diff --git a/egs/librispeech/ASR/RESULTS.md b/egs/librispeech/ASR/RESULTS.md index 66b147764..bc7d8a5ef 100644 --- a/egs/librispeech/ASR/RESULTS.md +++ b/egs/librispeech/ASR/RESULTS.md @@ -307,6 +307,23 @@ done To decode with external language models, please refer to the documentation [here](https://k2-fsa.github.io/icefall/decoding-with-langugage-models/index.html). +We also support training Zipformer with AMP+bf16 format (requires bf16 support). See [here](https://github.com/k2-fsa/icefall/pull/1700) for more details and pre-trained models. **The same command can be used for decoding and exporting the model.** + +The amp+bf16 training command is: +```bash +export CUDA_VISIBLE_DEVICES="0,1,2,3" +./zipformer/train.py \ + --world-size 4 \ + --num-epochs 50 \ + --start-epoch 1 \ + --use-fp16 0 \ + --use-bf16 1 \ + --exp-dir zipformer/exp_amp_bf16 \ + --causal 0 \ + --full-libri 1 \ + --max-duration 1000 +``` + ##### small-scaled model, number of model parameters: 23285615, i.e., 23.3 M The tensorboard log can be found at diff --git a/egs/librispeech/ASR/zipformer/train.py b/egs/librispeech/ASR/zipformer/train.py index 95e31e6e6..9bf95c01e 100755 --- a/egs/librispeech/ASR/zipformer/train.py +++ b/egs/librispeech/ASR/zipformer/train.py @@ -1034,7 +1034,9 @@ def train_one_epoch( batch_size = len(batch["supervisions"]["text"]) try: - with torch.cuda.amp.autocast(enabled=params.use_fp16, dtype=params.dtype): + with torch.cuda.amp.autocast( + enabled=params.use_autocast, dtype=params.dtype + ): loss, loss_info = compute_loss( params=params, model=model, @@ -1054,9 +1056,7 @@ def train_one_epoch( scaler.update() optimizer.zero_grad() except Exception as e: - logging.info( - f"Caught exception: {e}." - ) + logging.info(f"Caught exception: {e}.") save_bad_model() display_and_save_batch(batch, params=params, sp=sp) raise @@ -1097,7 +1097,7 @@ def train_one_epoch( rank=rank, ) - if batch_idx % 100 == 0 and params.use_fp16: + if batch_idx % 100 == 0 and params.use_autocast: # If the grad scale was less than 1, try increasing it. The _growth_interval # of the grad scaler is configurable, but we can't configure it to have different # behavior depending on the current grad scale. @@ -1116,14 +1116,14 @@ def train_one_epoch( if batch_idx % params.log_interval == 0: cur_lr = max(scheduler.get_last_lr()) - cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0 + cur_grad_scale = scaler._scale.item() if params.use_autocast else 1.0 logging.info( f"Epoch {params.cur_epoch}, " f"batch {batch_idx}, loss[{loss_info}], " f"tot_loss[{tot_loss}], batch size: {batch_size}, " f"lr: {cur_lr:.2e}, " - + (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "") + + (f"grad_scale: {scaler._scale.item()}" if params.use_autocast else "") ) if tb_writer is not None: @@ -1135,7 +1135,7 @@ def train_one_epoch( tb_writer, "train/current_", params.batch_idx_train ) tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) - if params.use_fp16: + if params.use_autocast: tb_writer.add_scalar( "train/grad_scale", cur_grad_scale, params.batch_idx_train ) @@ -1211,16 +1211,25 @@ def run(rank, world_size, args): params.ctc_loss_scale = 1.0 else: assert params.ctc_loss_scale + params.attention_decoder_loss_scale == 1.0, ( - params.ctc_loss_scale, params.attention_decoder_loss_scale + params.ctc_loss_scale, + params.attention_decoder_loss_scale, ) - if params.use_bf16: - assert torch.cuda.is_bf16_supported(), f"Your GPU does not support bf16!" + if params.use_bf16: # amp + bf16 + assert torch.cuda.is_bf16_supported(), "Your GPU does not support bf16!" + assert not params.use_fp16, "You can only use either fp16 or bf16" params.dtype = torch.bfloat16 - else: + params.use_autocast = True + elif params.use_fp16: # amp + fp16 params.dtype = torch.float16 + params.use_autocast = True + else: # fp32 + params.dtype = torch.float32 + params.use_autocast = False + logging.info(f"Using dtype={params.dtype}") - + logging.info(f"Use AMP={params.use_autocast}") + logging.info(params) logging.info("About to create model") @@ -1344,16 +1353,16 @@ def run(rank, world_size, args): valid_cuts += librispeech.dev_other_cuts() valid_dl = librispeech.valid_dataloaders(valid_cuts) - if not params.print_diagnostics: - scan_pessimistic_batches_for_oom( - model=model, - train_dl=train_dl, - optimizer=optimizer, - sp=sp, - params=params, - ) + # if not params.print_diagnostics: + # scan_pessimistic_batches_for_oom( + # model=model, + # train_dl=train_dl, + # optimizer=optimizer, + # sp=sp, + # params=params, + # ) - scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0) + scaler = GradScaler(enabled=params.use_autocast, init_scale=1.0) if checkpoints and "grad_scaler" in checkpoints: logging.info("Loading grad scaler state dict") scaler.load_state_dict(checkpoints["grad_scaler"]) @@ -1453,7 +1462,9 @@ def scan_pessimistic_batches_for_oom( for criterion, cuts in batches.items(): batch = train_dl.dataset[cuts] try: - with torch.cuda.amp.autocast(enabled=params.use_fp16, dtype=params.dtype): + with torch.cuda.amp.autocast( + enabled=params.use_autocast, dtype=params.dtype + ): loss, _ = compute_loss( params=params, model=model,