mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-09 09:04:19 +00:00
fixed formatting issues
This commit is contained in:
parent
2cb0092b09
commit
b36f3b5c52
@ -240,4 +240,3 @@ def main():
|
|||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
|
|
||||||
|
@ -61,10 +61,15 @@ class Decoder(nn.Module):
|
|||||||
)
|
)
|
||||||
# the balancers are to avoid any drift in the magnitude of the
|
# the balancers are to avoid any drift in the magnitude of the
|
||||||
# embeddings, which would interact badly with parameter averaging.
|
# embeddings, which would interact badly with parameter averaging.
|
||||||
self.balancer = Balancer(decoder_dim, channel_dim=-1,
|
self.balancer = Balancer(
|
||||||
min_positive=0.0, max_positive=1.0,
|
decoder_dim,
|
||||||
min_abs=0.5, max_abs=1.0,
|
channel_dim=-1,
|
||||||
prob=0.05)
|
min_positive=0.0,
|
||||||
|
max_positive=1.0,
|
||||||
|
min_abs=0.5,
|
||||||
|
max_abs=1.0,
|
||||||
|
prob=0.05,
|
||||||
|
)
|
||||||
|
|
||||||
self.blank_id = blank_id
|
self.blank_id = blank_id
|
||||||
|
|
||||||
@ -81,10 +86,15 @@ class Decoder(nn.Module):
|
|||||||
groups=decoder_dim // 4, # group size == 4
|
groups=decoder_dim // 4, # group size == 4
|
||||||
bias=False,
|
bias=False,
|
||||||
)
|
)
|
||||||
self.balancer2 = Balancer(decoder_dim, channel_dim=-1,
|
self.balancer2 = Balancer(
|
||||||
min_positive=0.0, max_positive=1.0,
|
decoder_dim,
|
||||||
min_abs=0.5, max_abs=1.0,
|
channel_dim=-1,
|
||||||
prob=0.05)
|
min_positive=0.0,
|
||||||
|
max_positive=1.0,
|
||||||
|
min_abs=0.5,
|
||||||
|
max_abs=1.0,
|
||||||
|
prob=0.05,
|
||||||
|
)
|
||||||
|
|
||||||
def forward(self, y: torch.Tensor, need_pad: bool = True) -> torch.Tensor:
|
def forward(self, y: torch.Tensor, need_pad: bool = True) -> torch.Tensor:
|
||||||
"""
|
"""
|
||||||
@ -107,9 +117,7 @@ class Decoder(nn.Module):
|
|||||||
if self.context_size > 1:
|
if self.context_size > 1:
|
||||||
embedding_out = embedding_out.permute(0, 2, 1)
|
embedding_out = embedding_out.permute(0, 2, 1)
|
||||||
if need_pad is True:
|
if need_pad is True:
|
||||||
embedding_out = F.pad(
|
embedding_out = F.pad(embedding_out, pad=(self.context_size - 1, 0))
|
||||||
embedding_out, pad=(self.context_size - 1, 0)
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
# During inference time, there is no need to do extra padding
|
# During inference time, there is no need to do extra padding
|
||||||
# as we only need one output
|
# as we only need one output
|
||||||
|
@ -52,12 +52,13 @@ class Joiner(nn.Module):
|
|||||||
Returns:
|
Returns:
|
||||||
Return a tensor of shape (N, T, s_range, C).
|
Return a tensor of shape (N, T, s_range, C).
|
||||||
"""
|
"""
|
||||||
assert encoder_out.ndim == decoder_out.ndim, (encoder_out.shape, decoder_out.shape)
|
assert encoder_out.ndim == decoder_out.ndim, (
|
||||||
|
encoder_out.shape,
|
||||||
|
decoder_out.shape,
|
||||||
|
)
|
||||||
|
|
||||||
if project_input:
|
if project_input:
|
||||||
logit = self.encoder_proj(encoder_out) + self.decoder_proj(
|
logit = self.encoder_proj(encoder_out) + self.decoder_proj(decoder_out)
|
||||||
decoder_out
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
logit = encoder_out + decoder_out
|
logit = encoder_out + decoder_out
|
||||||
|
|
||||||
|
@ -667,8 +667,7 @@ class ScaledAdam(BatchedOptimizer):
|
|||||||
# We have to look at the trained model for parameters at or around the
|
# We have to look at the trained model for parameters at or around the
|
||||||
# param_max_rms, because sometimes they can indicate a problem with the
|
# param_max_rms, because sometimes they can indicate a problem with the
|
||||||
# topology or settings.
|
# topology or settings.
|
||||||
scale_step = torch.minimum(scale_step,
|
scale_step = torch.minimum(scale_step, (param_max_rms - param_rms) / param_rms)
|
||||||
(param_max_rms - param_rms) / param_rms)
|
|
||||||
|
|
||||||
delta = state["delta"]
|
delta = state["delta"]
|
||||||
# the factor of (1-beta1) relates to momentum.
|
# the factor of (1-beta1) relates to momentum.
|
||||||
@ -879,7 +878,8 @@ class Eden(LRScheduler):
|
|||||||
warmup_factor = (
|
warmup_factor = (
|
||||||
1.0
|
1.0
|
||||||
if self.batch >= self.warmup_batches
|
if self.batch >= self.warmup_batches
|
||||||
else self.warmup_start + (1.0 - self.warmup_start) * (self.batch / self.warmup_batches)
|
else self.warmup_start
|
||||||
|
+ (1.0 - self.warmup_start) * (self.batch / self.warmup_batches)
|
||||||
# else 0.5 + 0.5 * (self.batch / self.warmup_batches)
|
# else 0.5 + 0.5 * (self.batch / self.warmup_batches)
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -100,17 +100,13 @@ class Model(nn.Module):
|
|||||||
self.encoder_embed = encoder_embed
|
self.encoder_embed = encoder_embed
|
||||||
self.encoder_proj = encoder_proj
|
self.encoder_proj = encoder_proj
|
||||||
|
|
||||||
def forward(
|
def forward(self, feature: Tensor, feature_lens: Tensor) -> Tuple[Tensor, Tensor]:
|
||||||
self, feature: Tensor, feature_lens: Tensor
|
|
||||||
) -> Tuple[Tensor, Tensor]:
|
|
||||||
x, x_lens = self.encoder_embed(feature, feature_lens)
|
x, x_lens = self.encoder_embed(feature, feature_lens)
|
||||||
|
|
||||||
src_key_padding_mask = make_pad_mask(x_lens)
|
src_key_padding_mask = make_pad_mask(x_lens)
|
||||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||||
|
|
||||||
encoder_out, encoder_out_lens = self.encoder(
|
encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask)
|
||||||
x, x_lens, src_key_padding_mask
|
|
||||||
)
|
|
||||||
|
|
||||||
encoder_out = encoder_out.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
encoder_out = encoder_out.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||||
logits = self.encoder_proj(encoder_out)
|
logits = self.encoder_proj(encoder_out)
|
||||||
@ -168,9 +164,7 @@ def main():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
main()
|
main()
|
||||||
|
File diff suppressed because it is too large
Load Diff
@ -374,11 +374,7 @@ def streaming_forward(
|
|||||||
Returns encoder outputs, output lengths, and updated states.
|
Returns encoder outputs, output lengths, and updated states.
|
||||||
"""
|
"""
|
||||||
cached_embed_left_pad = states[-2]
|
cached_embed_left_pad = states[-2]
|
||||||
(
|
(x, x_lens, new_cached_embed_left_pad,) = model.encoder_embed.streaming_forward(
|
||||||
x,
|
|
||||||
x_lens,
|
|
||||||
new_cached_embed_left_pad,
|
|
||||||
) = model.encoder_embed.streaming_forward(
|
|
||||||
x=features,
|
x=features,
|
||||||
x_lens=feature_lens,
|
x_lens=feature_lens,
|
||||||
cached_left_pad=cached_embed_left_pad,
|
cached_left_pad=cached_embed_left_pad,
|
||||||
|
@ -107,9 +107,7 @@ class ConvNeXt(nn.Module):
|
|||||||
if layerdrop_rate != 0.0:
|
if layerdrop_rate != 0.0:
|
||||||
batch_size = x.shape[0]
|
batch_size = x.shape[0]
|
||||||
mask = (
|
mask = (
|
||||||
torch.rand(
|
torch.rand((batch_size, 1, 1, 1), dtype=x.dtype, device=x.device)
|
||||||
(batch_size, 1, 1, 1), dtype=x.dtype, device=x.device
|
|
||||||
)
|
|
||||||
> layerdrop_rate
|
> layerdrop_rate
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
@ -275,9 +273,7 @@ class Conv2dSubsampling(nn.Module):
|
|||||||
# many copies of this extra gradient term.
|
# many copies of this extra gradient term.
|
||||||
self.out_whiten = Whiten(
|
self.out_whiten = Whiten(
|
||||||
num_groups=1,
|
num_groups=1,
|
||||||
whitening_limit=ScheduledFloat(
|
whitening_limit=ScheduledFloat((0.0, 4.0), (20000.0, 8.0), default=4.0),
|
||||||
(0.0, 4.0), (20000.0, 8.0), default=4.0
|
|
||||||
),
|
|
||||||
prob=(0.025, 0.25),
|
prob=(0.025, 0.25),
|
||||||
grad_scale=0.02,
|
grad_scale=0.02,
|
||||||
)
|
)
|
||||||
@ -400,8 +396,8 @@ class Conv2dSubsampling(nn.Module):
|
|||||||
left_pad = self.convnext.padding[0]
|
left_pad = self.convnext.padding[0]
|
||||||
freq = self.out_width
|
freq = self.out_width
|
||||||
channels = self.layer3_channels
|
channels = self.layer3_channels
|
||||||
cached_embed_left_pad = torch.zeros(
|
cached_embed_left_pad = torch.zeros(batch_size, channels, left_pad, freq).to(
|
||||||
batch_size, channels, left_pad, freq
|
device
|
||||||
).to(device)
|
)
|
||||||
|
|
||||||
return cached_embed_left_pad
|
return cached_embed_left_pad
|
||||||
|
File diff suppressed because it is too large
Load Diff
Loading…
x
Reference in New Issue
Block a user