mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-10 09:34:39 +00:00
config spec-aug-max-frames-mask-fraction
This commit is contained in:
parent
c381b491f1
commit
b52b5c683f
@ -1,445 +0,0 @@
|
|||||||
# Copyright 2021 Piotr Żelasko
|
|
||||||
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import inspect
|
|
||||||
import logging
|
|
||||||
from functools import lru_cache
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Any, Dict, Optional
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
|
|
||||||
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
|
||||||
BucketingSampler,
|
|
||||||
CutConcatenate,
|
|
||||||
CutMix,
|
|
||||||
K2SpeechRecognitionDataset,
|
|
||||||
PrecomputedFeatures,
|
|
||||||
SingleCutSampler,
|
|
||||||
)
|
|
||||||
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
|
||||||
AudioSamples,
|
|
||||||
OnTheFlyFeatures,
|
|
||||||
)
|
|
||||||
from lhotse.utils import fix_random_seed
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
|
|
||||||
from aug import SpecAugment
|
|
||||||
from icefall.utils import str2bool
|
|
||||||
|
|
||||||
|
|
||||||
class _SeedWorkers:
|
|
||||||
def __init__(self, seed: int):
|
|
||||||
self.seed = seed
|
|
||||||
|
|
||||||
def __call__(self, worker_id: int):
|
|
||||||
fix_random_seed(self.seed + worker_id)
|
|
||||||
|
|
||||||
|
|
||||||
class LibriSpeechAsrDataModule:
|
|
||||||
"""
|
|
||||||
DataModule for k2 ASR experiments.
|
|
||||||
It assumes there is always one train and valid dataloader,
|
|
||||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
|
||||||
and test-other).
|
|
||||||
|
|
||||||
It contains all the common data pipeline modules used in ASR
|
|
||||||
experiments, e.g.:
|
|
||||||
- dynamic batch size,
|
|
||||||
- bucketing samplers,
|
|
||||||
- cut concatenation,
|
|
||||||
- augmentation,
|
|
||||||
- on-the-fly feature extraction
|
|
||||||
|
|
||||||
This class should be derived for specific corpora used in ASR tasks.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, args: argparse.Namespace):
|
|
||||||
self.args = args
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
|
||||||
group = parser.add_argument_group(
|
|
||||||
title="ASR data related options",
|
|
||||||
description="These options are used for the preparation of "
|
|
||||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
|
||||||
"effective batch sizes, sampling strategies, applied data "
|
|
||||||
"augmentations, etc.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--full-libri",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, use 960h LibriSpeech. "
|
|
||||||
"Otherwise, use 100h subset.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--manifest-dir",
|
|
||||||
type=Path,
|
|
||||||
default=Path("data/fbank"),
|
|
||||||
help="Path to directory with train/valid/test cuts.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--max-duration",
|
|
||||||
type=int,
|
|
||||||
default=200.0,
|
|
||||||
help="Maximum pooled recordings duration (seconds) in a "
|
|
||||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--bucketing-sampler",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, the batches will come from buckets of "
|
|
||||||
"similar duration (saves padding frames).",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--num-buckets",
|
|
||||||
type=int,
|
|
||||||
default=30,
|
|
||||||
help="The number of buckets for the BucketingSampler"
|
|
||||||
"(you might want to increase it for larger datasets).",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--concatenate-cuts",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="When enabled, utterances (cuts) will be concatenated "
|
|
||||||
"to minimize the amount of padding.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--duration-factor",
|
|
||||||
type=float,
|
|
||||||
default=1.0,
|
|
||||||
help="Determines the maximum duration of a concatenated cut "
|
|
||||||
"relative to the duration of the longest cut in a batch.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--gap",
|
|
||||||
type=float,
|
|
||||||
default=1.0,
|
|
||||||
help="The amount of padding (in seconds) inserted between "
|
|
||||||
"concatenated cuts. This padding is filled with noise when "
|
|
||||||
"noise augmentation is used.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--on-the-fly-feats",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="When enabled, use on-the-fly cut mixing and feature "
|
|
||||||
"extraction. Will drop existing precomputed feature manifests "
|
|
||||||
"if available.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--shuffle",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled (=default), the examples will be "
|
|
||||||
"shuffled for each epoch.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--drop-last",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="Whether to drop last batch. Used by sampler.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--return-cuts",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, each batch will have the "
|
|
||||||
"field: batch['supervisions']['cut'] with the cuts that "
|
|
||||||
"were used to construct it.",
|
|
||||||
)
|
|
||||||
|
|
||||||
group.add_argument(
|
|
||||||
"--num-workers",
|
|
||||||
type=int,
|
|
||||||
default=2,
|
|
||||||
help="The number of training dataloader workers that "
|
|
||||||
"collect the batches.",
|
|
||||||
)
|
|
||||||
|
|
||||||
group.add_argument(
|
|
||||||
"--enable-spec-aug",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, use SpecAugment for training dataset.",
|
|
||||||
)
|
|
||||||
|
|
||||||
group.add_argument(
|
|
||||||
"--spec-aug-time-warp-factor",
|
|
||||||
type=int,
|
|
||||||
default=80,
|
|
||||||
help="Used only when --enable-spec-aug is True. "
|
|
||||||
"It specifies the factor for time warping in SpecAugment. "
|
|
||||||
"Larger values mean more warping. "
|
|
||||||
"A value less than 1 means to disable time warp.",
|
|
||||||
)
|
|
||||||
|
|
||||||
group.add_argument(
|
|
||||||
"--enable-musan",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, select noise from MUSAN and mix it"
|
|
||||||
"with training dataset. ",
|
|
||||||
)
|
|
||||||
|
|
||||||
group.add_argument(
|
|
||||||
"--input-strategy",
|
|
||||||
type=str,
|
|
||||||
default="PrecomputedFeatures",
|
|
||||||
help="AudioSamples or PrecomputedFeatures",
|
|
||||||
)
|
|
||||||
|
|
||||||
def train_dataloaders(
|
|
||||||
self,
|
|
||||||
cuts_train: CutSet,
|
|
||||||
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
|
||||||
) -> DataLoader:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
cuts_train:
|
|
||||||
CutSet for training.
|
|
||||||
sampler_state_dict:
|
|
||||||
The state dict for the training sampler.
|
|
||||||
"""
|
|
||||||
transforms = []
|
|
||||||
if self.args.enable_musan:
|
|
||||||
logging.info("Enable MUSAN")
|
|
||||||
logging.info("About to get Musan cuts")
|
|
||||||
cuts_musan = load_manifest(
|
|
||||||
self.args.manifest_dir / "cuts_musan.json.gz"
|
|
||||||
)
|
|
||||||
transforms.append(
|
|
||||||
CutMix(
|
|
||||||
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
|
|
||||||
)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
logging.info("Disable MUSAN")
|
|
||||||
|
|
||||||
if self.args.concatenate_cuts:
|
|
||||||
logging.info(
|
|
||||||
f"Using cut concatenation with duration factor "
|
|
||||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
|
||||||
)
|
|
||||||
# Cut concatenation should be the first transform in the list,
|
|
||||||
# so that if we e.g. mix noise in, it will fill the gaps between
|
|
||||||
# different utterances.
|
|
||||||
transforms = [
|
|
||||||
CutConcatenate(
|
|
||||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
|
||||||
)
|
|
||||||
] + transforms
|
|
||||||
|
|
||||||
input_transforms = []
|
|
||||||
if self.args.enable_spec_aug:
|
|
||||||
logging.info("Enable SpecAugment")
|
|
||||||
logging.info(
|
|
||||||
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
|
||||||
)
|
|
||||||
# Set the value of num_frame_masks according to Lhotse's version.
|
|
||||||
# In different Lhotse's versions, the default of num_frame_masks is
|
|
||||||
# different.
|
|
||||||
num_frame_masks = 10
|
|
||||||
num_frame_masks_parameter = inspect.signature(
|
|
||||||
SpecAugment.__init__
|
|
||||||
).parameters["num_frame_masks"]
|
|
||||||
if num_frame_masks_parameter.default == 1:
|
|
||||||
num_frame_masks = 2
|
|
||||||
logging.info(f"Num frame mask: {num_frame_masks}")
|
|
||||||
input_transforms.append(
|
|
||||||
SpecAugment(
|
|
||||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
|
||||||
num_frame_masks=num_frame_masks,
|
|
||||||
features_mask_size=27,
|
|
||||||
num_feature_masks=2,
|
|
||||||
frames_mask_size=100,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
logging.info("Disable SpecAugment")
|
|
||||||
|
|
||||||
logging.info("About to create train dataset")
|
|
||||||
train = K2SpeechRecognitionDataset(
|
|
||||||
input_strategy=eval(self.args.input_strategy)(),
|
|
||||||
cut_transforms=transforms,
|
|
||||||
input_transforms=input_transforms,
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.args.on_the_fly_feats:
|
|
||||||
# NOTE: the PerturbSpeed transform should be added only if we
|
|
||||||
# remove it from data prep stage.
|
|
||||||
# Add on-the-fly speed perturbation; since originally it would
|
|
||||||
# have increased epoch size by 3, we will apply prob 2/3 and use
|
|
||||||
# 3x more epochs.
|
|
||||||
# Speed perturbation probably should come first before
|
|
||||||
# concatenation, but in principle the transforms order doesn't have
|
|
||||||
# to be strict (e.g. could be randomized)
|
|
||||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
|
||||||
# Drop feats to be on the safe side.
|
|
||||||
train = K2SpeechRecognitionDataset(
|
|
||||||
cut_transforms=transforms,
|
|
||||||
input_strategy=OnTheFlyFeatures(
|
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
|
||||||
),
|
|
||||||
input_transforms=input_transforms,
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.args.bucketing_sampler:
|
|
||||||
logging.info("Using BucketingSampler.")
|
|
||||||
train_sampler = BucketingSampler(
|
|
||||||
cuts_train,
|
|
||||||
max_duration=self.args.max_duration,
|
|
||||||
shuffle=self.args.shuffle,
|
|
||||||
num_buckets=self.args.num_buckets,
|
|
||||||
bucket_method="equal_duration",
|
|
||||||
drop_last=self.args.drop_last,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
logging.info("Using SingleCutSampler.")
|
|
||||||
train_sampler = SingleCutSampler(
|
|
||||||
cuts_train,
|
|
||||||
max_duration=self.args.max_duration,
|
|
||||||
shuffle=self.args.shuffle,
|
|
||||||
)
|
|
||||||
logging.info("About to create train dataloader")
|
|
||||||
|
|
||||||
if sampler_state_dict is not None:
|
|
||||||
logging.info("Loading sampler state dict")
|
|
||||||
train_sampler.load_state_dict(sampler_state_dict)
|
|
||||||
|
|
||||||
# 'seed' is derived from the current random state, which will have
|
|
||||||
# previously been set in the main process.
|
|
||||||
seed = torch.randint(0, 100000, ()).item()
|
|
||||||
worker_init_fn = _SeedWorkers(seed)
|
|
||||||
|
|
||||||
train_dl = DataLoader(
|
|
||||||
train,
|
|
||||||
sampler=train_sampler,
|
|
||||||
batch_size=None,
|
|
||||||
num_workers=self.args.num_workers,
|
|
||||||
persistent_workers=False,
|
|
||||||
worker_init_fn=worker_init_fn,
|
|
||||||
)
|
|
||||||
|
|
||||||
return train_dl
|
|
||||||
|
|
||||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
|
||||||
transforms = []
|
|
||||||
if self.args.concatenate_cuts:
|
|
||||||
transforms = [
|
|
||||||
CutConcatenate(
|
|
||||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
|
||||||
)
|
|
||||||
] + transforms
|
|
||||||
|
|
||||||
logging.info("About to create dev dataset")
|
|
||||||
if self.args.on_the_fly_feats:
|
|
||||||
validate = K2SpeechRecognitionDataset(
|
|
||||||
cut_transforms=transforms,
|
|
||||||
input_strategy=OnTheFlyFeatures(
|
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
|
||||||
),
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
validate = K2SpeechRecognitionDataset(
|
|
||||||
cut_transforms=transforms,
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
valid_sampler = BucketingSampler(
|
|
||||||
cuts_valid,
|
|
||||||
max_duration=self.args.max_duration,
|
|
||||||
shuffle=False,
|
|
||||||
)
|
|
||||||
logging.info("About to create dev dataloader")
|
|
||||||
valid_dl = DataLoader(
|
|
||||||
validate,
|
|
||||||
sampler=valid_sampler,
|
|
||||||
batch_size=None,
|
|
||||||
num_workers=2,
|
|
||||||
persistent_workers=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
return valid_dl
|
|
||||||
|
|
||||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
|
||||||
logging.debug("About to create test dataset")
|
|
||||||
test = K2SpeechRecognitionDataset(
|
|
||||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
|
||||||
if self.args.on_the_fly_feats
|
|
||||||
else eval(self.args.input_strategy)(),
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
sampler = BucketingSampler(
|
|
||||||
cuts, max_duration=self.args.max_duration, shuffle=False
|
|
||||||
)
|
|
||||||
logging.debug("About to create test dataloader")
|
|
||||||
test_dl = DataLoader(
|
|
||||||
test,
|
|
||||||
batch_size=None,
|
|
||||||
sampler=sampler,
|
|
||||||
num_workers=self.args.num_workers,
|
|
||||||
)
|
|
||||||
return test_dl
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def train_clean_100_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get train-clean-100 cuts")
|
|
||||||
return load_manifest(
|
|
||||||
self.args.manifest_dir / "cuts_train-clean-100.json.gz"
|
|
||||||
)
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def train_clean_360_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get train-clean-360 cuts")
|
|
||||||
return load_manifest(
|
|
||||||
self.args.manifest_dir / "cuts_train-clean-360.json.gz"
|
|
||||||
)
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def train_other_500_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get train-other-500 cuts")
|
|
||||||
return load_manifest(
|
|
||||||
self.args.manifest_dir / "cuts_train-other-500.json.gz"
|
|
||||||
)
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def dev_clean_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get dev-clean cuts")
|
|
||||||
return load_manifest(self.args.manifest_dir / "cuts_dev-clean.json.gz")
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def dev_other_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get dev-other cuts")
|
|
||||||
return load_manifest(self.args.manifest_dir / "cuts_dev-other.json.gz")
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def test_clean_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get test-clean cuts")
|
|
||||||
return load_manifest(self.args.manifest_dir / "cuts_test-clean.json.gz")
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def test_other_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get test-other cuts")
|
|
||||||
return load_manifest(self.args.manifest_dir / "cuts_test-other.json.gz")
|
|
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless2/asr_datamodule.py
|
@ -32,7 +32,6 @@ from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
|||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
SingleCutSampler,
|
||||||
SpecAugment,
|
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||||
AudioSamples,
|
AudioSamples,
|
||||||
@ -41,6 +40,7 @@ from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
|||||||
from lhotse.utils import fix_random_seed
|
from lhotse.utils import fix_random_seed
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
from aug import SpecAugment
|
||||||
from icefall.utils import str2bool
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
@ -183,6 +183,12 @@ class LibriSpeechAsrDataModule:
|
|||||||
help="When enabled, use SpecAugment for training dataset.",
|
help="When enabled, use SpecAugment for training dataset.",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--spec-aug-max-frames-mask-fraction",
|
||||||
|
type=float,
|
||||||
|
default=0.15,
|
||||||
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--spec-aug-time-warp-factor",
|
"--spec-aug-time-warp-factor",
|
||||||
type=int,
|
type=int,
|
||||||
@ -272,6 +278,7 @@ class LibriSpeechAsrDataModule:
|
|||||||
features_mask_size=27,
|
features_mask_size=27,
|
||||||
num_feature_masks=2,
|
num_feature_masks=2,
|
||||||
frames_mask_size=100,
|
frames_mask_size=100,
|
||||||
|
max_frames_mask_fraction=self.args.spec_aug_max_frames_mask_fraction,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
|
Loading…
x
Reference in New Issue
Block a user