mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
Minor fixes for the commonvoice
recipe (#1534)
* init commit * fix for issue https://github.com/k2-fsa/icefall/issues/1531 * minor fixes
This commit is contained in:
parent
5df24c1685
commit
ae61bd4090
@ -1 +0,0 @@
|
|||||||
../../../librispeech/ASR/local/compile_hlg.py
|
|
168
egs/commonvoice/ASR/local/compile_hlg.py
Executable file
168
egs/commonvoice/ASR/local/compile_hlg.py
Executable file
@ -0,0 +1,168 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021-2024 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||||
|
# Zengrui Jin,)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This script takes as input lang_dir and generates HLG from
|
||||||
|
|
||||||
|
- H, the ctc topology, built from tokens contained in lang_dir/lexicon.txt
|
||||||
|
- L, the lexicon, built from lang_dir/L_disambig.pt
|
||||||
|
|
||||||
|
Caution: We use a lexicon that contains disambiguation symbols
|
||||||
|
|
||||||
|
- G, the LM, built from data/lm/G_n_gram.fst.txt
|
||||||
|
|
||||||
|
The generated HLG is saved in $lang_dir/HLG.pt
|
||||||
|
"""
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--lm",
|
||||||
|
type=str,
|
||||||
|
default="G_3_gram",
|
||||||
|
help="""Stem name for LM used in HLG compiling.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
help="""Input and output directory.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def compile_HLG(lang_dir: str, lm: str = "G_3_gram") -> k2.Fsa:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
lang_dir:
|
||||||
|
The language directory, e.g., data/lang_phone or data/lang_bpe_5000.
|
||||||
|
lm:
|
||||||
|
The language stem base name.
|
||||||
|
|
||||||
|
Return:
|
||||||
|
An FSA representing HLG.
|
||||||
|
"""
|
||||||
|
lexicon = Lexicon(lang_dir)
|
||||||
|
max_token_id = max(lexicon.tokens)
|
||||||
|
logging.info(f"Building ctc_topo. max_token_id: {max_token_id}")
|
||||||
|
H = k2.ctc_topo(max_token_id)
|
||||||
|
L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))
|
||||||
|
|
||||||
|
if Path(f"{lang_dir}/lm/{lm}.pt").is_file():
|
||||||
|
logging.info(f"Loading pre-compiled {lm}")
|
||||||
|
d = torch.load(f"{lang_dir}/lm/{lm}.pt")
|
||||||
|
G = k2.Fsa.from_dict(d)
|
||||||
|
else:
|
||||||
|
logging.info(f"Loading {lm}.fst.txt")
|
||||||
|
with open(f"{lang_dir}/lm/{lm}.fst.txt") as f:
|
||||||
|
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||||
|
torch.save(G.as_dict(), f"{lang_dir}/lm/{lm}.pt")
|
||||||
|
|
||||||
|
first_token_disambig_id = lexicon.token_table["#0"]
|
||||||
|
first_word_disambig_id = lexicon.word_table["#0"]
|
||||||
|
|
||||||
|
L = k2.arc_sort(L)
|
||||||
|
G = k2.arc_sort(G)
|
||||||
|
|
||||||
|
logging.info("Intersecting L and G")
|
||||||
|
LG = k2.compose(L, G)
|
||||||
|
logging.info(f"LG shape: {LG.shape}")
|
||||||
|
|
||||||
|
logging.info("Connecting LG")
|
||||||
|
LG = k2.connect(LG)
|
||||||
|
logging.info(f"LG shape after k2.connect: {LG.shape}")
|
||||||
|
|
||||||
|
logging.info(type(LG.aux_labels))
|
||||||
|
logging.info("Determinizing LG")
|
||||||
|
|
||||||
|
LG = k2.determinize(LG)
|
||||||
|
logging.info(type(LG.aux_labels))
|
||||||
|
|
||||||
|
logging.info("Connecting LG after k2.determinize")
|
||||||
|
LG = k2.connect(LG)
|
||||||
|
|
||||||
|
logging.info("Removing disambiguation symbols on LG")
|
||||||
|
|
||||||
|
# LG.labels[LG.labels >= first_token_disambig_id] = 0
|
||||||
|
# see https://github.com/k2-fsa/k2/pull/1140
|
||||||
|
labels = LG.labels
|
||||||
|
labels[labels >= first_token_disambig_id] = 0
|
||||||
|
LG.labels = labels
|
||||||
|
|
||||||
|
assert isinstance(LG.aux_labels, k2.RaggedTensor)
|
||||||
|
LG.aux_labels.values[LG.aux_labels.values >= first_word_disambig_id] = 0
|
||||||
|
|
||||||
|
LG = k2.remove_epsilon(LG)
|
||||||
|
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
|
||||||
|
|
||||||
|
LG = k2.connect(LG)
|
||||||
|
LG.aux_labels = LG.aux_labels.remove_values_eq(0)
|
||||||
|
|
||||||
|
logging.info("Arc sorting LG")
|
||||||
|
LG = k2.arc_sort(LG)
|
||||||
|
|
||||||
|
logging.info("Composing H and LG")
|
||||||
|
# CAUTION: The name of the inner_labels is fixed
|
||||||
|
# to `tokens`. If you want to change it, please
|
||||||
|
# also change other places in icefall that are using
|
||||||
|
# it.
|
||||||
|
HLG = k2.compose(H, LG, inner_labels="tokens")
|
||||||
|
|
||||||
|
logging.info("Connecting LG")
|
||||||
|
HLG = k2.connect(HLG)
|
||||||
|
|
||||||
|
logging.info("Arc sorting LG")
|
||||||
|
HLG = k2.arc_sort(HLG)
|
||||||
|
logging.info(f"HLG.shape: {HLG.shape}")
|
||||||
|
|
||||||
|
return HLG
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
lang_dir = Path(args.lang_dir)
|
||||||
|
|
||||||
|
if (lang_dir / "HLG.pt").is_file():
|
||||||
|
logging.info(f"{lang_dir}/HLG.pt already exists - skipping")
|
||||||
|
return
|
||||||
|
|
||||||
|
logging.info(f"Processing {lang_dir}")
|
||||||
|
|
||||||
|
HLG = compile_HLG(lang_dir, args.lm)
|
||||||
|
logging.info(f"Saving HLG.pt to {lang_dir}")
|
||||||
|
torch.save(HLG.as_dict(), f"{lang_dir}/HLG.pt")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
main()
|
@ -1 +0,0 @@
|
|||||||
../../../librispeech/ASR/local/compile_lg.py
|
|
149
egs/commonvoice/ASR/local/compile_lg.py
Executable file
149
egs/commonvoice/ASR/local/compile_lg.py
Executable file
@ -0,0 +1,149 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021-2024 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||||
|
# Kang Wei,
|
||||||
|
# Zengrui Jin,)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This script takes as input lang_dir and generates LG from
|
||||||
|
|
||||||
|
- L, the lexicon, built from lang_dir/L_disambig.pt
|
||||||
|
|
||||||
|
Caution: We use a lexicon that contains disambiguation symbols
|
||||||
|
|
||||||
|
- G, the LM, built from lang_dir/lm/G_3_gram.fst.txt
|
||||||
|
|
||||||
|
The generated LG is saved in $lang_dir/LG.pt
|
||||||
|
"""
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
help="""Input and output directory.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--lm",
|
||||||
|
type=str,
|
||||||
|
default="G_3_gram",
|
||||||
|
help="""Stem name for LM used in HLG compiling.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def compile_LG(lang_dir: str, lm: str = "G_3_gram") -> k2.Fsa:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
lang_dir:
|
||||||
|
The language directory, e.g., data/lang_phone or data/lang_bpe_5000.
|
||||||
|
|
||||||
|
Return:
|
||||||
|
An FSA representing LG.
|
||||||
|
"""
|
||||||
|
lexicon = Lexicon(lang_dir)
|
||||||
|
L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))
|
||||||
|
|
||||||
|
if Path(f"{lang_dir}/lm/{lm}.pt").is_file():
|
||||||
|
logging.info(f"Loading pre-compiled {lm}")
|
||||||
|
d = torch.load(f"{lang_dir}/lm/{lm}.pt")
|
||||||
|
G = k2.Fsa.from_dict(d)
|
||||||
|
else:
|
||||||
|
logging.info(f"Loading {lm}.fst.txt")
|
||||||
|
with open(f"{lang_dir}/lm/{lm}.fst.txt") as f:
|
||||||
|
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||||
|
torch.save(G.as_dict(), f"{lang_dir}/lm/{lm}.pt")
|
||||||
|
|
||||||
|
first_token_disambig_id = lexicon.token_table["#0"]
|
||||||
|
first_word_disambig_id = lexicon.word_table["#0"]
|
||||||
|
|
||||||
|
L = k2.arc_sort(L)
|
||||||
|
G = k2.arc_sort(G)
|
||||||
|
|
||||||
|
logging.info("Intersecting L and G")
|
||||||
|
LG = k2.compose(L, G)
|
||||||
|
logging.info(f"LG shape: {LG.shape}")
|
||||||
|
|
||||||
|
logging.info("Connecting LG")
|
||||||
|
LG = k2.connect(LG)
|
||||||
|
logging.info(f"LG shape after k2.connect: {LG.shape}")
|
||||||
|
|
||||||
|
logging.info(type(LG.aux_labels))
|
||||||
|
logging.info("Determinizing LG")
|
||||||
|
|
||||||
|
LG = k2.determinize(LG, k2.DeterminizeWeightPushingType.kLogWeightPushing)
|
||||||
|
logging.info(type(LG.aux_labels))
|
||||||
|
|
||||||
|
logging.info("Connecting LG after k2.determinize")
|
||||||
|
LG = k2.connect(LG)
|
||||||
|
|
||||||
|
logging.info("Removing disambiguation symbols on LG")
|
||||||
|
|
||||||
|
# LG.labels[LG.labels >= first_token_disambig_id] = 0
|
||||||
|
# see https://github.com/k2-fsa/k2/pull/1140
|
||||||
|
labels = LG.labels
|
||||||
|
labels[labels >= first_token_disambig_id] = 0
|
||||||
|
LG.labels = labels
|
||||||
|
|
||||||
|
assert isinstance(LG.aux_labels, k2.RaggedTensor)
|
||||||
|
LG.aux_labels.values[LG.aux_labels.values >= first_word_disambig_id] = 0
|
||||||
|
|
||||||
|
LG = k2.remove_epsilon(LG)
|
||||||
|
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
|
||||||
|
|
||||||
|
LG = k2.connect(LG)
|
||||||
|
LG.aux_labels = LG.aux_labels.remove_values_eq(0)
|
||||||
|
|
||||||
|
logging.info("Arc sorting LG")
|
||||||
|
LG = k2.arc_sort(LG)
|
||||||
|
|
||||||
|
return LG
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
lang_dir = Path(args.lang_dir)
|
||||||
|
|
||||||
|
if (lang_dir / "LG.pt").is_file():
|
||||||
|
logging.info(f"{lang_dir}/LG.pt already exists - skipping")
|
||||||
|
return
|
||||||
|
|
||||||
|
logging.info(f"Processing {lang_dir}")
|
||||||
|
|
||||||
|
LG = compile_LG(lang_dir, args.lm)
|
||||||
|
logging.info(f"Saving LG.pt to {lang_dir}")
|
||||||
|
torch.save(LG.as_dict(), f"{lang_dir}/LG.pt")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
main()
|
@ -52,6 +52,15 @@ def normalize_text(utt: str, language: str) -> str:
|
|||||||
return re.sub(r"[^A-ZÀÂÆÇÉÈÊËÎÏÔŒÙÛÜ' ]", "", utt).upper()
|
return re.sub(r"[^A-ZÀÂÆÇÉÈÊËÎÏÔŒÙÛÜ' ]", "", utt).upper()
|
||||||
elif language == "pl":
|
elif language == "pl":
|
||||||
return re.sub(r"[^a-ząćęłńóśźżA-ZĄĆĘŁŃÓŚŹŻ' ]", "", utt).upper()
|
return re.sub(r"[^a-ząćęłńóśźżA-ZĄĆĘŁŃÓŚŹŻ' ]", "", utt).upper()
|
||||||
|
elif language == "yue":
|
||||||
|
return (
|
||||||
|
utt.replace(" ", "")
|
||||||
|
.replace(",", "")
|
||||||
|
.replace("。", " ")
|
||||||
|
.replace("?", "")
|
||||||
|
.replace("!", "")
|
||||||
|
.replace("?", "")
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError(
|
raise NotImplementedError(
|
||||||
f"""
|
f"""
|
||||||
|
@ -381,9 +381,11 @@ class CommonVoiceAsrDataModule:
|
|||||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||||
logging.debug("About to create test dataset")
|
logging.debug("About to create test dataset")
|
||||||
test = K2SpeechRecognitionDataset(
|
test = K2SpeechRecognitionDataset(
|
||||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
input_strategy=(
|
||||||
|
OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||||
if self.args.on_the_fly_feats
|
if self.args.on_the_fly_feats
|
||||||
else eval(self.args.input_strategy)(),
|
else eval(self.args.input_strategy)()
|
||||||
|
),
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
sampler = DynamicBucketingSampler(
|
sampler = DynamicBucketingSampler(
|
||||||
|
@ -31,7 +31,7 @@ from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
|||||||
DynamicBucketingSampler,
|
DynamicBucketingSampler,
|
||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
SimpleCutSampler,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||||
@ -315,8 +315,8 @@ class CommonVoiceAsrDataModule:
|
|||||||
drop_last=self.args.drop_last,
|
drop_last=self.args.drop_last,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SimpleCutSampler.")
|
||||||
train_sampler = SingleCutSampler(
|
train_sampler = SimpleCutSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=self.args.shuffle,
|
shuffle=self.args.shuffle,
|
||||||
@ -383,9 +383,11 @@ class CommonVoiceAsrDataModule:
|
|||||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||||
logging.debug("About to create test dataset")
|
logging.debug("About to create test dataset")
|
||||||
test = K2SpeechRecognitionDataset(
|
test = K2SpeechRecognitionDataset(
|
||||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
input_strategy=(
|
||||||
|
OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||||
if self.args.on_the_fly_feats
|
if self.args.on_the_fly_feats
|
||||||
else eval(self.args.input_strategy)(),
|
else eval(self.args.input_strategy)()
|
||||||
|
),
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
sampler = DynamicBucketingSampler(
|
sampler = DynamicBucketingSampler(
|
||||||
|
@ -425,9 +425,11 @@ class LibriHeavyAsrDataModule:
|
|||||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||||
logging.debug("About to create test dataset")
|
logging.debug("About to create test dataset")
|
||||||
test = K2SpeechRecognitionDataset(
|
test = K2SpeechRecognitionDataset(
|
||||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
input_strategy=(
|
||||||
|
OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||||
if self.args.on_the_fly_feats
|
if self.args.on_the_fly_feats
|
||||||
else PrecomputedFeatures(),
|
else PrecomputedFeatures()
|
||||||
|
),
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
sampler = DynamicBucketingSampler(
|
sampler = DynamicBucketingSampler(
|
||||||
|
Loading…
x
Reference in New Issue
Block a user