add gradient filter

This commit is contained in:
yaozengwei 2022-09-05 22:38:39 +08:00
parent 2cc6137934
commit b18850721d
3 changed files with 91 additions and 4 deletions

View File

@ -0,0 +1 @@
../tdnn_lstm_ctc/__init__.py

View File

@ -15,13 +15,77 @@
# limitations under the License.
from typing import Tuple
import torch
import torch.nn as nn
class GradientFilterFunction(torch.autograd.Function):
@staticmethod
def forward(
ctx,
x: torch.Tensor,
batch_dim: int, # e.g., 1
threshold: float, # e.g., 10.0
) -> torch.Tensor:
if x.requires_grad:
if batch_dim < 0:
batch_dim += x.ndim
ctx.batch_dim = batch_dim
ctx.threshold = threshold
return x
@staticmethod
def backward(ctx, x_grad: torch.Tensor) -> Tuple[torch.Tensor, None, None]:
dim = ctx.batch_dim
if x_grad.shape[dim] == 1:
return x_grad, None, None
norm_dims = [d for d in range(x_grad.ndim) if d != dim]
norm_of_batch = x_grad.norm(dim=norm_dims, keepdim=True)
norm_of_batch_sorted = norm_of_batch.sort(dim=dim)[0]
median_idx = (x_grad.shape[dim] - 1) // 2
median_norm = norm_of_batch_sorted.narrow(
dim=dim, start=median_idx, length=1
)
mask = norm_of_batch <= ctx.threshold * median_norm
return x_grad * mask, None, None
class GradientFilter(torch.nn.Module):
"""This is used to filter out elements that have extremely large gradients
in batch.
Args:
batch_dim (int):
The batch dimension.
threshold (float):
For each element in batch, its gradient will be
filtered out if the gradient norm is larger than
`grad_norm_threshold * median`, where `median` is the median
value of gradient norms of all elememts in batch.
"""
def __init__(self, batch_dim: int = 1, threshold: float = 10.0):
super(GradientFilter, self).__init__()
self.batch_dim = batch_dim
self.threshold = threshold
def forward(self, x: torch.Tensor) -> torch.Tensor:
return GradientFilterFunction.apply(
x,
self.batch_dim,
self.threshold,
)
class TdnnLstm(nn.Module):
def __init__(
self, num_features: int, num_classes: int, subsampling_factor: int = 3
self,
num_features: int,
num_classes: int,
subsampling_factor: int = 3,
grad_norm_threshold: float = 10.0,
) -> None:
"""
Args:
@ -31,6 +95,11 @@ class TdnnLstm(nn.Module):
The output dimension of the model.
subsampling_factor:
It reduces the number of output frames by this factor.
grad_norm_threshold:
For each sequence element in batch, its gradient will be
filtered out if the gradient norm is larger than
`grad_norm_threshold * median`, where `median` is the median
value of gradient norms of all elememts in batch.
"""
super().__init__()
self.num_features = num_features
@ -74,6 +143,10 @@ class TdnnLstm(nn.Module):
self.lstm_bnorms = nn.ModuleList(
[nn.BatchNorm1d(num_features=500, affine=False) for _ in range(5)]
)
self.grad_filters = nn.ModuleList(
[GradientFilter(batch_dim=1, threshold=grad_norm_threshold)]
)
self.dropout = nn.Dropout(0.2)
self.linear = nn.Linear(in_features=500, out_features=self.num_classes)
@ -88,8 +161,10 @@ class TdnnLstm(nn.Module):
"""
x = self.tdnn(x)
x = x.permute(2, 0, 1) # (N, C, T) -> (T, N, C) -> how LSTM expects it
for lstm, bnorm in zip(self.lstms, self.lstm_bnorms):
x_new, _ = lstm(x)
for lstm, bnorm, grad_filter in zip(
self.lstms, self.lstm_bnorms, self.grad_filters
):
x_new, _ = lstm(grad_filter(x))
x_new = bnorm(x_new.permute(1, 2, 0)).permute(
2, 0, 1
) # (T, N, C) -> (N, C, T) -> (T, N, C)

View File

@ -112,6 +112,16 @@ def get_parser():
help="The seed for random generators intended for reproducibility",
)
parser.add_argument(
"--grad-norm-threshold",
type=float,
default=10.0,
help="""For each sequence element in batch, its gradient will be
filtered out if the gradient norm is larger than
`grad_norm_threshold * median`, where `median` is the median
value of gradient norms of all elememts in batch.""",
)
return parser
@ -171,7 +181,7 @@ def get_params() -> AttributeDict:
"""
params = AttributeDict(
{
"exp_dir": Path("tdnn_lstm_ctc/exp"),
"exp_dir": Path("tdnn_lstm_ctc2/exp"),
"lang_dir": Path("data/lang_phone"),
"lr": 1e-3,
"feature_dim": 80,
@ -540,6 +550,7 @@ def run(rank, world_size, args):
num_features=params.feature_dim,
num_classes=max_phone_id + 1, # +1 for the blank symbol
subsampling_factor=params.subsampling_factor,
grad_norm_threshold=params.grad_norm_threshold,
)
checkpoints = load_checkpoint_if_available(params=params, model=model)