data preparation

This commit is contained in:
glynpu 2023-03-16 12:28:59 +08:00
parent 25873de7b6
commit b55ae4fd53
4 changed files with 330 additions and 0 deletions

View File

@ -0,0 +1 @@
../../../aishell/ASR/local/compute_fbank_aishell.py

View File

@ -0,0 +1,139 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Liyong Guo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file computes fbank features of the HI_MIA and HI_MIA_CW dataset.
It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/fbank.
"""
import argparse
import logging
import os
from pathlib import Path
import torch
from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor, str2bool
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--train-set-channel",
type=str,
default="_7_01",
help="""channel of HI_MIA dataset.
All channels are used if it is set "all".
""",
)
parser.add_argument(
"--enable-speed-perturb",
type=str2bool,
default=False,
help="""channel of trianing set.
""",
)
return parser.parse_args()
def compute_fbank_himia(
train_set_channel: str = None,
enable_speed_perturb: bool = True,
):
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
num_jobs = min(40, os.cpu_count())
num_mel_bins = 80
if "all" == train_set_channel:
dataset_parts = (
"train",
"dev",
"test",
"cw_test",
)
else:
dataset_parts = (
f"train{train_set_channel}",
f"dev{train_set_channel}",
f"test{train_set_channel}",
"cw_test",
)
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts, prefix="himia", output_dir=src_dir
)
assert manifests is not None
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
with get_executor() as ex: # Initialize the executor only once.
for partition, m in manifests.items():
if (output_dir / f"cuts_{partition}.jsonl.gz").is_file():
logging.info(f"{partition} already exists - skipping.")
continue
logging.info(f"Processing {partition}")
cut_set = CutSet.from_manifests(
recordings=m["recordings"],
supervisions=m["supervisions"],
)
if "train" in partition and enable_speed_perturb:
cut_set = (
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
)
cut_set = cut_set.resample(16000)
cut_set = cut_set.compute_and_store_features(
extractor=extractor,
storage_path=f"{output_dir}/feats_{partition}",
# when an executor is specified, make more partitions
num_jobs=num_jobs if ex is None else 80,
executor=ex,
storage_type=LilcomHdf5Writer,
)
output_file_name = f"cuts_{partition}.jsonl.gz"
if "all" != train_set_channel:
output_file_name = f"cuts_{partition}{train_set_channel}.jsonl.gz"
cut_set.to_file(output_dir / f"{output_file_name}")
def main():
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
args = get_args()
logging.basicConfig(format=formatter, level=logging.INFO)
compute_fbank_himia(
train_set_channel=args.train_set_channel,
enable_speed_perturb=args.enable_speed_perturb,
)
if __name__ == "__main__":
main()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/compute_fbank_musan.py

189
egs/himia/wuw/prepare.sh Executable file
View File

@ -0,0 +1,189 @@
#!/usr/bin/env bash
set -eou pipefail
stage=6
stop_stage=6
# HI_MIA and aishell dataset are used in this experiment.
# musan dataset is used for data augmentation.
#
# For aishell dataset downlading and preparation,
# refer to icefall/egs/aishell/ASR/prepare.sh.
#
# For HI_MIA and HI_MIA_CW dataset,
# we assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
# Then these files will be extracted to $dl_dir/HiMia/
#
# - $dl_dir/train.tar.gz
# Himia training dataset.
# From https://www.openslr.org/85
#
# - $dl_dir/dev.tar.gz
# Himia Devlopment dataset.
# From https://www.openslr.org/85
#
# - $dl_dir/test_v2.tar.gz
# Himia test dataset.
# From https://www.openslr.org/85
#
# - $dl_dir/data.tgz
# Himia confusion words(HI_MIA_CW) test dataset.
# From https://www.openslr.org/120
# - $dl_dir/resource.tgz
# Transcripts of (HI_MIA_CW) test dataset.
# From https://www.openslr.org/120
dl_dir=$PWD/download
train_set_channel=_7_01
enable_speed_perturb=False
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded HI_MIA and HI_MIA_CW dataset to /path/to/himia/,
# you can create a symlink
#
# ln -sfv /path/to/himia $dl_dir/
#
if [ ! -f $dl_dir/train.tar.gz ]; then
lhotse download himia $dl_dir/
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
# If you have pre-downloaded it to /path/to/aishell,
# you can create a symlink
#
# ln -sfv /path/to/aishell $dl_dir/aishell
#
# The directory structure is
# aishell/
# |-- data_aishell
# | |-- transcript
# | `-- wav
# `-- resource_aishell
# |-- lexicon.txt
# `-- speaker.info
if [ ! -d $dl_dir/aishell/data_aishell/wav/train ]; then
lhotse download aishell $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare HI_MIA and HI_MIA_CWmanifest"
mkdir -p data/manifests
if [ ! -e data/manifests/.himia.done ]; then
lhotse prepare himia $dl_dir/HiMia data/manifests
touch data/manifests/.himia.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
mkdir -p data/manifests
if [ ! -e data/manifests/.musan.done ]; then
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Prepare aishell manifest"
# We assume that you have downloaded the aishell corpus
# to $dl_dir/aishell
if [ ! -f data/manifests/.aishell_manifests.done ]; then
mkdir -p data/manifests
lhotse prepare aishell $dl_dir/aishell data/manifests
touch data/manifests/.aishell_manifests.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for aishell"
if [ ! -f data/fbank/.aishell.done ]; then
mkdir -p data/fbank
./local/compute_fbank_aishell.py \
--enable-speed-perturb=${enable_speed_perturb}
touch data/fbank/.aishell.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Compute fbank for musan"
mkdir -p data/fbank
if [ ! -e data/fbank/.musan.done ]; then
./local/compute_fbank_musan.py
touch data/fbank/.musan.done
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Compute fbank for HI_MIA and HI_MIA_CW dataset"
# Format of train_set_channel is "micropohone position"_"channel"
# Microphone 1 to 6 is an array with 16 channels.
# Microphone 8 only has a single channel.
# So valid examples of train_set_channel could be:
# 1_01, ..., 1_16
# 2_01, ..., 2_16
# ...
# 6_01, ..., 6_16
# 7_01
train_set_channel="_7_01"
for subset in train dev test; do
for file_type in recordings supervisions; do
src=data/manifests/himia_${file_type}_${subset}.jsonl.gz
dst=data/manifests/himia_${file_type}_${subset}${train_set_channel}.jsonl.gz
cat <(gunzip -c ${src}) | \
grep ${train_set_channel} | \
gzip -c > ${dst}
done
done
mkdir -p data/fbank
if [ ! -e data/fbank/.himia.done ]; then
./local/compute_fbank_himia.py \
--train-set-channel=${train_set_channel} \
--enable-speed-perturb=${enable_speed_perturb}
touch data/fbank/.himia.done
fi
train_file=data/fbank/cuts_train_himia${train_set_channel}-aishell-shuf.jsonl.gz
if [ ! -f ${train_file} ]; then
# SingleCutSampler is prefered for this experiment.
# So `shuf` the training dataset here.
cat <(gunzip -c data/fbank/aishell_cuts_train.jsonl.gz) \
<(gunzip -c data/fbank/cuts_train${train_set_channel}.jsonl.gz) | \
grep -v _sp | \
shuf |shuf | gzip -c > ${train_file}
fi
fi