mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-08 00:24:19 +00:00
change current abbreviation
This commit is contained in:
parent
9e4ce825ac
commit
b011448a28
@ -132,7 +132,7 @@ class ScaledAdam(BatchedOptimizer):
|
||||
|
||||
Args:
|
||||
params: The parameters or param_groups to optimize (like other Optimizer subclasses)
|
||||
Unlike common optimizers, which accepts model.parameters() or groups of parameters(),
|
||||
Unlike common optimizers, which accept model.parameters() or groups of parameters(),
|
||||
this optimizer could accept model.named_parameters() or groups of named_parameters().
|
||||
See comments of function _get_names_of_parameters for its 4 possible cases.
|
||||
lr: The learning rate. We will typically use a learning rate schedule that starts
|
||||
@ -259,7 +259,7 @@ class ScaledAdam(BatchedOptimizer):
|
||||
# p is short for param.
|
||||
# np is short for named_param.
|
||||
# p_or_np is short for param_or_named_param.
|
||||
# curt is short for current.
|
||||
# cur is short for current.
|
||||
# group is a dict, e.g. {'params': iterable of parameter, 'lr': 0.05, other fields}.
|
||||
# groups is a List[group]
|
||||
|
||||
@ -277,8 +277,8 @@ class ScaledAdam(BatchedOptimizer):
|
||||
if not isinstance(iterable_or_groups[0], dict):
|
||||
# case 1 or case 3,
|
||||
# the input is an iterable of parameter or named parameter.
|
||||
param_iterable_curt_group = []
|
||||
param_names_curt_group = []
|
||||
param_iterable_cur_group = []
|
||||
param_names_cur_group = []
|
||||
for p_or_np in iterable_or_groups:
|
||||
if isinstance(p_or_np, tuple):
|
||||
# case 3
|
||||
@ -290,17 +290,17 @@ class ScaledAdam(BatchedOptimizer):
|
||||
# Assign a dummy name as a placeholder
|
||||
name = "foo"
|
||||
self.show_dominant_parameters = False
|
||||
param_iterable_curt_group.append(param)
|
||||
param_names_curt_group.append(name)
|
||||
param_groups.append({"params": param_iterable_curt_group})
|
||||
param_groups_names.append(param_names_curt_group)
|
||||
param_iterable_cur_group.append(param)
|
||||
param_names_cur_group.append(name)
|
||||
param_groups.append({"params": param_iterable_cur_group})
|
||||
param_groups_names.append(param_names_cur_group)
|
||||
else:
|
||||
# case 2 or case 4
|
||||
# the input is groups of parameter or named parameter.
|
||||
for p_or_np_curt_group in iterable_or_groups:
|
||||
param_iterable_curt_group = []
|
||||
param_names_curt_group = []
|
||||
p_or_np_iterable = p_or_np_curt_group["params"]
|
||||
for p_or_np_cur_group in iterable_or_groups:
|
||||
param_iterable_cur_group = []
|
||||
param_names_cur_group = []
|
||||
p_or_np_iterable = p_or_np_cur_group["params"]
|
||||
for p_or_np in p_or_np_iterable:
|
||||
if isinstance(p_or_np, tuple):
|
||||
# case 4
|
||||
@ -312,8 +312,8 @@ class ScaledAdam(BatchedOptimizer):
|
||||
# Assign a dummy name as a placeholder
|
||||
name = "foo"
|
||||
self.show_dominant_parameters = False
|
||||
param_iterable_curt_group.append(param)
|
||||
param_names_curt_group.append(name)
|
||||
param_iterable_cur_group.append(param)
|
||||
param_names_cur_group.append(name)
|
||||
|
||||
# The original `params` filed contains named_parameters.
|
||||
# After following assignment,
|
||||
@ -321,9 +321,9 @@ class ScaledAdam(BatchedOptimizer):
|
||||
# and other fileds, if exist, are still original values.
|
||||
# So param_groups could be used to initialize
|
||||
# an underlying torch.Optimizer later.
|
||||
p_or_np_curt_group["params"] = param_iterable_curt_group
|
||||
param_groups.append(p_or_np_curt_group)
|
||||
param_groups_names.append(param_names_curt_group)
|
||||
p_or_np_cur_group["params"] = param_iterable_cur_group
|
||||
param_groups.append(p_or_np_cur_group)
|
||||
param_groups_names.append(param_names_cur_group)
|
||||
return param_groups, param_groups_names
|
||||
|
||||
def __setstate__(self, state):
|
||||
|
Loading…
x
Reference in New Issue
Block a user