mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-10 10:32:17 +00:00
clean and remove duplicate files
This commit is contained in:
parent
c5115fc460
commit
b2555fb249
@ -418,56 +418,3 @@ class LibriSpeechAsrDataModule:
|
|||||||
return load_manifest_lazy(
|
return load_manifest_lazy(
|
||||||
self.args.manifest_dir / "mucs_cuts_train.jsonl.gz"
|
self.args.manifest_dir / "mucs_cuts_train.jsonl.gz"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def train_clean_360_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get train-clean-360 cuts")
|
|
||||||
return load_manifest_lazy(
|
|
||||||
self.args.manifest_dir / "librispeech_cuts_train-clean-360.jsonl.gz"
|
|
||||||
)
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def train_other_500_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get train-other-500 cuts")
|
|
||||||
return load_manifest_lazy(
|
|
||||||
self.args.manifest_dir / "librispeech_cuts_train-other-500.jsonl.gz"
|
|
||||||
)
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def train_all_shuf_cuts(self) -> CutSet:
|
|
||||||
logging.info(
|
|
||||||
"About to get the shuffled train-clean-100, \
|
|
||||||
train-clean-360 and train-other-500 cuts"
|
|
||||||
)
|
|
||||||
return load_manifest_lazy(
|
|
||||||
self.args.manifest_dir / "librispeech_cuts_train-all-shuf.jsonl.gz"
|
|
||||||
)
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def dev_clean_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get dev-clean cuts")
|
|
||||||
return load_manifest_lazy(
|
|
||||||
self.args.manifest_dir / "librispeech_cuts_dev-clean.jsonl.gz"
|
|
||||||
)
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def dev_other_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get dev-other cuts")
|
|
||||||
return load_manifest_lazy(
|
|
||||||
self.args.manifest_dir / "librispeech_cuts_dev-other.jsonl.gz"
|
|
||||||
)
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def test_clean_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get test-clean cuts")
|
|
||||||
return load_manifest_lazy(
|
|
||||||
self.args.manifest_dir / "librispeech_cuts_test-clean.jsonl.gz"
|
|
||||||
)
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def test_other_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get test-other cuts")
|
|
||||||
return load_manifest_lazy(
|
|
||||||
self.args.manifest_dir / "librispeech_cuts_test-other.jsonl.gz"
|
|
||||||
)
|
|
||||||
|
1
egs/mucs/ASR/local/compile_hlg.py
Symbolic link
1
egs/mucs/ASR/local/compile_hlg.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/compile_hlg.py
|
23
egs/mucs/ASR/local/compute_fbank_mucs.py
Executable file → Normal file
23
egs/mucs/ASR/local/compute_fbank_mucs.py
Executable file → Normal file
@ -19,7 +19,6 @@
|
|||||||
"""
|
"""
|
||||||
This file computes fbank features of the LibriSpeech dataset.
|
This file computes fbank features of the LibriSpeech dataset.
|
||||||
It looks for manifests in the directory data/manifests.
|
It looks for manifests in the directory data/manifests.
|
||||||
|
|
||||||
The generated fbank features are saved in data/fbank.
|
The generated fbank features are saved in data/fbank.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@ -83,9 +82,7 @@ def compute_fbank_mucs(
|
|||||||
"test",
|
"test",
|
||||||
"dev",
|
"dev",
|
||||||
)
|
)
|
||||||
# dataset_parts = (
|
|
||||||
# "test",
|
|
||||||
# )
|
|
||||||
prefix = "mucs"
|
prefix = "mucs"
|
||||||
suffix = "jsonl.gz"
|
suffix = "jsonl.gz"
|
||||||
manifests = read_manifests_if_cached(
|
manifests = read_manifests_if_cached(
|
||||||
@ -107,8 +104,7 @@ def compute_fbank_mucs(
|
|||||||
|
|
||||||
with get_executor() as ex: # Initialize the executor only once.
|
with get_executor() as ex: # Initialize the executor only once.
|
||||||
for partition, m in manifests.items():
|
for partition, m in manifests.items():
|
||||||
# print(m["recordings"])
|
|
||||||
# exit()
|
|
||||||
cuts_filename = f"{prefix}_cuts_{partition}.{suffix}"
|
cuts_filename = f"{prefix}_cuts_{partition}.{suffix}"
|
||||||
if (output_dir / cuts_filename).is_file():
|
if (output_dir / cuts_filename).is_file():
|
||||||
logging.info(f"{partition} already exists - skipping.")
|
logging.info(f"{partition} already exists - skipping.")
|
||||||
@ -118,18 +114,7 @@ def compute_fbank_mucs(
|
|||||||
recordings=m["recordings"],
|
recordings=m["recordings"],
|
||||||
supervisions=m["supervisions"],
|
supervisions=m["supervisions"],
|
||||||
)
|
)
|
||||||
# print(len(m["supervisions"]))
|
|
||||||
# for s in m["supervisions"]:
|
|
||||||
# # print(s)
|
|
||||||
# if s.channel != 0:
|
|
||||||
# print(s)
|
|
||||||
# exit()
|
|
||||||
# if "train" in partition:
|
|
||||||
# if bpe_model:
|
|
||||||
# cut_set = filter_cuts(cut_set, sp)
|
|
||||||
# cut_set = (
|
|
||||||
# cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
|
||||||
# )
|
|
||||||
cut_set = cut_set.compute_and_store_features(
|
cut_set = cut_set.compute_and_store_features(
|
||||||
extractor=extractor,
|
extractor=extractor,
|
||||||
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
|
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
|
||||||
@ -151,4 +136,4 @@ if __name__ == "__main__":
|
|||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
args = get_args()
|
args = get_args()
|
||||||
logging.info(vars(args))
|
logging.info(vars(args))
|
||||||
compute_fbank_mucs(bpe_model=args.bpe_model, dataset=args.dataset)
|
compute_fbank_mucs(bpe_model=args.bpe_model, dataset=args.dataset)
|
1
egs/mucs/ASR/local/convert_transcript_words_to_tokens.py
Symbolic link
1
egs/mucs/ASR/local/convert_transcript_words_to_tokens.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/convert_transcript_words_to_tokens.py
|
@ -1,160 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
"""
|
|
||||||
This script removes short and long utterances from a cutset.
|
|
||||||
|
|
||||||
Caution:
|
|
||||||
You may need to tune the thresholds for your own dataset.
|
|
||||||
|
|
||||||
Usage example:
|
|
||||||
|
|
||||||
python3 ./local/filter_cuts.py \
|
|
||||||
--bpe-model data/lang_bpe_500/bpe.model \
|
|
||||||
--in-cuts data/fbank/librispeech_cuts_test-clean.jsonl.gz \
|
|
||||||
--out-cuts data/fbank-filtered/librispeech_cuts_test-clean.jsonl.gz
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import sentencepiece as spm
|
|
||||||
from lhotse import CutSet, load_manifest_lazy
|
|
||||||
from lhotse.cut import Cut
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--bpe-model",
|
|
||||||
type=Path,
|
|
||||||
help="Path to the bpe.model",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--in-cuts",
|
|
||||||
type=Path,
|
|
||||||
help="Path to the input cutset",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--out-cuts",
|
|
||||||
type=Path,
|
|
||||||
help="Path to the output cutset",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def filter_cuts(cut_set: CutSet, sp: spm.SentencePieceProcessor):
|
|
||||||
total = 0 # number of total utterances before removal
|
|
||||||
removed = 0 # number of removed utterances
|
|
||||||
|
|
||||||
def remove_short_and_long_utterances(c: Cut):
|
|
||||||
"""Return False to exclude the input cut"""
|
|
||||||
nonlocal removed, total
|
|
||||||
# Keep only utterances with duration between 1 second and 20 seconds
|
|
||||||
#
|
|
||||||
# Caution: There is a reason to select 20.0 here. Please see
|
|
||||||
# ./display_manifest_statistics.py
|
|
||||||
#
|
|
||||||
# You should use ./display_manifest_statistics.py to get
|
|
||||||
# an utterance duration distribution for your dataset to select
|
|
||||||
# the threshold
|
|
||||||
total += 1
|
|
||||||
if c.duration < 1.0 or c.duration > 20.0:
|
|
||||||
logging.warning(
|
|
||||||
f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
|
||||||
)
|
|
||||||
removed += 1
|
|
||||||
return False
|
|
||||||
|
|
||||||
# In pruned RNN-T, we require that T >= S
|
|
||||||
# where T is the number of feature frames after subsampling
|
|
||||||
# and S is the number of tokens in the utterance
|
|
||||||
|
|
||||||
# In ./pruned_transducer_stateless2/conformer.py, the
|
|
||||||
# conv module uses the following expression
|
|
||||||
# for subsampling
|
|
||||||
if c.num_frames is None:
|
|
||||||
num_frames = c.duration * 100 # approximate
|
|
||||||
else:
|
|
||||||
num_frames = c.num_frames
|
|
||||||
|
|
||||||
T = ((num_frames - 1) // 2 - 1) // 2
|
|
||||||
# Note: for ./lstm_transducer_stateless/lstm.py, the formula is
|
|
||||||
# T = ((num_frames - 3) // 2 - 1) // 2
|
|
||||||
|
|
||||||
# Note: for ./pruned_transducer_stateless7/zipformer.py, the formula is
|
|
||||||
# T = ((num_frames - 7) // 2 + 1) // 2
|
|
||||||
|
|
||||||
tokens = sp.encode(c.supervisions[0].text, out_type=str)
|
|
||||||
|
|
||||||
if T < len(tokens):
|
|
||||||
logging.warning(
|
|
||||||
f"Exclude cut with ID {c.id} from training. "
|
|
||||||
f"Number of frames (before subsampling): {c.num_frames}. "
|
|
||||||
f"Number of frames (after subsampling): {T}. "
|
|
||||||
f"Text: {c.supervisions[0].text}. "
|
|
||||||
f"Tokens: {tokens}. "
|
|
||||||
f"Number of tokens: {len(tokens)}"
|
|
||||||
)
|
|
||||||
removed += 1
|
|
||||||
return False
|
|
||||||
|
|
||||||
return True
|
|
||||||
|
|
||||||
# We use to_eager() here so that we can print out the value of total
|
|
||||||
# and removed below.
|
|
||||||
ans = cut_set.filter(remove_short_and_long_utterances).to_eager()
|
|
||||||
ratio = removed / total * 100
|
|
||||||
logging.info(
|
|
||||||
f"Removed {removed} cuts from {total} cuts. {ratio:.3f}% data is removed."
|
|
||||||
)
|
|
||||||
return ans
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
args = get_args()
|
|
||||||
logging.info(vars(args))
|
|
||||||
|
|
||||||
if args.out_cuts.is_file():
|
|
||||||
logging.info(f"{args.out_cuts} already exists - skipping")
|
|
||||||
return
|
|
||||||
|
|
||||||
assert args.in_cuts.is_file(), f"{args.in_cuts} does not exist"
|
|
||||||
assert args.bpe_model.is_file(), f"{args.bpe_model} does not exist"
|
|
||||||
|
|
||||||
sp = spm.SentencePieceProcessor()
|
|
||||||
sp.load(str(args.bpe_model))
|
|
||||||
|
|
||||||
cut_set = load_manifest_lazy(args.in_cuts)
|
|
||||||
assert isinstance(cut_set, CutSet)
|
|
||||||
|
|
||||||
cut_set = filter_cuts(cut_set, sp)
|
|
||||||
logging.info(f"Saving to {args.out_cuts}")
|
|
||||||
args.out_cuts.parent.mkdir(parents=True, exist_ok=True)
|
|
||||||
cut_set.to_file(args.out_cuts)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
||||||
|
|
||||||
main()
|
|
1
egs/mucs/ASR/local/filter_cuts.py
Symbolic link
1
egs/mucs/ASR/local/filter_cuts.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/filter_cuts.py
|
@ -1,412 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
|
||||||
This script takes as input a lexicon file "data/lang_phone/lexicon.txt"
|
|
||||||
consisting of words and tokens (i.e., phones) and does the following:
|
|
||||||
|
|
||||||
1. Add disambiguation symbols to the lexicon and generate lexicon_disambig.txt
|
|
||||||
|
|
||||||
2. Generate tokens.txt, the token table mapping a token to a unique integer.
|
|
||||||
|
|
||||||
3. Generate words.txt, the word table mapping a word to a unique integer.
|
|
||||||
|
|
||||||
4. Generate L.pt, in k2 format. It can be loaded by
|
|
||||||
|
|
||||||
d = torch.load("L.pt")
|
|
||||||
lexicon = k2.Fsa.from_dict(d)
|
|
||||||
|
|
||||||
5. Generate L_disambig.pt, in k2 format.
|
|
||||||
"""
|
|
||||||
import argparse
|
|
||||||
import math
|
|
||||||
from collections import defaultdict
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Any, Dict, List, Tuple
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from icefall.lexicon import read_lexicon, write_lexicon
|
|
||||||
from icefall.utils import str2bool
|
|
||||||
|
|
||||||
Lexicon = List[Tuple[str, List[str]]]
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--lang-dir",
|
|
||||||
type=str,
|
|
||||||
help="""Input and output directory.
|
|
||||||
It should contain a file lexicon.txt.
|
|
||||||
Generated files by this script are saved into this directory.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--debug",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="""True for debugging, which will generate
|
|
||||||
a visualization of the lexicon FST.
|
|
||||||
|
|
||||||
Caution: If your lexicon contains hundreds of thousands
|
|
||||||
of lines, please set it to False!
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def write_mapping(filename: str, sym2id: Dict[str, int]) -> None:
|
|
||||||
"""Write a symbol to ID mapping to a file.
|
|
||||||
|
|
||||||
Note:
|
|
||||||
No need to implement `read_mapping` as it can be done
|
|
||||||
through :func:`k2.SymbolTable.from_file`.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
filename:
|
|
||||||
Filename to save the mapping.
|
|
||||||
sym2id:
|
|
||||||
A dict mapping symbols to IDs.
|
|
||||||
Returns:
|
|
||||||
Return None.
|
|
||||||
"""
|
|
||||||
with open(filename, "w", encoding="utf-8") as f:
|
|
||||||
for sym, i in sym2id.items():
|
|
||||||
f.write(f"{sym} {i}\n")
|
|
||||||
|
|
||||||
|
|
||||||
def get_tokens(lexicon: Lexicon) -> List[str]:
|
|
||||||
"""Get tokens from a lexicon.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
lexicon:
|
|
||||||
It is the return value of :func:`read_lexicon`.
|
|
||||||
Returns:
|
|
||||||
Return a list of unique tokens.
|
|
||||||
"""
|
|
||||||
ans = set()
|
|
||||||
for _, tokens in lexicon:
|
|
||||||
ans.update(tokens)
|
|
||||||
sorted_ans = sorted(list(ans))
|
|
||||||
return sorted_ans
|
|
||||||
|
|
||||||
|
|
||||||
def get_words(lexicon: Lexicon) -> List[str]:
|
|
||||||
"""Get words from a lexicon.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
lexicon:
|
|
||||||
It is the return value of :func:`read_lexicon`.
|
|
||||||
Returns:
|
|
||||||
Return a list of unique words.
|
|
||||||
"""
|
|
||||||
ans = set()
|
|
||||||
for word, _ in lexicon:
|
|
||||||
ans.add(word)
|
|
||||||
sorted_ans = sorted(list(ans))
|
|
||||||
return sorted_ans
|
|
||||||
|
|
||||||
|
|
||||||
def add_disambig_symbols(lexicon: Lexicon) -> Tuple[Lexicon, int]:
|
|
||||||
"""It adds pseudo-token disambiguation symbols #1, #2 and so on
|
|
||||||
at the ends of tokens to ensure that all pronunciations are different,
|
|
||||||
and that none is a prefix of another.
|
|
||||||
|
|
||||||
See also add_lex_disambig.pl from kaldi.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
lexicon:
|
|
||||||
It is returned by :func:`read_lexicon`.
|
|
||||||
Returns:
|
|
||||||
Return a tuple with two elements:
|
|
||||||
|
|
||||||
- The output lexicon with disambiguation symbols
|
|
||||||
- The ID of the max disambiguation symbol that appears
|
|
||||||
in the lexicon
|
|
||||||
"""
|
|
||||||
|
|
||||||
# (1) Work out the count of each token-sequence in the
|
|
||||||
# lexicon.
|
|
||||||
count = defaultdict(int)
|
|
||||||
for _, tokens in lexicon:
|
|
||||||
count[" ".join(tokens)] += 1
|
|
||||||
|
|
||||||
# (2) For each left sub-sequence of each token-sequence, note down
|
|
||||||
# that it exists (for identifying prefixes of longer strings).
|
|
||||||
issubseq = defaultdict(int)
|
|
||||||
for _, tokens in lexicon:
|
|
||||||
tokens = tokens.copy()
|
|
||||||
tokens.pop()
|
|
||||||
while tokens:
|
|
||||||
issubseq[" ".join(tokens)] = 1
|
|
||||||
tokens.pop()
|
|
||||||
|
|
||||||
# (3) For each entry in the lexicon:
|
|
||||||
# if the token sequence is unique and is not a
|
|
||||||
# prefix of another word, no disambig symbol.
|
|
||||||
# Else output #1, or #2, #3, ... if the same token-seq
|
|
||||||
# has already been assigned a disambig symbol.
|
|
||||||
ans = []
|
|
||||||
|
|
||||||
# We start with #1 since #0 has its own purpose
|
|
||||||
first_allowed_disambig = 1
|
|
||||||
max_disambig = first_allowed_disambig - 1
|
|
||||||
last_used_disambig_symbol_of = defaultdict(int)
|
|
||||||
|
|
||||||
for word, tokens in lexicon:
|
|
||||||
tokenseq = " ".join(tokens)
|
|
||||||
assert tokenseq != ""
|
|
||||||
if issubseq[tokenseq] == 0 and count[tokenseq] == 1:
|
|
||||||
ans.append((word, tokens))
|
|
||||||
continue
|
|
||||||
|
|
||||||
cur_disambig = last_used_disambig_symbol_of[tokenseq]
|
|
||||||
if cur_disambig == 0:
|
|
||||||
cur_disambig = first_allowed_disambig
|
|
||||||
else:
|
|
||||||
cur_disambig += 1
|
|
||||||
|
|
||||||
if cur_disambig > max_disambig:
|
|
||||||
max_disambig = cur_disambig
|
|
||||||
last_used_disambig_symbol_of[tokenseq] = cur_disambig
|
|
||||||
tokenseq += f" #{cur_disambig}"
|
|
||||||
ans.append((word, tokenseq.split()))
|
|
||||||
return ans, max_disambig
|
|
||||||
|
|
||||||
|
|
||||||
def generate_id_map(symbols: List[str]) -> Dict[str, int]:
|
|
||||||
"""Generate ID maps, i.e., map a symbol to a unique ID.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
symbols:
|
|
||||||
A list of unique symbols.
|
|
||||||
Returns:
|
|
||||||
A dict containing the mapping between symbols and IDs.
|
|
||||||
"""
|
|
||||||
return {sym: i for i, sym in enumerate(symbols)}
|
|
||||||
|
|
||||||
|
|
||||||
def add_self_loops(
|
|
||||||
arcs: List[List[Any]], disambig_token: int, disambig_word: int
|
|
||||||
) -> List[List[Any]]:
|
|
||||||
"""Adds self-loops to states of an FST to propagate disambiguation symbols
|
|
||||||
through it. They are added on each state with non-epsilon output symbols
|
|
||||||
on at least one arc out of the state.
|
|
||||||
|
|
||||||
See also fstaddselfloops.pl from Kaldi. One difference is that
|
|
||||||
Kaldi uses OpenFst style FSTs and it has multiple final states.
|
|
||||||
This function uses k2 style FSTs and it does not need to add self-loops
|
|
||||||
to the final state.
|
|
||||||
|
|
||||||
The input label of a self-loop is `disambig_token`, while the output
|
|
||||||
label is `disambig_word`.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
arcs:
|
|
||||||
A list-of-list. The sublist contains
|
|
||||||
`[src_state, dest_state, label, aux_label, score]`
|
|
||||||
disambig_token:
|
|
||||||
It is the token ID of the symbol `#0`.
|
|
||||||
disambig_word:
|
|
||||||
It is the word ID of the symbol `#0`.
|
|
||||||
|
|
||||||
Return:
|
|
||||||
Return new `arcs` containing self-loops.
|
|
||||||
"""
|
|
||||||
states_needs_self_loops = set()
|
|
||||||
for arc in arcs:
|
|
||||||
src, dst, ilabel, olabel, score = arc
|
|
||||||
if olabel != 0:
|
|
||||||
states_needs_self_loops.add(src)
|
|
||||||
|
|
||||||
ans = []
|
|
||||||
for s in states_needs_self_loops:
|
|
||||||
ans.append([s, s, disambig_token, disambig_word, 0])
|
|
||||||
|
|
||||||
return arcs + ans
|
|
||||||
|
|
||||||
|
|
||||||
def lexicon_to_fst(
|
|
||||||
lexicon: Lexicon,
|
|
||||||
token2id: Dict[str, int],
|
|
||||||
word2id: Dict[str, int],
|
|
||||||
sil_token: str = "SIL",
|
|
||||||
sil_prob: float = 0.5,
|
|
||||||
need_self_loops: bool = False,
|
|
||||||
) -> k2.Fsa:
|
|
||||||
"""Convert a lexicon to an FST (in k2 format) with optional silence at
|
|
||||||
the beginning and end of each word.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
lexicon:
|
|
||||||
The input lexicon. See also :func:`read_lexicon`
|
|
||||||
token2id:
|
|
||||||
A dict mapping tokens to IDs.
|
|
||||||
word2id:
|
|
||||||
A dict mapping words to IDs.
|
|
||||||
sil_token:
|
|
||||||
The silence token.
|
|
||||||
sil_prob:
|
|
||||||
The probability for adding a silence at the beginning and end
|
|
||||||
of the word.
|
|
||||||
need_self_loops:
|
|
||||||
If True, add self-loop to states with non-epsilon output symbols
|
|
||||||
on at least one arc out of the state. The input label for this
|
|
||||||
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
|
|
||||||
Returns:
|
|
||||||
Return an instance of `k2.Fsa` representing the given lexicon.
|
|
||||||
"""
|
|
||||||
assert sil_prob > 0.0 and sil_prob < 1.0
|
|
||||||
# CAUTION: we use score, i.e, negative cost.
|
|
||||||
sil_score = math.log(sil_prob)
|
|
||||||
no_sil_score = math.log(1.0 - sil_prob)
|
|
||||||
|
|
||||||
start_state = 0
|
|
||||||
loop_state = 1 # words enter and leave from here
|
|
||||||
sil_state = 2 # words terminate here when followed by silence; this state
|
|
||||||
# has a silence transition to loop_state.
|
|
||||||
next_state = 3 # the next un-allocated state, will be incremented as we go.
|
|
||||||
arcs = []
|
|
||||||
|
|
||||||
assert token2id["<eps>"] == 0
|
|
||||||
assert word2id["<eps>"] == 0
|
|
||||||
|
|
||||||
eps = 0
|
|
||||||
|
|
||||||
sil_token = token2id[sil_token]
|
|
||||||
|
|
||||||
arcs.append([start_state, loop_state, eps, eps, no_sil_score])
|
|
||||||
arcs.append([start_state, sil_state, eps, eps, sil_score])
|
|
||||||
arcs.append([sil_state, loop_state, sil_token, eps, 0])
|
|
||||||
|
|
||||||
for word, tokens in lexicon:
|
|
||||||
assert len(tokens) > 0, f"{word} has no pronunciations"
|
|
||||||
cur_state = loop_state
|
|
||||||
|
|
||||||
word = word2id[word]
|
|
||||||
tokens = [token2id[i] for i in tokens]
|
|
||||||
|
|
||||||
for i in range(len(tokens) - 1):
|
|
||||||
w = word if i == 0 else eps
|
|
||||||
arcs.append([cur_state, next_state, tokens[i], w, 0])
|
|
||||||
|
|
||||||
cur_state = next_state
|
|
||||||
next_state += 1
|
|
||||||
|
|
||||||
# now for the last token of this word
|
|
||||||
# It has two out-going arcs, one to the loop state,
|
|
||||||
# the other one to the sil_state.
|
|
||||||
i = len(tokens) - 1
|
|
||||||
w = word if i == 0 else eps
|
|
||||||
arcs.append([cur_state, loop_state, tokens[i], w, no_sil_score])
|
|
||||||
arcs.append([cur_state, sil_state, tokens[i], w, sil_score])
|
|
||||||
|
|
||||||
if need_self_loops:
|
|
||||||
disambig_token = token2id["#0"]
|
|
||||||
disambig_word = word2id["#0"]
|
|
||||||
arcs = add_self_loops(
|
|
||||||
arcs,
|
|
||||||
disambig_token=disambig_token,
|
|
||||||
disambig_word=disambig_word,
|
|
||||||
)
|
|
||||||
|
|
||||||
final_state = next_state
|
|
||||||
arcs.append([loop_state, final_state, -1, -1, 0])
|
|
||||||
arcs.append([final_state])
|
|
||||||
|
|
||||||
arcs = sorted(arcs, key=lambda arc: arc[0])
|
|
||||||
arcs = [[str(i) for i in arc] for arc in arcs]
|
|
||||||
arcs = [" ".join(arc) for arc in arcs]
|
|
||||||
arcs = "\n".join(arcs)
|
|
||||||
|
|
||||||
fsa = k2.Fsa.from_str(arcs, acceptor=False)
|
|
||||||
return fsa
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
args = get_args()
|
|
||||||
lang_dir = Path(args.lang_dir)
|
|
||||||
lexicon_filename = lang_dir / "lexicon.txt"
|
|
||||||
sil_token = "SIL"
|
|
||||||
sil_prob = 0.5
|
|
||||||
lexicon = read_lexicon(lexicon_filename)
|
|
||||||
tokens = get_tokens(lexicon)
|
|
||||||
words = get_words(lexicon)
|
|
||||||
|
|
||||||
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
|
||||||
|
|
||||||
for i in range(max_disambig + 1):
|
|
||||||
disambig = f"#{i}"
|
|
||||||
assert disambig not in tokens
|
|
||||||
tokens.append(f"#{i}")
|
|
||||||
|
|
||||||
assert "<eps>" not in tokens
|
|
||||||
tokens = ["<eps>"] + tokens
|
|
||||||
|
|
||||||
assert "<eps>" not in words
|
|
||||||
assert "#0" not in words
|
|
||||||
assert "<s>" not in words
|
|
||||||
assert "</s>" not in words
|
|
||||||
|
|
||||||
words = ["<eps>"] + words + ["#0", "<s>", "</s>"]
|
|
||||||
|
|
||||||
token2id = generate_id_map(tokens)
|
|
||||||
word2id = generate_id_map(words)
|
|
||||||
|
|
||||||
write_mapping(lang_dir / "tokens.txt", token2id)
|
|
||||||
write_mapping(lang_dir / "words.txt", word2id)
|
|
||||||
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
|
|
||||||
|
|
||||||
L = lexicon_to_fst(
|
|
||||||
lexicon,
|
|
||||||
token2id=token2id,
|
|
||||||
word2id=word2id,
|
|
||||||
sil_token=sil_token,
|
|
||||||
sil_prob=sil_prob,
|
|
||||||
)
|
|
||||||
|
|
||||||
L_disambig = lexicon_to_fst(
|
|
||||||
lexicon_disambig,
|
|
||||||
token2id=token2id,
|
|
||||||
word2id=word2id,
|
|
||||||
sil_token=sil_token,
|
|
||||||
sil_prob=sil_prob,
|
|
||||||
need_self_loops=True,
|
|
||||||
)
|
|
||||||
torch.save(L.as_dict(), lang_dir / "L.pt")
|
|
||||||
torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt")
|
|
||||||
|
|
||||||
if args.debug:
|
|
||||||
labels_sym = k2.SymbolTable.from_file(lang_dir / "tokens.txt")
|
|
||||||
aux_labels_sym = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
|
||||||
|
|
||||||
L.labels_sym = labels_sym
|
|
||||||
L.aux_labels_sym = aux_labels_sym
|
|
||||||
L.draw(f"{lang_dir / 'L.svg'}", title="L.pt")
|
|
||||||
|
|
||||||
L_disambig.labels_sym = labels_sym
|
|
||||||
L_disambig.aux_labels_sym = aux_labels_sym
|
|
||||||
L_disambig.draw(f"{lang_dir / 'L_disambig.svg'}", title="L_disambig.pt")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
1
egs/mucs/ASR/local/prepare_lang.py
Symbolic link
1
egs/mucs/ASR/local/prepare_lang.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/prepare_lang.py
|
@ -1,266 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
This script takes as input `lang_dir`, which should contain::
|
|
||||||
|
|
||||||
- lang_dir/bpe.model,
|
|
||||||
- lang_dir/words.txt
|
|
||||||
|
|
||||||
and generates the following files in the directory `lang_dir`:
|
|
||||||
|
|
||||||
- lexicon.txt
|
|
||||||
- lexicon_disambig.txt
|
|
||||||
- L.pt
|
|
||||||
- L_disambig.pt
|
|
||||||
- tokens.txt
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Dict, List, Tuple
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import sentencepiece as spm
|
|
||||||
import torch
|
|
||||||
from prepare_lang import (
|
|
||||||
Lexicon,
|
|
||||||
add_disambig_symbols,
|
|
||||||
add_self_loops,
|
|
||||||
write_lexicon,
|
|
||||||
write_mapping,
|
|
||||||
)
|
|
||||||
|
|
||||||
from icefall.utils import str2bool
|
|
||||||
|
|
||||||
|
|
||||||
def lexicon_to_fst_no_sil(
|
|
||||||
lexicon: Lexicon,
|
|
||||||
token2id: Dict[str, int],
|
|
||||||
word2id: Dict[str, int],
|
|
||||||
need_self_loops: bool = False,
|
|
||||||
) -> k2.Fsa:
|
|
||||||
"""Convert a lexicon to an FST (in k2 format).
|
|
||||||
|
|
||||||
Args:
|
|
||||||
lexicon:
|
|
||||||
The input lexicon. See also :func:`read_lexicon`
|
|
||||||
token2id:
|
|
||||||
A dict mapping tokens to IDs.
|
|
||||||
word2id:
|
|
||||||
A dict mapping words to IDs.
|
|
||||||
need_self_loops:
|
|
||||||
If True, add self-loop to states with non-epsilon output symbols
|
|
||||||
on at least one arc out of the state. The input label for this
|
|
||||||
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
|
|
||||||
Returns:
|
|
||||||
Return an instance of `k2.Fsa` representing the given lexicon.
|
|
||||||
"""
|
|
||||||
loop_state = 0 # words enter and leave from here
|
|
||||||
next_state = 1 # the next un-allocated state, will be incremented as we go
|
|
||||||
|
|
||||||
arcs = []
|
|
||||||
|
|
||||||
# The blank symbol <blk> is defined in local/train_bpe_model.py
|
|
||||||
assert token2id["<blk>"] == 0
|
|
||||||
assert word2id["<eps>"] == 0
|
|
||||||
|
|
||||||
eps = 0
|
|
||||||
|
|
||||||
for word, pieces in lexicon:
|
|
||||||
assert len(pieces) > 0, f"{word} has no pronunciations"
|
|
||||||
cur_state = loop_state
|
|
||||||
|
|
||||||
word = word2id[word]
|
|
||||||
pieces = [token2id[i] for i in pieces]
|
|
||||||
|
|
||||||
for i in range(len(pieces) - 1):
|
|
||||||
w = word if i == 0 else eps
|
|
||||||
arcs.append([cur_state, next_state, pieces[i], w, 0])
|
|
||||||
|
|
||||||
cur_state = next_state
|
|
||||||
next_state += 1
|
|
||||||
|
|
||||||
# now for the last piece of this word
|
|
||||||
i = len(pieces) - 1
|
|
||||||
w = word if i == 0 else eps
|
|
||||||
arcs.append([cur_state, loop_state, pieces[i], w, 0])
|
|
||||||
|
|
||||||
if need_self_loops:
|
|
||||||
disambig_token = token2id["#0"]
|
|
||||||
disambig_word = word2id["#0"]
|
|
||||||
arcs = add_self_loops(
|
|
||||||
arcs,
|
|
||||||
disambig_token=disambig_token,
|
|
||||||
disambig_word=disambig_word,
|
|
||||||
)
|
|
||||||
|
|
||||||
final_state = next_state
|
|
||||||
arcs.append([loop_state, final_state, -1, -1, 0])
|
|
||||||
arcs.append([final_state])
|
|
||||||
|
|
||||||
arcs = sorted(arcs, key=lambda arc: arc[0])
|
|
||||||
arcs = [[str(i) for i in arc] for arc in arcs]
|
|
||||||
arcs = [" ".join(arc) for arc in arcs]
|
|
||||||
arcs = "\n".join(arcs)
|
|
||||||
|
|
||||||
fsa = k2.Fsa.from_str(arcs, acceptor=False)
|
|
||||||
return fsa
|
|
||||||
|
|
||||||
|
|
||||||
def generate_lexicon(
|
|
||||||
model_file: str, words: List[str], oov: str
|
|
||||||
) -> Tuple[Lexicon, Dict[str, int]]:
|
|
||||||
"""Generate a lexicon from a BPE model.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
model_file:
|
|
||||||
Path to a sentencepiece model.
|
|
||||||
words:
|
|
||||||
A list of strings representing words.
|
|
||||||
oov:
|
|
||||||
The out of vocabulary word in lexicon.
|
|
||||||
Returns:
|
|
||||||
Return a tuple with two elements:
|
|
||||||
- A dict whose keys are words and values are the corresponding
|
|
||||||
word pieces.
|
|
||||||
- A dict representing the token symbol, mapping from tokens to IDs.
|
|
||||||
"""
|
|
||||||
sp = spm.SentencePieceProcessor()
|
|
||||||
sp.load(str(model_file))
|
|
||||||
|
|
||||||
# Convert word to word piece IDs instead of word piece strings
|
|
||||||
# to avoid OOV tokens.
|
|
||||||
words_pieces_ids: List[List[int]] = sp.encode(words, out_type=int)
|
|
||||||
|
|
||||||
# Now convert word piece IDs back to word piece strings.
|
|
||||||
words_pieces: List[List[str]] = [sp.id_to_piece(ids) for ids in words_pieces_ids]
|
|
||||||
|
|
||||||
lexicon = []
|
|
||||||
for word, pieces in zip(words, words_pieces):
|
|
||||||
lexicon.append((word, pieces))
|
|
||||||
|
|
||||||
lexicon.append((oov, ["▁", sp.id_to_piece(sp.unk_id())]))
|
|
||||||
|
|
||||||
token2id: Dict[str, int] = {sp.id_to_piece(i): i for i in range(sp.vocab_size())}
|
|
||||||
|
|
||||||
return lexicon, token2id
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--lang-dir",
|
|
||||||
type=str,
|
|
||||||
help="""Input and output directory.
|
|
||||||
It should contain the bpe.model and words.txt
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--oov",
|
|
||||||
type=str,
|
|
||||||
default="<UNK>",
|
|
||||||
help="The out of vocabulary word in lexicon.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--debug",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="""True for debugging, which will generate
|
|
||||||
a visualization of the lexicon FST.
|
|
||||||
|
|
||||||
Caution: If your lexicon contains hundreds of thousands
|
|
||||||
of lines, please set it to False!
|
|
||||||
|
|
||||||
See "test/test_bpe_lexicon.py" for usage.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
args = get_args()
|
|
||||||
lang_dir = Path(args.lang_dir)
|
|
||||||
model_file = lang_dir / "bpe.model"
|
|
||||||
|
|
||||||
word_sym_table = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
|
||||||
|
|
||||||
words = word_sym_table.symbols
|
|
||||||
|
|
||||||
excluded = ["<eps>", "!SIL", "<SPOKEN_NOISE>", args.oov, "#0", "<s>", "</s>"]
|
|
||||||
|
|
||||||
for w in excluded:
|
|
||||||
if w in words:
|
|
||||||
words.remove(w)
|
|
||||||
|
|
||||||
lexicon, token_sym_table = generate_lexicon(model_file, words, args.oov)
|
|
||||||
|
|
||||||
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
|
||||||
|
|
||||||
next_token_id = max(token_sym_table.values()) + 1
|
|
||||||
for i in range(max_disambig + 1):
|
|
||||||
disambig = f"#{i}"
|
|
||||||
assert disambig not in token_sym_table
|
|
||||||
token_sym_table[disambig] = next_token_id
|
|
||||||
next_token_id += 1
|
|
||||||
|
|
||||||
word_sym_table.add("#0")
|
|
||||||
word_sym_table.add("<s>")
|
|
||||||
word_sym_table.add("</s>")
|
|
||||||
|
|
||||||
write_mapping(lang_dir / "tokens.txt", token_sym_table)
|
|
||||||
|
|
||||||
write_lexicon(lang_dir / "lexicon.txt", lexicon)
|
|
||||||
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
|
|
||||||
|
|
||||||
L = lexicon_to_fst_no_sil(
|
|
||||||
lexicon,
|
|
||||||
token2id=token_sym_table,
|
|
||||||
word2id=word_sym_table,
|
|
||||||
)
|
|
||||||
|
|
||||||
L_disambig = lexicon_to_fst_no_sil(
|
|
||||||
lexicon_disambig,
|
|
||||||
token2id=token_sym_table,
|
|
||||||
word2id=word_sym_table,
|
|
||||||
need_self_loops=True,
|
|
||||||
)
|
|
||||||
torch.save(L.as_dict(), lang_dir / "L.pt")
|
|
||||||
torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt")
|
|
||||||
|
|
||||||
if args.debug:
|
|
||||||
labels_sym = k2.SymbolTable.from_file(lang_dir / "tokens.txt")
|
|
||||||
aux_labels_sym = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
|
||||||
|
|
||||||
L.labels_sym = labels_sym
|
|
||||||
L.aux_labels_sym = aux_labels_sym
|
|
||||||
L.draw(f"{lang_dir / 'L.svg'}", title="L.pt")
|
|
||||||
|
|
||||||
L_disambig.labels_sym = labels_sym
|
|
||||||
L_disambig.aux_labels_sym = aux_labels_sym
|
|
||||||
L_disambig.draw(f"{lang_dir / 'L_disambig.svg'}", title="L_disambig.pt")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
1
egs/mucs/ASR/local/prepare_lang_bpe.py
Symbolic link
1
egs/mucs/ASR/local/prepare_lang_bpe.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/prepare_lang_bpe.py
|
@ -1,100 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
# You can install sentencepiece via:
|
|
||||||
#
|
|
||||||
# pip install sentencepiece
|
|
||||||
#
|
|
||||||
# Due to an issue reported in
|
|
||||||
# https://github.com/google/sentencepiece/pull/642#issuecomment-857972030
|
|
||||||
#
|
|
||||||
# Please install a version >=0.1.96
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import shutil
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import sentencepiece as spm
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--lang-dir",
|
|
||||||
type=str,
|
|
||||||
help="""Input and output directory.
|
|
||||||
The generated bpe.model is saved to this directory.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--transcript",
|
|
||||||
type=str,
|
|
||||||
help="Training transcript.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--vocab-size",
|
|
||||||
type=int,
|
|
||||||
help="Vocabulary size for BPE training",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
args = get_args()
|
|
||||||
vocab_size = args.vocab_size
|
|
||||||
lang_dir = Path(args.lang_dir)
|
|
||||||
|
|
||||||
model_type = "unigram"
|
|
||||||
|
|
||||||
model_prefix = f"{lang_dir}/{model_type}_{vocab_size}"
|
|
||||||
train_text = args.transcript
|
|
||||||
character_coverage = 1.0
|
|
||||||
input_sentence_size = 50000
|
|
||||||
|
|
||||||
user_defined_symbols = ["<blk>", "<sos/eos>"]
|
|
||||||
unk_id = len(user_defined_symbols)
|
|
||||||
# Note: unk_id is fixed to 2.
|
|
||||||
# If you change it, you should also change other
|
|
||||||
# places that are using it.
|
|
||||||
|
|
||||||
model_file = Path(model_prefix + ".model")
|
|
||||||
if not model_file.is_file():
|
|
||||||
spm.SentencePieceTrainer.train(
|
|
||||||
input=train_text,
|
|
||||||
vocab_size=vocab_size,
|
|
||||||
model_type=model_type,
|
|
||||||
model_prefix=model_prefix,
|
|
||||||
input_sentence_size=input_sentence_size,
|
|
||||||
character_coverage=character_coverage,
|
|
||||||
user_defined_symbols=user_defined_symbols,
|
|
||||||
unk_id=unk_id,
|
|
||||||
bos_id=-1,
|
|
||||||
eos_id=-1,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
print(f"{model_file} exists - skipping")
|
|
||||||
return
|
|
||||||
|
|
||||||
shutil.copyfile(model_file, f"{lang_dir}/bpe.model")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
1
egs/mucs/ASR/local/train_bpe_model.py
Symbolic link
1
egs/mucs/ASR/local/train_bpe_model.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/train_bpe_model.py
|
@ -1,77 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
"""
|
|
||||||
This script checks that there are no OOV tokens in the BPE-based lexicon.
|
|
||||||
|
|
||||||
Usage example:
|
|
||||||
|
|
||||||
python3 ./local/validate_bpe_lexicon.py \
|
|
||||||
--lexicon /path/to/lexicon.txt \
|
|
||||||
--bpe-model /path/to/bpe.model
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import List, Tuple
|
|
||||||
|
|
||||||
import sentencepiece as spm
|
|
||||||
|
|
||||||
from icefall.lexicon import read_lexicon
|
|
||||||
|
|
||||||
# Map word to word pieces
|
|
||||||
Lexicon = List[Tuple[str, List[str]]]
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--lexicon",
|
|
||||||
required=True,
|
|
||||||
type=Path,
|
|
||||||
help="Path to lexicon.txt",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--bpe-model",
|
|
||||||
required=True,
|
|
||||||
type=Path,
|
|
||||||
help="Path to bpe.model",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
args = get_args()
|
|
||||||
assert args.lexicon.is_file(), args.lexicon
|
|
||||||
assert args.bpe_model.is_file(), args.bpe_model
|
|
||||||
|
|
||||||
lexicon = read_lexicon(args.lexicon)
|
|
||||||
|
|
||||||
sp = spm.SentencePieceProcessor()
|
|
||||||
sp.load(str(args.bpe_model))
|
|
||||||
|
|
||||||
word_pieces = set(sp.id_to_piece(list(range(sp.vocab_size()))))
|
|
||||||
for word, pieces in lexicon:
|
|
||||||
for p in pieces:
|
|
||||||
if p not in word_pieces:
|
|
||||||
raise ValueError(f"The word {word} contains an OOV token {p}")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
1
egs/mucs/ASR/local/validate_bpe_lexicon.py
Symbolic link
1
egs/mucs/ASR/local/validate_bpe_lexicon.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/validate_bpe_lexicon.py
|
@ -1,110 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
"""
|
|
||||||
This script checks the following assumptions of the generated manifest:
|
|
||||||
|
|
||||||
- Single supervision per cut
|
|
||||||
- Supervision time bounds are within cut time bounds
|
|
||||||
|
|
||||||
We will add more checks later if needed.
|
|
||||||
|
|
||||||
Usage example:
|
|
||||||
|
|
||||||
python3 ./local/validate_manifest.py \
|
|
||||||
./data/fbank/librispeech_cuts_train-clean-100.jsonl.gz
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
from lhotse import CutSet, load_manifest_lazy
|
|
||||||
from lhotse.cut import Cut
|
|
||||||
from lhotse.dataset.speech_recognition import validate_for_asr
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"manifest",
|
|
||||||
type=Path,
|
|
||||||
help="Path to the manifest file",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def validate_one_supervision_per_cut(c: Cut):
|
|
||||||
if len(c.supervisions) != 1:
|
|
||||||
raise ValueError(f"{c.id} has {len(c.supervisions)} supervisions")
|
|
||||||
|
|
||||||
|
|
||||||
def validate_supervision_and_cut_time_bounds(c: Cut):
|
|
||||||
tol = 2e-3 # same tolerance as in 'validate_for_asr()'
|
|
||||||
s = c.supervisions[0]
|
|
||||||
|
|
||||||
# Supervision start time is relative to Cut ...
|
|
||||||
# https://lhotse.readthedocs.io/en/v0.10_e/cuts.html
|
|
||||||
# print(s.start, )
|
|
||||||
if s.start < -tol:
|
|
||||||
raise ValueError(
|
|
||||||
f"{c.id}: Supervision start time {s.start} must not be negative."
|
|
||||||
)
|
|
||||||
if s.start > tol:
|
|
||||||
raise ValueError(
|
|
||||||
f"{c.id}: Supervision start time {s.start} is not at the beginning of the Cut. Please apply `lhotse cut trim-to-supervisions`."
|
|
||||||
)
|
|
||||||
if c.start + s.end > c.end + tol:
|
|
||||||
raise ValueError(
|
|
||||||
f"{c.id}: Supervision end time {c.start+s.end} is larger "
|
|
||||||
f"than cut end time {c.end}"
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
args = get_args()
|
|
||||||
|
|
||||||
manifest = args.manifest
|
|
||||||
logging.info(f"Validating {manifest}")
|
|
||||||
|
|
||||||
assert manifest.is_file(), f"{manifest} does not exist"
|
|
||||||
# print(manifest)
|
|
||||||
cut_set = load_manifest_lazy(manifest)
|
|
||||||
# print(cut_set)
|
|
||||||
assert isinstance(cut_set, CutSet)
|
|
||||||
|
|
||||||
for c in cut_set:
|
|
||||||
# print(len(c.supervisions))
|
|
||||||
# print(c.supervisions)
|
|
||||||
validate_one_supervision_per_cut(c)
|
|
||||||
validate_supervision_and_cut_time_bounds(c)
|
|
||||||
|
|
||||||
# Validation from K2 training
|
|
||||||
# - checks supervision start is 0
|
|
||||||
# - checks supervision.duration is not longer than cut.duration
|
|
||||||
# - there is tolerance 2ms
|
|
||||||
validate_for_asr(cut_set)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
||||||
|
|
||||||
main()
|
|
1
egs/mucs/ASR/local/validate_manifest.py
Symbolic link
1
egs/mucs/ASR/local/validate_manifest.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/validate_manifest.py
|
@ -4,14 +4,14 @@ export CUDA_VISIBLE_DEVICES="0"
|
|||||||
./conformer_ctc/train.py \
|
./conformer_ctc/train.py \
|
||||||
--num-epochs 60 \
|
--num-epochs 60 \
|
||||||
--max-duration 300 \
|
--max-duration 300 \
|
||||||
--exp-dir ./conformer_ctc/exp_with_devset_split \
|
--exp-dir ./conformer_ctc/exp_with_devset_split_bpe400 \
|
||||||
--lang-dir data/lang_bpe_200 \
|
--lang-dir data/lang_bpe_400 \
|
||||||
--enable-musan False \
|
--enable-musan False \
|
||||||
|
|
||||||
|
|
||||||
./conformer_ctc/decode.py \
|
./conformer_ctc/decode.py \
|
||||||
--epoch 59 \
|
--epoch 59 \
|
||||||
--avg 10 \
|
--avg 10 \
|
||||||
--exp-dir ./conformer_ctc/exp_with_devset_split \
|
--exp-dir ./conformer_ctc/exp_with_devset_split_bpe400 \
|
||||||
--max-duration 100 \
|
--max-duration 100 \
|
||||||
--lang-dir ./data/lang_bpe_200
|
--lang-dir ./data/lang_bpe_400
|
||||||
|
Loading…
x
Reference in New Issue
Block a user