mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-11 19:12:30 +00:00
data preparation
This commit is contained in:
parent
25873de7b6
commit
b55ae4fd53
1
egs/himia/wuw/local/compute_fbank_aishell.py
Symbolic link
1
egs/himia/wuw/local/compute_fbank_aishell.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../aishell/ASR/local/compute_fbank_aishell.py
|
139
egs/himia/wuw/local/compute_fbank_himia.py
Executable file
139
egs/himia/wuw/local/compute_fbank_himia.py
Executable file
@ -0,0 +1,139 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Liyong Guo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This file computes fbank features of the HI_MIA and HI_MIA_CW dataset.
|
||||
It looks for manifests in the directory data/manifests.
|
||||
|
||||
The generated fbank features are saved in data/fbank.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
from icefall.utils import get_executor, str2bool
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--train-set-channel",
|
||||
type=str,
|
||||
default="_7_01",
|
||||
help="""channel of HI_MIA dataset.
|
||||
All channels are used if it is set "all".
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--enable-speed-perturb",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""channel of trianing set.
|
||||
""",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def compute_fbank_himia(
|
||||
train_set_channel: str = None,
|
||||
enable_speed_perturb: bool = True,
|
||||
):
|
||||
src_dir = Path("data/manifests")
|
||||
output_dir = Path("data/fbank")
|
||||
num_jobs = min(40, os.cpu_count())
|
||||
num_mel_bins = 80
|
||||
|
||||
if "all" == train_set_channel:
|
||||
dataset_parts = (
|
||||
"train",
|
||||
"dev",
|
||||
"test",
|
||||
"cw_test",
|
||||
)
|
||||
else:
|
||||
dataset_parts = (
|
||||
f"train{train_set_channel}",
|
||||
f"dev{train_set_channel}",
|
||||
f"test{train_set_channel}",
|
||||
"cw_test",
|
||||
)
|
||||
manifests = read_manifests_if_cached(
|
||||
dataset_parts=dataset_parts, prefix="himia", output_dir=src_dir
|
||||
)
|
||||
assert manifests is not None
|
||||
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
|
||||
with get_executor() as ex: # Initialize the executor only once.
|
||||
for partition, m in manifests.items():
|
||||
if (output_dir / f"cuts_{partition}.jsonl.gz").is_file():
|
||||
logging.info(f"{partition} already exists - skipping.")
|
||||
continue
|
||||
logging.info(f"Processing {partition}")
|
||||
cut_set = CutSet.from_manifests(
|
||||
recordings=m["recordings"],
|
||||
supervisions=m["supervisions"],
|
||||
)
|
||||
if "train" in partition and enable_speed_perturb:
|
||||
cut_set = (
|
||||
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||
)
|
||||
cut_set = cut_set.resample(16000)
|
||||
cut_set = cut_set.compute_and_store_features(
|
||||
extractor=extractor,
|
||||
storage_path=f"{output_dir}/feats_{partition}",
|
||||
# when an executor is specified, make more partitions
|
||||
num_jobs=num_jobs if ex is None else 80,
|
||||
executor=ex,
|
||||
storage_type=LilcomHdf5Writer,
|
||||
)
|
||||
output_file_name = f"cuts_{partition}.jsonl.gz"
|
||||
if "all" != train_set_channel:
|
||||
output_file_name = f"cuts_{partition}{train_set_channel}.jsonl.gz"
|
||||
|
||||
cut_set.to_file(output_dir / f"{output_file_name}")
|
||||
|
||||
|
||||
def main():
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
args = get_args()
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
compute_fbank_himia(
|
||||
train_set_channel=args.train_set_channel,
|
||||
enable_speed_perturb=args.enable_speed_perturb,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/himia/wuw/local/compute_fbank_musan.py
Symbolic link
1
egs/himia/wuw/local/compute_fbank_musan.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/compute_fbank_musan.py
|
189
egs/himia/wuw/prepare.sh
Executable file
189
egs/himia/wuw/prepare.sh
Executable file
@ -0,0 +1,189 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -eou pipefail
|
||||
|
||||
stage=6
|
||||
stop_stage=6
|
||||
|
||||
# HI_MIA and aishell dataset are used in this experiment.
|
||||
# musan dataset is used for data augmentation.
|
||||
#
|
||||
# For aishell dataset downlading and preparation,
|
||||
# refer to icefall/egs/aishell/ASR/prepare.sh.
|
||||
#
|
||||
# For HI_MIA and HI_MIA_CW dataset,
|
||||
# we assume dl_dir (download dir) contains the following
|
||||
# directories and files. If not, they will be downloaded
|
||||
# by this script automatically.
|
||||
# Then these files will be extracted to $dl_dir/HiMia/
|
||||
#
|
||||
# - $dl_dir/train.tar.gz
|
||||
# Himia training dataset.
|
||||
# From https://www.openslr.org/85
|
||||
#
|
||||
# - $dl_dir/dev.tar.gz
|
||||
# Himia Devlopment dataset.
|
||||
# From https://www.openslr.org/85
|
||||
#
|
||||
# - $dl_dir/test_v2.tar.gz
|
||||
# Himia test dataset.
|
||||
# From https://www.openslr.org/85
|
||||
#
|
||||
# - $dl_dir/data.tgz
|
||||
# Himia confusion words(HI_MIA_CW) test dataset.
|
||||
# From https://www.openslr.org/120
|
||||
|
||||
# - $dl_dir/resource.tgz
|
||||
# Transcripts of (HI_MIA_CW) test dataset.
|
||||
# From https://www.openslr.org/120
|
||||
|
||||
dl_dir=$PWD/download
|
||||
train_set_channel=_7_01
|
||||
enable_speed_perturb=False
|
||||
|
||||
. shared/parse_options.sh || exit 1
|
||||
|
||||
# All files generated by this script are saved in "data".
|
||||
# You can safely remove "data" and rerun this script to regenerate it.
|
||||
mkdir -p data
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
log "dl_dir: $dl_dir"
|
||||
|
||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||
log "Stage 0: Download data"
|
||||
|
||||
# If you have pre-downloaded HI_MIA and HI_MIA_CW dataset to /path/to/himia/,
|
||||
# you can create a symlink
|
||||
#
|
||||
# ln -sfv /path/to/himia $dl_dir/
|
||||
#
|
||||
if [ ! -f $dl_dir/train.tar.gz ]; then
|
||||
lhotse download himia $dl_dir/
|
||||
fi
|
||||
|
||||
# If you have pre-downloaded it to /path/to/musan,
|
||||
# you can create a symlink
|
||||
#
|
||||
# ln -sfv /path/to/musan $dl_dir/
|
||||
#
|
||||
if [ ! -d $dl_dir/musan ]; then
|
||||
lhotse download musan $dl_dir
|
||||
fi
|
||||
|
||||
# If you have pre-downloaded it to /path/to/aishell,
|
||||
# you can create a symlink
|
||||
#
|
||||
# ln -sfv /path/to/aishell $dl_dir/aishell
|
||||
#
|
||||
# The directory structure is
|
||||
# aishell/
|
||||
# |-- data_aishell
|
||||
# | |-- transcript
|
||||
# | `-- wav
|
||||
# `-- resource_aishell
|
||||
# |-- lexicon.txt
|
||||
# `-- speaker.info
|
||||
|
||||
if [ ! -d $dl_dir/aishell/data_aishell/wav/train ]; then
|
||||
lhotse download aishell $dl_dir
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
log "Stage 1: Prepare HI_MIA and HI_MIA_CWmanifest"
|
||||
mkdir -p data/manifests
|
||||
if [ ! -e data/manifests/.himia.done ]; then
|
||||
lhotse prepare himia $dl_dir/HiMia data/manifests
|
||||
touch data/manifests/.himia.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
log "Stage 2: Prepare musan manifest"
|
||||
# We assume that you have downloaded the musan corpus
|
||||
# to data/musan
|
||||
mkdir -p data/manifests
|
||||
if [ ! -e data/manifests/.musan.done ]; then
|
||||
lhotse prepare musan $dl_dir/musan data/manifests
|
||||
touch data/manifests/.musan.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
log "Stage 3: Prepare aishell manifest"
|
||||
# We assume that you have downloaded the aishell corpus
|
||||
# to $dl_dir/aishell
|
||||
if [ ! -f data/manifests/.aishell_manifests.done ]; then
|
||||
mkdir -p data/manifests
|
||||
lhotse prepare aishell $dl_dir/aishell data/manifests
|
||||
touch data/manifests/.aishell_manifests.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
log "Stage 4: Compute fbank for aishell"
|
||||
if [ ! -f data/fbank/.aishell.done ]; then
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_aishell.py \
|
||||
--enable-speed-perturb=${enable_speed_perturb}
|
||||
touch data/fbank/.aishell.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
log "Stage 5: Compute fbank for musan"
|
||||
mkdir -p data/fbank
|
||||
if [ ! -e data/fbank/.musan.done ]; then
|
||||
./local/compute_fbank_musan.py
|
||||
touch data/fbank/.musan.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
log "Stage 6: Compute fbank for HI_MIA and HI_MIA_CW dataset"
|
||||
# Format of train_set_channel is "micropohone position"_"channel"
|
||||
# Microphone 1 to 6 is an array with 16 channels.
|
||||
# Microphone 8 only has a single channel.
|
||||
# So valid examples of train_set_channel could be:
|
||||
# 1_01, ..., 1_16
|
||||
# 2_01, ..., 2_16
|
||||
# ...
|
||||
# 6_01, ..., 6_16
|
||||
# 7_01
|
||||
train_set_channel="_7_01"
|
||||
for subset in train dev test; do
|
||||
for file_type in recordings supervisions; do
|
||||
src=data/manifests/himia_${file_type}_${subset}.jsonl.gz
|
||||
dst=data/manifests/himia_${file_type}_${subset}${train_set_channel}.jsonl.gz
|
||||
cat <(gunzip -c ${src}) | \
|
||||
grep ${train_set_channel} | \
|
||||
gzip -c > ${dst}
|
||||
done
|
||||
done
|
||||
|
||||
mkdir -p data/fbank
|
||||
if [ ! -e data/fbank/.himia.done ]; then
|
||||
./local/compute_fbank_himia.py \
|
||||
--train-set-channel=${train_set_channel} \
|
||||
--enable-speed-perturb=${enable_speed_perturb}
|
||||
touch data/fbank/.himia.done
|
||||
fi
|
||||
|
||||
train_file=data/fbank/cuts_train_himia${train_set_channel}-aishell-shuf.jsonl.gz
|
||||
if [ ! -f ${train_file} ]; then
|
||||
# SingleCutSampler is prefered for this experiment.
|
||||
# So `shuf` the training dataset here.
|
||||
cat <(gunzip -c data/fbank/aishell_cuts_train.jsonl.gz) \
|
||||
<(gunzip -c data/fbank/cuts_train${train_set_channel}.jsonl.gz) | \
|
||||
grep -v _sp | \
|
||||
shuf |shuf | gzip -c > ${train_file}
|
||||
fi
|
||||
|
||||
fi
|
||||
|
Loading…
x
Reference in New Issue
Block a user