file
153
egs/librispeech/ASR/zipformer_ctc_streaming/subsampling.py
Normal file
@ -0,0 +1,153 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
|
class Conv2dSubsampling(nn.Module):
|
||||||
|
"""Convolutional 2D subsampling (to 1/4 length).
|
||||||
|
|
||||||
|
Convert an input of shape (N, T, idim) to an output
|
||||||
|
with shape (N, T', odim), where
|
||||||
|
T' = ((T-1)//2 - 1)//2, which approximates T' == T//4
|
||||||
|
|
||||||
|
It is based on
|
||||||
|
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/subsampling.py # noqa
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, idim: int, odim: int) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
idim:
|
||||||
|
Input dim. The input shape is (N, T, idim).
|
||||||
|
Caution: It requires: T >=7, idim >=7
|
||||||
|
odim:
|
||||||
|
Output dim. The output shape is (N, ((T-1)//2 - 1)//2, odim)
|
||||||
|
"""
|
||||||
|
assert idim >= 7
|
||||||
|
super().__init__()
|
||||||
|
self.conv = nn.Sequential(
|
||||||
|
nn.Conv2d(in_channels=1, out_channels=odim, kernel_size=3, stride=2),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Conv2d(in_channels=odim, out_channels=odim, kernel_size=3, stride=2),
|
||||||
|
nn.ReLU(),
|
||||||
|
)
|
||||||
|
self.out = nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""Subsample x.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
Its shape is (N, T, idim).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a tensor of shape (N, ((T-1)//2 - 1)//2, odim)
|
||||||
|
"""
|
||||||
|
# On entry, x is (N, T, idim)
|
||||||
|
x = x.unsqueeze(1) # (N, T, idim) -> (N, 1, T, idim) i.e., (N, C, H, W)
|
||||||
|
x = self.conv(x)
|
||||||
|
# Now x is of shape (N, odim, ((T-1)//2 - 1)//2, ((idim-1)//2 - 1)//2)
|
||||||
|
b, c, t, f = x.size()
|
||||||
|
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||||
|
# Now x is of shape (N, ((T-1)//2 - 1))//2, odim)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class VggSubsampling(nn.Module):
|
||||||
|
"""Trying to follow the setup described in the following paper:
|
||||||
|
https://arxiv.org/pdf/1910.09799.pdf
|
||||||
|
|
||||||
|
This paper is not 100% explicit so I am guessing to some extent,
|
||||||
|
and trying to compare with other VGG implementations.
|
||||||
|
|
||||||
|
Convert an input of shape (N, T, idim) to an output
|
||||||
|
with shape (N, T', odim), where
|
||||||
|
T' = ((T-1)//2 - 1)//2, which approximates T' = T//4
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, idim: int, odim: int) -> None:
|
||||||
|
"""Construct a VggSubsampling object.
|
||||||
|
|
||||||
|
This uses 2 VGG blocks with 2 Conv2d layers each,
|
||||||
|
subsampling its input by a factor of 4 in the time dimensions.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
idim:
|
||||||
|
Input dim. The input shape is (N, T, idim).
|
||||||
|
Caution: It requires: T >=7, idim >=7
|
||||||
|
odim:
|
||||||
|
Output dim. The output shape is (N, ((T-1)//2 - 1)//2, odim)
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
cur_channels = 1
|
||||||
|
layers = []
|
||||||
|
block_dims = [32, 64]
|
||||||
|
|
||||||
|
# The decision to use padding=1 for the 1st convolution, then padding=0
|
||||||
|
# for the 2nd and for the max-pooling, and ceil_mode=True, was driven by
|
||||||
|
# a back-compatibility concern so that the number of frames at the
|
||||||
|
# output would be equal to:
|
||||||
|
# (((T-1)//2)-1)//2.
|
||||||
|
# We can consider changing this by using padding=1 on the
|
||||||
|
# 2nd convolution, so the num-frames at the output would be T//4.
|
||||||
|
for block_dim in block_dims:
|
||||||
|
layers.append(
|
||||||
|
torch.nn.Conv2d(
|
||||||
|
in_channels=cur_channels,
|
||||||
|
out_channels=block_dim,
|
||||||
|
kernel_size=3,
|
||||||
|
padding=1,
|
||||||
|
stride=1,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
layers.append(torch.nn.ReLU())
|
||||||
|
layers.append(
|
||||||
|
torch.nn.Conv2d(
|
||||||
|
in_channels=block_dim,
|
||||||
|
out_channels=block_dim,
|
||||||
|
kernel_size=3,
|
||||||
|
padding=0,
|
||||||
|
stride=1,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
layers.append(
|
||||||
|
torch.nn.MaxPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
||||||
|
)
|
||||||
|
cur_channels = block_dim
|
||||||
|
|
||||||
|
self.layers = nn.Sequential(*layers)
|
||||||
|
|
||||||
|
self.out = nn.Linear(block_dims[-1] * (((idim - 1) // 2 - 1) // 2), odim)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""Subsample x.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
Its shape is (N, T, idim).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a tensor of shape (N, ((T-1)//2 - 1)//2, odim)
|
||||||
|
"""
|
||||||
|
x = x.unsqueeze(1)
|
||||||
|
x = self.layers(x)
|
||||||
|
b, c, t, f = x.size()
|
||||||
|
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||||
|
return x
|
1167
egs/librispeech/ASR/zipformer_ctc_streaming/train.py
Executable file
1167
egs/librispeech/ASR/zipformer_ctc_streaming/train.py
Executable file
File diff suppressed because it is too large
Load Diff
928
egs/librispeech/ASR/zipformer_ctc_streaming/transformer.py
Normal file
928
egs/librispeech/ASR/zipformer_ctc_streaming/transformer.py
Normal file
@ -0,0 +1,928 @@
|
|||||||
|
# Copyright 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import math
|
||||||
|
from typing import Dict, List, Optional, Tuple, Union
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from label_smoothing import LabelSmoothingLoss
|
||||||
|
from subsampling import Conv2dSubsampling, VggSubsampling
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
|
||||||
|
# Note: TorchScript requires Dict/List/etc. to be fully typed.
|
||||||
|
Supervisions = Dict[str, torch.Tensor]
|
||||||
|
|
||||||
|
|
||||||
|
class Transformer(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
num_features: int,
|
||||||
|
num_classes: int,
|
||||||
|
subsampling_factor: int = 4,
|
||||||
|
d_model: int = 256,
|
||||||
|
nhead: int = 4,
|
||||||
|
dim_feedforward: int = 2048,
|
||||||
|
num_encoder_layers: int = 12,
|
||||||
|
num_decoder_layers: int = 6,
|
||||||
|
dropout: float = 0.1,
|
||||||
|
normalize_before: bool = True,
|
||||||
|
vgg_frontend: bool = False,
|
||||||
|
use_feat_batchnorm: Union[float, bool] = 0.1,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
num_features:
|
||||||
|
The input dimension of the model.
|
||||||
|
num_classes:
|
||||||
|
The output dimension of the model.
|
||||||
|
subsampling_factor:
|
||||||
|
Number of output frames is num_in_frames // subsampling_factor.
|
||||||
|
Currently, subsampling_factor MUST be 4.
|
||||||
|
d_model:
|
||||||
|
Attention dimension.
|
||||||
|
nhead:
|
||||||
|
Number of heads in multi-head attention.
|
||||||
|
Must satisfy d_model // nhead == 0.
|
||||||
|
dim_feedforward:
|
||||||
|
The output dimension of the feedforward layers in encoder/decoder.
|
||||||
|
num_encoder_layers:
|
||||||
|
Number of encoder layers.
|
||||||
|
num_decoder_layers:
|
||||||
|
Number of decoder layers.
|
||||||
|
dropout:
|
||||||
|
Dropout in encoder/decoder.
|
||||||
|
normalize_before:
|
||||||
|
If True, use pre-layer norm; False to use post-layer norm.
|
||||||
|
vgg_frontend:
|
||||||
|
True to use vgg style frontend for subsampling.
|
||||||
|
use_feat_batchnorm:
|
||||||
|
True to use batchnorm for the input layer.
|
||||||
|
Float value to scale the input layer.
|
||||||
|
False to do nothing.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.use_feat_batchnorm = use_feat_batchnorm
|
||||||
|
assert isinstance(use_feat_batchnorm, (float, bool))
|
||||||
|
if isinstance(use_feat_batchnorm, bool) and use_feat_batchnorm:
|
||||||
|
self.feat_batchnorm = nn.BatchNorm1d(num_features)
|
||||||
|
|
||||||
|
self.num_features = num_features
|
||||||
|
self.num_classes = num_classes
|
||||||
|
self.subsampling_factor = subsampling_factor
|
||||||
|
if subsampling_factor != 4:
|
||||||
|
raise NotImplementedError("Support only 'subsampling_factor=4'.")
|
||||||
|
|
||||||
|
# self.encoder_embed converts the input of shape (N, T, num_classes)
|
||||||
|
# to the shape (N, T//subsampling_factor, d_model).
|
||||||
|
# That is, it does two things simultaneously:
|
||||||
|
# (1) subsampling: T -> T//subsampling_factor
|
||||||
|
# (2) embedding: num_classes -> d_model
|
||||||
|
if vgg_frontend:
|
||||||
|
self.encoder_embed = VggSubsampling(num_features, d_model)
|
||||||
|
else:
|
||||||
|
self.encoder_embed = Conv2dSubsampling(num_features, d_model)
|
||||||
|
|
||||||
|
self.encoder_pos = PositionalEncoding(d_model, dropout)
|
||||||
|
|
||||||
|
encoder_layer = TransformerEncoderLayer(
|
||||||
|
d_model=d_model,
|
||||||
|
nhead=nhead,
|
||||||
|
dim_feedforward=dim_feedforward,
|
||||||
|
dropout=dropout,
|
||||||
|
normalize_before=normalize_before,
|
||||||
|
)
|
||||||
|
|
||||||
|
if normalize_before:
|
||||||
|
encoder_norm = nn.LayerNorm(d_model)
|
||||||
|
else:
|
||||||
|
encoder_norm = None
|
||||||
|
|
||||||
|
self.encoder = nn.TransformerEncoder(
|
||||||
|
encoder_layer=encoder_layer,
|
||||||
|
num_layers=num_encoder_layers,
|
||||||
|
norm=encoder_norm,
|
||||||
|
)
|
||||||
|
|
||||||
|
# TODO(fangjun): remove dropout
|
||||||
|
self.encoder_output_layer = nn.Sequential(
|
||||||
|
nn.Dropout(p=dropout), nn.Linear(d_model, num_classes)
|
||||||
|
)
|
||||||
|
|
||||||
|
if num_decoder_layers > 0:
|
||||||
|
self.decoder_num_class = (
|
||||||
|
self.num_classes
|
||||||
|
) # bpe model already has sos/eos symbol
|
||||||
|
|
||||||
|
self.decoder_embed = nn.Embedding(
|
||||||
|
num_embeddings=self.decoder_num_class, embedding_dim=d_model
|
||||||
|
)
|
||||||
|
self.decoder_pos = PositionalEncoding(d_model, dropout)
|
||||||
|
|
||||||
|
decoder_layer = TransformerDecoderLayer(
|
||||||
|
d_model=d_model,
|
||||||
|
nhead=nhead,
|
||||||
|
dim_feedforward=dim_feedforward,
|
||||||
|
dropout=dropout,
|
||||||
|
normalize_before=normalize_before,
|
||||||
|
)
|
||||||
|
|
||||||
|
if normalize_before:
|
||||||
|
decoder_norm = nn.LayerNorm(d_model)
|
||||||
|
else:
|
||||||
|
decoder_norm = None
|
||||||
|
|
||||||
|
self.decoder = nn.TransformerDecoder(
|
||||||
|
decoder_layer=decoder_layer,
|
||||||
|
num_layers=num_decoder_layers,
|
||||||
|
norm=decoder_norm,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.decoder_output_layer = torch.nn.Linear(d_model, self.decoder_num_class)
|
||||||
|
|
||||||
|
self.decoder_criterion = LabelSmoothingLoss()
|
||||||
|
else:
|
||||||
|
self.decoder_criterion = None
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self, x: torch.Tensor, supervision: Optional[Supervisions] = None
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
The input tensor. Its shape is (N, T, C).
|
||||||
|
supervision:
|
||||||
|
Supervision in lhotse format.
|
||||||
|
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
||||||
|
(CAUTION: It contains length information, i.e., start and number of
|
||||||
|
frames, before subsampling)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a tuple containing 3 tensors:
|
||||||
|
- CTC output for ctc decoding. Its shape is (N, T, C)
|
||||||
|
- Encoder output with shape (T, N, C). It can be used as key and
|
||||||
|
value for the decoder.
|
||||||
|
- Encoder output padding mask. It can be used as
|
||||||
|
memory_key_padding_mask for the decoder. Its shape is (N, T).
|
||||||
|
It is None if `supervision` is None.
|
||||||
|
"""
|
||||||
|
if isinstance(self.use_feat_batchnorm, bool) and self.use_feat_batchnorm:
|
||||||
|
x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T)
|
||||||
|
x = self.feat_batchnorm(x)
|
||||||
|
x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C)
|
||||||
|
if isinstance(self.use_feat_batchnorm, float):
|
||||||
|
x *= self.use_feat_batchnorm
|
||||||
|
encoder_memory, memory_key_padding_mask = self.run_encoder(x, supervision)
|
||||||
|
x = self.ctc_output(encoder_memory)
|
||||||
|
return x, encoder_memory, memory_key_padding_mask
|
||||||
|
|
||||||
|
def run_encoder(
|
||||||
|
self, x: torch.Tensor, supervisions: Optional[Supervisions] = None
|
||||||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||||
|
"""Run the transformer encoder.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
The model input. Its shape is (N, T, C).
|
||||||
|
supervisions:
|
||||||
|
Supervision in lhotse format.
|
||||||
|
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
||||||
|
CAUTION: It contains length information, i.e., start and number of
|
||||||
|
frames, before subsampling
|
||||||
|
It is read directly from the batch, without any sorting. It is used
|
||||||
|
to compute the encoder padding mask, which is used as memory key
|
||||||
|
padding mask for the decoder.
|
||||||
|
Returns:
|
||||||
|
Return a tuple with two tensors:
|
||||||
|
- The encoder output, with shape (T, N, C)
|
||||||
|
- encoder padding mask, with shape (N, T).
|
||||||
|
The mask is None if `supervisions` is None.
|
||||||
|
It is used as memory key padding mask in the decoder.
|
||||||
|
"""
|
||||||
|
x = self.encoder_embed(x)
|
||||||
|
x = self.encoder_pos(x)
|
||||||
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||||
|
mask = encoder_padding_mask(x.size(0), supervisions)
|
||||||
|
mask = mask.to(x.device) if mask is not None else None
|
||||||
|
x = self.encoder(x, src_key_padding_mask=mask) # (T, N, C)
|
||||||
|
|
||||||
|
return x, mask
|
||||||
|
|
||||||
|
def ctc_output(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
The output tensor from the transformer encoder.
|
||||||
|
Its shape is (T, N, C)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a tensor that can be used for CTC decoding.
|
||||||
|
Its shape is (N, T, C)
|
||||||
|
"""
|
||||||
|
x = self.encoder_output_layer(x)
|
||||||
|
x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||||
|
x = nn.functional.log_softmax(x, dim=-1) # (N, T, C)
|
||||||
|
return x
|
||||||
|
|
||||||
|
@torch.jit.export
|
||||||
|
def decoder_forward(
|
||||||
|
self,
|
||||||
|
memory: torch.Tensor,
|
||||||
|
memory_key_padding_mask: torch.Tensor,
|
||||||
|
token_ids: List[List[int]],
|
||||||
|
sos_id: int,
|
||||||
|
eos_id: int,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
memory:
|
||||||
|
It's the output of the encoder with shape (T, N, C)
|
||||||
|
memory_key_padding_mask:
|
||||||
|
The padding mask from the encoder.
|
||||||
|
token_ids:
|
||||||
|
A list-of-list IDs. Each sublist contains IDs for an utterance.
|
||||||
|
The IDs can be either phone IDs or word piece IDs.
|
||||||
|
sos_id:
|
||||||
|
sos token id
|
||||||
|
eos_id:
|
||||||
|
eos token id
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A scalar, the **sum** of label smoothing loss over utterances
|
||||||
|
in the batch without any normalization.
|
||||||
|
"""
|
||||||
|
ys_in = add_sos(token_ids, sos_id=sos_id)
|
||||||
|
ys_in = [torch.tensor(y) for y in ys_in]
|
||||||
|
ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id))
|
||||||
|
|
||||||
|
ys_out = add_eos(token_ids, eos_id=eos_id)
|
||||||
|
ys_out = [torch.tensor(y) for y in ys_out]
|
||||||
|
ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1))
|
||||||
|
|
||||||
|
device = memory.device
|
||||||
|
ys_in_pad = ys_in_pad.to(device)
|
||||||
|
ys_out_pad = ys_out_pad.to(device)
|
||||||
|
|
||||||
|
tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device)
|
||||||
|
|
||||||
|
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
||||||
|
# TODO: Use length information to create the decoder padding mask
|
||||||
|
# We set the first column to False since the first column in ys_in_pad
|
||||||
|
# contains sos_id, which is the same as eos_id in our current setting.
|
||||||
|
tgt_key_padding_mask[:, 0] = False
|
||||||
|
|
||||||
|
tgt = self.decoder_embed(ys_in_pad) # (N, T) -> (N, T, C)
|
||||||
|
tgt = self.decoder_pos(tgt)
|
||||||
|
tgt = tgt.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||||
|
pred_pad = self.decoder(
|
||||||
|
tgt=tgt,
|
||||||
|
memory=memory,
|
||||||
|
tgt_mask=tgt_mask,
|
||||||
|
tgt_key_padding_mask=tgt_key_padding_mask,
|
||||||
|
memory_key_padding_mask=memory_key_padding_mask,
|
||||||
|
) # (T, N, C)
|
||||||
|
pred_pad = pred_pad.permute(1, 0, 2) # (T, N, C) -> (N, T, C)
|
||||||
|
pred_pad = self.decoder_output_layer(pred_pad) # (N, T, C)
|
||||||
|
|
||||||
|
decoder_loss = self.decoder_criterion(pred_pad, ys_out_pad)
|
||||||
|
|
||||||
|
return decoder_loss
|
||||||
|
|
||||||
|
@torch.jit.export
|
||||||
|
def decoder_nll(
|
||||||
|
self,
|
||||||
|
memory: torch.Tensor,
|
||||||
|
memory_key_padding_mask: torch.Tensor,
|
||||||
|
token_ids: List[torch.Tensor],
|
||||||
|
sos_id: int,
|
||||||
|
eos_id: int,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
memory:
|
||||||
|
It's the output of the encoder with shape (T, N, C)
|
||||||
|
memory_key_padding_mask:
|
||||||
|
The padding mask from the encoder.
|
||||||
|
token_ids:
|
||||||
|
A list-of-list IDs (e.g., word piece IDs).
|
||||||
|
Each sublist represents an utterance.
|
||||||
|
sos_id:
|
||||||
|
The token ID for SOS.
|
||||||
|
eos_id:
|
||||||
|
The token ID for EOS.
|
||||||
|
Returns:
|
||||||
|
A 2-D tensor of shape (len(token_ids), max_token_length)
|
||||||
|
representing the cross entropy loss (i.e., negative log-likelihood).
|
||||||
|
"""
|
||||||
|
# The common part between this function and decoder_forward could be
|
||||||
|
# extracted as a separate function.
|
||||||
|
if isinstance(token_ids[0], torch.Tensor):
|
||||||
|
# This branch is executed by torchscript in C++.
|
||||||
|
# See https://github.com/k2-fsa/k2/pull/870
|
||||||
|
# https://github.com/k2-fsa/k2/blob/3c1c18400060415b141ccea0115fd4bf0ad6234e/k2/torch/bin/attention_rescore.cu#L286
|
||||||
|
token_ids = [tolist(t) for t in token_ids]
|
||||||
|
|
||||||
|
ys_in = add_sos(token_ids, sos_id=sos_id)
|
||||||
|
ys_in = [torch.tensor(y) for y in ys_in]
|
||||||
|
ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id))
|
||||||
|
|
||||||
|
ys_out = add_eos(token_ids, eos_id=eos_id)
|
||||||
|
ys_out = [torch.tensor(y) for y in ys_out]
|
||||||
|
ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1))
|
||||||
|
|
||||||
|
device = memory.device
|
||||||
|
ys_in_pad = ys_in_pad.to(device, dtype=torch.int64)
|
||||||
|
ys_out_pad = ys_out_pad.to(device, dtype=torch.int64)
|
||||||
|
|
||||||
|
tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device)
|
||||||
|
|
||||||
|
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
||||||
|
# TODO: Use length information to create the decoder padding mask
|
||||||
|
# We set the first column to False since the first column in ys_in_pad
|
||||||
|
# contains sos_id, which is the same as eos_id in our current setting.
|
||||||
|
tgt_key_padding_mask[:, 0] = False
|
||||||
|
|
||||||
|
tgt = self.decoder_embed(ys_in_pad) # (B, T) -> (B, T, F)
|
||||||
|
tgt = self.decoder_pos(tgt)
|
||||||
|
tgt = tgt.permute(1, 0, 2) # (B, T, F) -> (T, B, F)
|
||||||
|
pred_pad = self.decoder(
|
||||||
|
tgt=tgt,
|
||||||
|
memory=memory,
|
||||||
|
tgt_mask=tgt_mask,
|
||||||
|
tgt_key_padding_mask=tgt_key_padding_mask,
|
||||||
|
memory_key_padding_mask=memory_key_padding_mask,
|
||||||
|
) # (T, B, F)
|
||||||
|
pred_pad = pred_pad.permute(1, 0, 2) # (T, B, F) -> (B, T, F)
|
||||||
|
pred_pad = self.decoder_output_layer(pred_pad) # (B, T, F)
|
||||||
|
# nll: negative log-likelihood
|
||||||
|
nll = torch.nn.functional.cross_entropy(
|
||||||
|
pred_pad.view(-1, self.decoder_num_class),
|
||||||
|
ys_out_pad.view(-1),
|
||||||
|
ignore_index=-1,
|
||||||
|
reduction="none",
|
||||||
|
)
|
||||||
|
|
||||||
|
nll = nll.view(pred_pad.shape[0], -1)
|
||||||
|
|
||||||
|
return nll
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerEncoderLayer(nn.Module):
|
||||||
|
"""
|
||||||
|
Modified from torch.nn.TransformerEncoderLayer.
|
||||||
|
Add support of normalize_before,
|
||||||
|
i.e., use layer_norm before the first block.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
d_model:
|
||||||
|
the number of expected features in the input (required).
|
||||||
|
nhead:
|
||||||
|
the number of heads in the multiheadattention models (required).
|
||||||
|
dim_feedforward:
|
||||||
|
the dimension of the feedforward network model (default=2048).
|
||||||
|
dropout:
|
||||||
|
the dropout value (default=0.1).
|
||||||
|
activation:
|
||||||
|
the activation function of intermediate layer, relu or
|
||||||
|
gelu (default=relu).
|
||||||
|
normalize_before:
|
||||||
|
whether to use layer_norm before the first block.
|
||||||
|
|
||||||
|
Examples::
|
||||||
|
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
|
||||||
|
>>> src = torch.rand(10, 32, 512)
|
||||||
|
>>> out = encoder_layer(src)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
d_model: int,
|
||||||
|
nhead: int,
|
||||||
|
dim_feedforward: int = 2048,
|
||||||
|
dropout: float = 0.1,
|
||||||
|
activation: str = "relu",
|
||||||
|
normalize_before: bool = True,
|
||||||
|
) -> None:
|
||||||
|
super(TransformerEncoderLayer, self).__init__()
|
||||||
|
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
|
||||||
|
# Implementation of Feedforward model
|
||||||
|
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
||||||
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
||||||
|
|
||||||
|
self.norm1 = nn.LayerNorm(d_model)
|
||||||
|
self.norm2 = nn.LayerNorm(d_model)
|
||||||
|
self.dropout1 = nn.Dropout(dropout)
|
||||||
|
self.dropout2 = nn.Dropout(dropout)
|
||||||
|
|
||||||
|
self.activation = _get_activation_fn(activation)
|
||||||
|
|
||||||
|
self.normalize_before = normalize_before
|
||||||
|
|
||||||
|
def __setstate__(self, state):
|
||||||
|
if "activation" not in state:
|
||||||
|
state["activation"] = nn.functional.relu
|
||||||
|
super(TransformerEncoderLayer, self).__setstate__(state)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
src: torch.Tensor,
|
||||||
|
src_mask: Optional[torch.Tensor] = None,
|
||||||
|
src_key_padding_mask: Optional[torch.Tensor] = None,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Pass the input through the encoder layer.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
src: the sequence to the encoder layer (required).
|
||||||
|
src_mask: the mask for the src sequence (optional).
|
||||||
|
src_key_padding_mask: the mask for the src keys per batch (optional)
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
src: (S, N, E).
|
||||||
|
src_mask: (S, S).
|
||||||
|
src_key_padding_mask: (N, S).
|
||||||
|
S is the source sequence length, T is the target sequence length,
|
||||||
|
N is the batch size, E is the feature number
|
||||||
|
"""
|
||||||
|
residual = src
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm1(src)
|
||||||
|
src2 = self.self_attn(
|
||||||
|
src,
|
||||||
|
src,
|
||||||
|
src,
|
||||||
|
attn_mask=src_mask,
|
||||||
|
key_padding_mask=src_key_padding_mask,
|
||||||
|
)[0]
|
||||||
|
src = residual + self.dropout1(src2)
|
||||||
|
if not self.normalize_before:
|
||||||
|
src = self.norm1(src)
|
||||||
|
|
||||||
|
residual = src
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm2(src)
|
||||||
|
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
||||||
|
src = residual + self.dropout2(src2)
|
||||||
|
if not self.normalize_before:
|
||||||
|
src = self.norm2(src)
|
||||||
|
return src
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerDecoderLayer(nn.Module):
|
||||||
|
"""
|
||||||
|
Modified from torch.nn.TransformerDecoderLayer.
|
||||||
|
Add support of normalize_before,
|
||||||
|
i.e., use layer_norm before the first block.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
d_model:
|
||||||
|
the number of expected features in the input (required).
|
||||||
|
nhead:
|
||||||
|
the number of heads in the multiheadattention models (required).
|
||||||
|
dim_feedforward:
|
||||||
|
the dimension of the feedforward network model (default=2048).
|
||||||
|
dropout:
|
||||||
|
the dropout value (default=0.1).
|
||||||
|
activation:
|
||||||
|
the activation function of intermediate layer, relu or
|
||||||
|
gelu (default=relu).
|
||||||
|
|
||||||
|
Examples::
|
||||||
|
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
|
||||||
|
>>> memory = torch.rand(10, 32, 512)
|
||||||
|
>>> tgt = torch.rand(20, 32, 512)
|
||||||
|
>>> out = decoder_layer(tgt, memory)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
d_model: int,
|
||||||
|
nhead: int,
|
||||||
|
dim_feedforward: int = 2048,
|
||||||
|
dropout: float = 0.1,
|
||||||
|
activation: str = "relu",
|
||||||
|
normalize_before: bool = True,
|
||||||
|
) -> None:
|
||||||
|
super(TransformerDecoderLayer, self).__init__()
|
||||||
|
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
|
||||||
|
self.src_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
|
||||||
|
# Implementation of Feedforward model
|
||||||
|
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
||||||
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
||||||
|
|
||||||
|
self.norm1 = nn.LayerNorm(d_model)
|
||||||
|
self.norm2 = nn.LayerNorm(d_model)
|
||||||
|
self.norm3 = nn.LayerNorm(d_model)
|
||||||
|
self.dropout1 = nn.Dropout(dropout)
|
||||||
|
self.dropout2 = nn.Dropout(dropout)
|
||||||
|
self.dropout3 = nn.Dropout(dropout)
|
||||||
|
|
||||||
|
self.activation = _get_activation_fn(activation)
|
||||||
|
|
||||||
|
self.normalize_before = normalize_before
|
||||||
|
|
||||||
|
def __setstate__(self, state):
|
||||||
|
if "activation" not in state:
|
||||||
|
state["activation"] = nn.functional.relu
|
||||||
|
super(TransformerDecoderLayer, self).__setstate__(state)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
tgt: torch.Tensor,
|
||||||
|
memory: torch.Tensor,
|
||||||
|
tgt_mask: Optional[torch.Tensor] = None,
|
||||||
|
memory_mask: Optional[torch.Tensor] = None,
|
||||||
|
tgt_key_padding_mask: Optional[torch.Tensor] = None,
|
||||||
|
memory_key_padding_mask: Optional[torch.Tensor] = None,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""Pass the inputs (and mask) through the decoder layer.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
tgt:
|
||||||
|
the sequence to the decoder layer (required).
|
||||||
|
memory:
|
||||||
|
the sequence from the last layer of the encoder (required).
|
||||||
|
tgt_mask:
|
||||||
|
the mask for the tgt sequence (optional).
|
||||||
|
memory_mask:
|
||||||
|
the mask for the memory sequence (optional).
|
||||||
|
tgt_key_padding_mask:
|
||||||
|
the mask for the tgt keys per batch (optional).
|
||||||
|
memory_key_padding_mask:
|
||||||
|
the mask for the memory keys per batch (optional).
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
tgt: (T, N, E).
|
||||||
|
memory: (S, N, E).
|
||||||
|
tgt_mask: (T, T).
|
||||||
|
memory_mask: (T, S).
|
||||||
|
tgt_key_padding_mask: (N, T).
|
||||||
|
memory_key_padding_mask: (N, S).
|
||||||
|
S is the source sequence length, T is the target sequence length,
|
||||||
|
N is the batch size, E is the feature number
|
||||||
|
"""
|
||||||
|
residual = tgt
|
||||||
|
if self.normalize_before:
|
||||||
|
tgt = self.norm1(tgt)
|
||||||
|
tgt2 = self.self_attn(
|
||||||
|
tgt,
|
||||||
|
tgt,
|
||||||
|
tgt,
|
||||||
|
attn_mask=tgt_mask,
|
||||||
|
key_padding_mask=tgt_key_padding_mask,
|
||||||
|
)[0]
|
||||||
|
tgt = residual + self.dropout1(tgt2)
|
||||||
|
if not self.normalize_before:
|
||||||
|
tgt = self.norm1(tgt)
|
||||||
|
|
||||||
|
residual = tgt
|
||||||
|
if self.normalize_before:
|
||||||
|
tgt = self.norm2(tgt)
|
||||||
|
tgt2 = self.src_attn(
|
||||||
|
tgt,
|
||||||
|
memory,
|
||||||
|
memory,
|
||||||
|
attn_mask=memory_mask,
|
||||||
|
key_padding_mask=memory_key_padding_mask,
|
||||||
|
)[0]
|
||||||
|
tgt = residual + self.dropout2(tgt2)
|
||||||
|
if not self.normalize_before:
|
||||||
|
tgt = self.norm2(tgt)
|
||||||
|
|
||||||
|
residual = tgt
|
||||||
|
if self.normalize_before:
|
||||||
|
tgt = self.norm3(tgt)
|
||||||
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
||||||
|
tgt = residual + self.dropout3(tgt2)
|
||||||
|
if not self.normalize_before:
|
||||||
|
tgt = self.norm3(tgt)
|
||||||
|
return tgt
|
||||||
|
|
||||||
|
|
||||||
|
def _get_activation_fn(activation: str):
|
||||||
|
if activation == "relu":
|
||||||
|
return nn.functional.relu
|
||||||
|
elif activation == "gelu":
|
||||||
|
return nn.functional.gelu
|
||||||
|
|
||||||
|
raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
|
||||||
|
|
||||||
|
|
||||||
|
class PositionalEncoding(nn.Module):
|
||||||
|
"""This class implements the positional encoding
|
||||||
|
proposed in the following paper:
|
||||||
|
|
||||||
|
- Attention Is All You Need: https://arxiv.org/pdf/1706.03762.pdf
|
||||||
|
|
||||||
|
PE(pos, 2i) = sin(pos / (10000^(2i/d_modle))
|
||||||
|
PE(pos, 2i+1) = cos(pos / (10000^(2i/d_modle))
|
||||||
|
|
||||||
|
Note::
|
||||||
|
|
||||||
|
1 / (10000^(2i/d_model)) = exp(-log(10000^(2i/d_model)))
|
||||||
|
= exp(-1* 2i / d_model * log(100000))
|
||||||
|
= exp(2i * -(log(10000) / d_model))
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, d_model: int, dropout: float = 0.1) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
d_model:
|
||||||
|
Embedding dimension.
|
||||||
|
dropout:
|
||||||
|
Dropout probability to be applied to the output of this module.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.d_model = d_model
|
||||||
|
self.xscale = math.sqrt(self.d_model)
|
||||||
|
self.dropout = nn.Dropout(p=dropout)
|
||||||
|
# not doing: self.pe = None because of errors thrown by torchscript
|
||||||
|
self.pe = torch.zeros(1, 0, self.d_model, dtype=torch.float32)
|
||||||
|
|
||||||
|
def extend_pe(self, x: torch.Tensor) -> None:
|
||||||
|
"""Extend the time t in the positional encoding if required.
|
||||||
|
|
||||||
|
The shape of `self.pe` is (1, T1, d_model). The shape of the input x
|
||||||
|
is (N, T, d_model). If T > T1, then we change the shape of self.pe
|
||||||
|
to (N, T, d_model). Otherwise, nothing is done.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
It is a tensor of shape (N, T, C).
|
||||||
|
Returns:
|
||||||
|
Return None.
|
||||||
|
"""
|
||||||
|
if self.pe is not None:
|
||||||
|
if self.pe.size(1) >= x.size(1):
|
||||||
|
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||||
|
return
|
||||||
|
pe = torch.zeros(x.size(1), self.d_model, dtype=torch.float32)
|
||||||
|
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||||
|
div_term = torch.exp(
|
||||||
|
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
||||||
|
* -(math.log(10000.0) / self.d_model)
|
||||||
|
)
|
||||||
|
pe[:, 0::2] = torch.sin(position * div_term)
|
||||||
|
pe[:, 1::2] = torch.cos(position * div_term)
|
||||||
|
pe = pe.unsqueeze(0)
|
||||||
|
# Now pe is of shape (1, T, d_model), where T is x.size(1)
|
||||||
|
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Add positional encoding.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
Its shape is (N, T, C)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a tensor of shape (N, T, C)
|
||||||
|
"""
|
||||||
|
self.extend_pe(x)
|
||||||
|
x = x * self.xscale + self.pe[:, : x.size(1), :]
|
||||||
|
return self.dropout(x)
|
||||||
|
|
||||||
|
|
||||||
|
class Noam(object):
|
||||||
|
"""
|
||||||
|
Implements Noam optimizer.
|
||||||
|
|
||||||
|
Proposed in
|
||||||
|
"Attention Is All You Need", https://arxiv.org/pdf/1706.03762.pdf
|
||||||
|
|
||||||
|
Modified from
|
||||||
|
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/optimizer.py # noqa
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
iterable of parameters to optimize or dicts defining parameter groups
|
||||||
|
model_size:
|
||||||
|
attention dimension of the transformer model
|
||||||
|
factor:
|
||||||
|
learning rate factor
|
||||||
|
warm_step:
|
||||||
|
warmup steps
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
params,
|
||||||
|
model_size: int = 256,
|
||||||
|
factor: float = 10.0,
|
||||||
|
warm_step: int = 25000,
|
||||||
|
weight_decay=0,
|
||||||
|
) -> None:
|
||||||
|
"""Construct an Noam object."""
|
||||||
|
self.optimizer = torch.optim.Adam(
|
||||||
|
params, lr=0, betas=(0.9, 0.98), eps=1e-9, weight_decay=weight_decay
|
||||||
|
)
|
||||||
|
self._step = 0
|
||||||
|
self.warmup = warm_step
|
||||||
|
self.factor = factor
|
||||||
|
self.model_size = model_size
|
||||||
|
self._rate = 0
|
||||||
|
|
||||||
|
@property
|
||||||
|
def param_groups(self):
|
||||||
|
"""Return param_groups."""
|
||||||
|
return self.optimizer.param_groups
|
||||||
|
|
||||||
|
def step(self):
|
||||||
|
"""Update parameters and rate."""
|
||||||
|
self._step += 1
|
||||||
|
rate = self.rate()
|
||||||
|
for p in self.optimizer.param_groups:
|
||||||
|
p["lr"] = rate
|
||||||
|
self._rate = rate
|
||||||
|
self.optimizer.step()
|
||||||
|
|
||||||
|
def rate(self, step=None):
|
||||||
|
"""Implement `lrate` above."""
|
||||||
|
if step is None:
|
||||||
|
step = self._step
|
||||||
|
return (
|
||||||
|
self.factor
|
||||||
|
* self.model_size ** (-0.5)
|
||||||
|
* min(step ** (-0.5), step * self.warmup ** (-1.5))
|
||||||
|
)
|
||||||
|
|
||||||
|
def zero_grad(self):
|
||||||
|
"""Reset gradient."""
|
||||||
|
self.optimizer.zero_grad()
|
||||||
|
|
||||||
|
def state_dict(self):
|
||||||
|
"""Return state_dict."""
|
||||||
|
return {
|
||||||
|
"_step": self._step,
|
||||||
|
"warmup": self.warmup,
|
||||||
|
"factor": self.factor,
|
||||||
|
"model_size": self.model_size,
|
||||||
|
"_rate": self._rate,
|
||||||
|
"optimizer": self.optimizer.state_dict(),
|
||||||
|
}
|
||||||
|
|
||||||
|
def load_state_dict(self, state_dict):
|
||||||
|
"""Load state_dict."""
|
||||||
|
for key, value in state_dict.items():
|
||||||
|
if key == "optimizer":
|
||||||
|
self.optimizer.load_state_dict(state_dict["optimizer"])
|
||||||
|
else:
|
||||||
|
setattr(self, key, value)
|
||||||
|
|
||||||
|
|
||||||
|
def encoder_padding_mask(
|
||||||
|
max_len: int, supervisions: Optional[Supervisions] = None
|
||||||
|
) -> Optional[torch.Tensor]:
|
||||||
|
"""Make mask tensor containing indexes of padded part.
|
||||||
|
|
||||||
|
TODO::
|
||||||
|
This function **assumes** that the model uses
|
||||||
|
a subsampling factor of 4. We should remove that
|
||||||
|
assumption later.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
max_len:
|
||||||
|
Maximum length of input features.
|
||||||
|
CAUTION: It is the length after subsampling.
|
||||||
|
supervisions:
|
||||||
|
Supervision in lhotse format.
|
||||||
|
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
||||||
|
(CAUTION: It contains length information, i.e., start and number of
|
||||||
|
frames, before subsampling)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tensor: Mask tensor of dimension (batch_size, input_length),
|
||||||
|
True denote the masked indices.
|
||||||
|
"""
|
||||||
|
if supervisions is None:
|
||||||
|
return None
|
||||||
|
|
||||||
|
supervision_segments = torch.stack(
|
||||||
|
(
|
||||||
|
supervisions["sequence_idx"],
|
||||||
|
supervisions["start_frame"],
|
||||||
|
supervisions["num_frames"],
|
||||||
|
),
|
||||||
|
1,
|
||||||
|
).to(torch.int32)
|
||||||
|
|
||||||
|
lengths = [0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1)]
|
||||||
|
for idx in range(supervision_segments.size(0)):
|
||||||
|
# Note: TorchScript doesn't allow to unpack tensors as tuples
|
||||||
|
sequence_idx = supervision_segments[idx, 0].item()
|
||||||
|
start_frame = supervision_segments[idx, 1].item()
|
||||||
|
num_frames = supervision_segments[idx, 2].item()
|
||||||
|
lengths[sequence_idx] = start_frame + num_frames
|
||||||
|
|
||||||
|
lengths = [((i - 1) // 2 - 1) // 2 for i in lengths]
|
||||||
|
bs = int(len(lengths))
|
||||||
|
seq_range = torch.arange(0, max_len, dtype=torch.int64)
|
||||||
|
seq_range_expand = seq_range.unsqueeze(0).expand(bs, max_len)
|
||||||
|
# Note: TorchScript doesn't implement Tensor.new()
|
||||||
|
seq_length_expand = torch.tensor(
|
||||||
|
lengths, device=seq_range_expand.device, dtype=seq_range_expand.dtype
|
||||||
|
).unsqueeze(-1)
|
||||||
|
mask = seq_range_expand >= seq_length_expand
|
||||||
|
|
||||||
|
return mask
|
||||||
|
|
||||||
|
|
||||||
|
def decoder_padding_mask(ys_pad: torch.Tensor, ignore_id: int = -1) -> torch.Tensor:
|
||||||
|
"""Generate a length mask for input.
|
||||||
|
|
||||||
|
The masked position are filled with True,
|
||||||
|
Unmasked positions are filled with False.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
ys_pad:
|
||||||
|
padded tensor of dimension (batch_size, input_length).
|
||||||
|
ignore_id:
|
||||||
|
the ignored number (the padding number) in ys_pad
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tensor:
|
||||||
|
a bool tensor of the same shape as the input tensor.
|
||||||
|
"""
|
||||||
|
ys_mask = ys_pad == ignore_id
|
||||||
|
return ys_mask
|
||||||
|
|
||||||
|
|
||||||
|
def generate_square_subsequent_mask(sz: int) -> torch.Tensor:
|
||||||
|
"""Generate a square mask for the sequence. The masked positions are
|
||||||
|
filled with float('-inf'). Unmasked positions are filled with float(0.0).
|
||||||
|
The mask can be used for masked self-attention.
|
||||||
|
|
||||||
|
For instance, if sz is 3, it returns::
|
||||||
|
|
||||||
|
tensor([[0., -inf, -inf],
|
||||||
|
[0., 0., -inf],
|
||||||
|
[0., 0., 0]])
|
||||||
|
|
||||||
|
Args:
|
||||||
|
sz: mask size
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A square mask of dimension (sz, sz)
|
||||||
|
"""
|
||||||
|
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
|
||||||
|
mask = (
|
||||||
|
mask.float()
|
||||||
|
.masked_fill(mask == 0, float("-inf"))
|
||||||
|
.masked_fill(mask == 1, float(0.0))
|
||||||
|
)
|
||||||
|
return mask
|
||||||
|
|
||||||
|
|
||||||
|
def add_sos(token_ids: List[List[int]], sos_id: int) -> List[List[int]]:
|
||||||
|
"""Prepend sos_id to each utterance.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
token_ids:
|
||||||
|
A list-of-list of token IDs. Each sublist contains
|
||||||
|
token IDs (e.g., word piece IDs) of an utterance.
|
||||||
|
sos_id:
|
||||||
|
The ID of the SOS token.
|
||||||
|
|
||||||
|
Return:
|
||||||
|
Return a new list-of-list, where each sublist starts
|
||||||
|
with SOS ID.
|
||||||
|
"""
|
||||||
|
return [[sos_id] + utt for utt in token_ids]
|
||||||
|
|
||||||
|
|
||||||
|
def add_eos(token_ids: List[List[int]], eos_id: int) -> List[List[int]]:
|
||||||
|
"""Append eos_id to each utterance.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
token_ids:
|
||||||
|
A list-of-list of token IDs. Each sublist contains
|
||||||
|
token IDs (e.g., word piece IDs) of an utterance.
|
||||||
|
eos_id:
|
||||||
|
The ID of the EOS token.
|
||||||
|
|
||||||
|
Return:
|
||||||
|
Return a new list-of-list, where each sublist ends
|
||||||
|
with EOS ID.
|
||||||
|
"""
|
||||||
|
return [utt + [eos_id] for utt in token_ids]
|
||||||
|
|
||||||
|
|
||||||
|
def tolist(t: torch.Tensor) -> List[int]:
|
||||||
|
"""Used by jit"""
|
||||||
|
return torch.jit.annotate(List[int], t.tolist())
|
2881
egs/librispeech/ASR/zipformer_ctc_streaming/zipformer.py
Normal file
2881
egs/librispeech/ASR/zipformer_ctc_streaming/zipformer.py
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
x
Reference in New Issue
Block a user