diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7/conformer.py b/egs/librispeech/ASR/pruned_transducer_stateless7/conformer.py index 177aa3c3b..10527a7a5 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless7/conformer.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless7/conformer.py @@ -436,16 +436,14 @@ class ConformerEncoder(nn.Module): def get_layers_to_drop(self, rnd_seed: int, warmup_count: float): num_layers = len(self.layers) - warmup_begin = self.warmup_begin - warmup_end = self.warmup_end def get_layerdrop_prob(layer: int) -> float: - layer_warmup_delta = (warmup_end - warmup_begin) / num_layers - layer_warmup_begin = warmup_begin + layer * layer_warmup_delta + layer_warmup_begin = self.layers[layer].warmup_begin + layer_warmup_end = self.layers[layer].warmup_end + initial_layerdrop_prob = 0.5 final_layerdrop_prob = 0.05 - layer_warmup_end = layer_warmup_begin + layer_warmup_delta if warmup_count < layer_warmup_begin: return initial_layerdrop_prob elif warmup_count > layer_warmup_end: @@ -483,7 +481,7 @@ class ConformerEncoder(nn.Module): if len(ans) == num_to_drop: break if shared_rng.random() < 0.005 or __name__ == "__main__": - logging.info(f"warmup_begin={warmup_begin:.1f}, warmup_end={warmup_end:.1f}, warmup_count={warmup_count:.1f}, num_to_drop={num_to_drop}, layers_to_drop={ans}") + logging.info(f"warmup_begin={self.warmup_begin:.1f}, warmup_end={self.warmup_end:.1f}, warmup_count={warmup_count:.1f}, num_to_drop={num_to_drop}, layers_to_drop={ans}") return ans