mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
Merge d14d2d19093e7f619230a3a94f3eba88f5f88f27 into 34fc1fdf0d8ff520e2bb18267d046ca207c78ef9
This commit is contained in:
commit
b05d4c2c9b
339
egs/fluent_speech_commands/SLU/transducer/export-onnx.py
Executable file
339
egs/fluent_speech_commands/SLU/transducer/export-onnx.py
Executable file
@ -0,0 +1,339 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2025 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Dict, Tuple
|
||||
|
||||
import onnx
|
||||
import torch
|
||||
from decode import get_params, get_parser, get_transducer_model
|
||||
from onnxruntime.quantization import QuantType, quantize_dynamic
|
||||
from torch import nn
|
||||
from transducer.conformer import Conformer
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.env import get_env_info
|
||||
|
||||
|
||||
def add_meta_data(filename: str, meta_data: Dict[str, str]):
|
||||
"""Add meta data to an ONNX model. It is changed in-place.
|
||||
|
||||
Args:
|
||||
filename:
|
||||
Filename of the ONNX model to be changed.
|
||||
meta_data:
|
||||
Key-value pairs.
|
||||
"""
|
||||
model = onnx.load(filename)
|
||||
|
||||
while len(model.metadata_props):
|
||||
model.metadata_props.pop()
|
||||
|
||||
for key, value in meta_data.items():
|
||||
meta = model.metadata_props.add()
|
||||
meta.key = key
|
||||
meta.value = str(value)
|
||||
|
||||
onnx.save(model, filename)
|
||||
|
||||
|
||||
class OnnxEncoder(nn.Module):
|
||||
"""A wrapper for Conformer"""
|
||||
|
||||
def __init__(self, encoder: Conformer):
|
||||
"""
|
||||
Args:
|
||||
encoder:
|
||||
A Conformer encoder.
|
||||
"""
|
||||
super().__init__()
|
||||
self.encoder = encoder
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Please see the help information of Conformer.forward
|
||||
|
||||
Args:
|
||||
x:
|
||||
A 3-D tensor of shape (N, T, C)
|
||||
x_lens:
|
||||
A 1-D tensor of shape (N,). Its dtype is torch.int64
|
||||
Returns:
|
||||
Return a tuple containing:
|
||||
- encoder_out, A 3-D tensor of shape (N, T', joiner_dim)
|
||||
- encoder_out_lens, A 1-D tensor of shape (N,)
|
||||
"""
|
||||
encoder_out, encoder_out_lens = self.encoder(x, x_lens)
|
||||
# Now encoder_out is of shape (N, T, joiner_dim)
|
||||
|
||||
return encoder_out, encoder_out_lens
|
||||
|
||||
|
||||
def export_encoder_model_onnx(
|
||||
encoder_model: OnnxEncoder,
|
||||
encoder_filename: str,
|
||||
opset_version: int = 11,
|
||||
) -> None:
|
||||
"""Export the given encoder model to ONNX format.
|
||||
The exported model has two inputs:
|
||||
|
||||
- x, a tensor of shape (N, T, C); dtype is torch.float32
|
||||
- x_lens, a tensor of shape (N,); dtype is torch.int64
|
||||
|
||||
and it has two outputs:
|
||||
|
||||
- encoder_out, a tensor of shape (N, T', C)
|
||||
- encoder_out_lens, a tensor of shape (N,)
|
||||
|
||||
Args:
|
||||
encoder_model:
|
||||
The input encoder model
|
||||
encoder_filename:
|
||||
The filename to save the exported ONNX model.
|
||||
opset_version:
|
||||
The opset version to use.
|
||||
"""
|
||||
x = torch.zeros(1, 100, 23, dtype=torch.float32)
|
||||
x_lens = torch.tensor([100], dtype=torch.int64)
|
||||
|
||||
torch.onnx.export(
|
||||
encoder_model,
|
||||
(x, x_lens),
|
||||
encoder_filename,
|
||||
verbose=False,
|
||||
opset_version=opset_version,
|
||||
input_names=["x", "x_lens"],
|
||||
output_names=["encoder_out", "encoder_out_lens"],
|
||||
dynamic_axes={
|
||||
"x": {0: "N", 1: "T"},
|
||||
"x_lens": {0: "N"},
|
||||
"encoder_out": {0: "N", 1: "T"},
|
||||
"encoder_out_lens": {0: "N"},
|
||||
},
|
||||
)
|
||||
|
||||
meta_data = {
|
||||
"model_type": "conformer",
|
||||
"version": "1",
|
||||
"model_author": "k2-fsa",
|
||||
"comment": "SLU_transducer",
|
||||
"note": "The decoder is an LSTM with states",
|
||||
}
|
||||
logging.info(f"meta_data: {meta_data}")
|
||||
|
||||
add_meta_data(filename=encoder_filename, meta_data=meta_data)
|
||||
|
||||
|
||||
def export_decoder_model_onnx(
|
||||
decoder_model: nn.Module,
|
||||
decoder_filename: str,
|
||||
opset_version: int = 11,
|
||||
) -> None:
|
||||
"""Export the decoder model to ONNX format.
|
||||
|
||||
The exported model has 3 inputs:
|
||||
|
||||
- y: a torch.int64 tensor of shape (N, 1)
|
||||
- h: a float32 tensor of shape (num_layers, N, hidden_dim)
|
||||
- c: a float32 tensor of shape (num_layers, N, hidden_dim)
|
||||
|
||||
and has 3 outputs:
|
||||
|
||||
- decoder_out: a torch.float32 tensor of shape (N, 1, C)
|
||||
|
||||
Args:
|
||||
decoder_model:
|
||||
The decoder model to be exported.
|
||||
decoder_filename:
|
||||
Filename to save the exported ONNX model.
|
||||
opset_version:
|
||||
The opset version to use.
|
||||
"""
|
||||
y = torch.zeros(1, 1, dtype=torch.int64)
|
||||
_, (h, c) = decoder_model(y)
|
||||
|
||||
torch.onnx.export(
|
||||
decoder_model,
|
||||
(y, (h, c)),
|
||||
decoder_filename,
|
||||
verbose=False,
|
||||
opset_version=opset_version,
|
||||
input_names=["y", "h", "c"],
|
||||
output_names=["decoder_out", "next_h", "next_c"],
|
||||
dynamic_axes={
|
||||
"y": {0: "N"},
|
||||
"h": {1: "N"},
|
||||
"c": {1: "N"},
|
||||
},
|
||||
)
|
||||
|
||||
meta_data = {
|
||||
"num_layers": h.shape[0],
|
||||
"hidden_dim": h.shape[2],
|
||||
}
|
||||
print("decoder meta_data", meta_data)
|
||||
add_meta_data(filename=decoder_filename, meta_data=meta_data)
|
||||
|
||||
|
||||
def export_joiner_model_onnx(
|
||||
joiner_model: nn.Module,
|
||||
joiner_filename: str,
|
||||
hidden_dim: int,
|
||||
vocab_size: int,
|
||||
opset_version: int = 11,
|
||||
) -> None:
|
||||
"""Export the joiner model to ONNX format.
|
||||
|
||||
The exported model has 2 inputs:
|
||||
|
||||
- encoder_out: a float32 tensor of shape (N, 1, enc_dim)
|
||||
- decoder_out: a float32 tensor of shape (N, 1, dec_dim)
|
||||
|
||||
and has 1 output:
|
||||
|
||||
- logits: a torch.float32 tensor of shape (N, 1, vocab_size)
|
||||
|
||||
Args:
|
||||
joiner_model:
|
||||
The decoder model to be exported.
|
||||
joiner_filename:
|
||||
Filename to save the exported ONNX model.
|
||||
opset_version:
|
||||
The opset version to use.
|
||||
"""
|
||||
enc_out = torch.zeros(1, 1, hidden_dim, dtype=torch.float32)
|
||||
dec_out = torch.zeros(1, 1, hidden_dim, dtype=torch.float32)
|
||||
|
||||
torch.onnx.export(
|
||||
joiner_model,
|
||||
(enc_out, dec_out),
|
||||
joiner_filename,
|
||||
verbose=False,
|
||||
opset_version=opset_version,
|
||||
input_names=["encoder_out", "decoder_out"],
|
||||
output_names=["logits"],
|
||||
dynamic_axes={
|
||||
"encoder_out": {0: "N"},
|
||||
"decoder_out": {0: "N"},
|
||||
},
|
||||
)
|
||||
|
||||
meta_data = {
|
||||
"vocab_size": vocab_size,
|
||||
"hidden_dim": hidden_dim,
|
||||
}
|
||||
print("joiner meta_data", meta_data)
|
||||
add_meta_data(filename=joiner_filename, meta_data=meta_data)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
params["env_info"] = get_env_info()
|
||||
|
||||
device = torch.device("cpu")
|
||||
logging.info(f"device: {device}")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.load_state_dict(average_checkpoints(filenames))
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
||||
encoder_num_param = sum([p.numel() for p in model.encoder.parameters()])
|
||||
decoder_num_param = sum([p.numel() for p in model.decoder.parameters()])
|
||||
joiner_num_param = sum([p.numel() for p in model.joiner.parameters()])
|
||||
total_num_param = encoder_num_param + decoder_num_param + joiner_num_param
|
||||
logging.info(f"encoder parameters: {encoder_num_param}")
|
||||
logging.info(f"decoder parameters: {decoder_num_param}")
|
||||
logging.info(f"joiner parameters: {joiner_num_param}")
|
||||
logging.info(f"total parameters: {total_num_param}")
|
||||
|
||||
encoder = OnnxEncoder(
|
||||
encoder=model.encoder,
|
||||
)
|
||||
|
||||
opset_version = 13
|
||||
|
||||
logging.info("Exporting encoder")
|
||||
encoder_filename = params.exp_dir / "encoder.onnx"
|
||||
export_encoder_model_onnx(
|
||||
encoder,
|
||||
encoder_filename,
|
||||
opset_version=opset_version,
|
||||
)
|
||||
logging.info(f"Exported encoder to {encoder_filename}")
|
||||
|
||||
logging.info("Exporting decoder")
|
||||
decoder_filename = params.exp_dir / "decoder.onnx"
|
||||
export_decoder_model_onnx(
|
||||
model.decoder,
|
||||
decoder_filename,
|
||||
opset_version=opset_version,
|
||||
)
|
||||
logging.info(f"Exported decoder to {decoder_filename}")
|
||||
|
||||
logging.info("Exporting joiner")
|
||||
joiner_filename = params.exp_dir / "joiner.onnx"
|
||||
export_joiner_model_onnx(
|
||||
model.joiner,
|
||||
joiner_filename,
|
||||
opset_version=opset_version,
|
||||
hidden_dim=params.hidden_dim,
|
||||
vocab_size=params.vocab_size,
|
||||
)
|
||||
logging.info(f"Exported decoder to {joiner_filename}")
|
||||
|
||||
# Generate int8 quantization models
|
||||
# See https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html#data-type-selection
|
||||
|
||||
logging.info("Generate int8 quantization models")
|
||||
|
||||
encoder_filename_int8 = params.exp_dir / "encoder.int8.onnx"
|
||||
quantize_dynamic(
|
||||
model_input=encoder_filename,
|
||||
model_output=encoder_filename_int8,
|
||||
op_types_to_quantize=["MatMul"],
|
||||
weight_type=QuantType.QInt8,
|
||||
)
|
||||
|
||||
decoder_filename_int8 = params.exp_dir / "decoder.int8.onnx"
|
||||
quantize_dynamic(
|
||||
model_input=decoder_filename,
|
||||
model_output=decoder_filename_int8,
|
||||
op_types_to_quantize=["MatMul", "Gather"],
|
||||
weight_type=QuantType.QInt8,
|
||||
)
|
||||
|
||||
joiner_filename_int8 = params.exp_dir / "joiner.int8.onnx"
|
||||
quantize_dynamic(
|
||||
model_input=joiner_filename,
|
||||
model_output=joiner_filename_int8,
|
||||
op_types_to_quantize=["MatMul"],
|
||||
weight_type=QuantType.QInt8,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user