mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-15 20:22:42 +00:00
refactor codes
This commit is contained in:
parent
a6eead6c98
commit
ae59e5d61e
@ -24,8 +24,8 @@ import torch.nn as nn
|
||||
from encoder_interface import EncoderInterface
|
||||
from scaling import ScaledLinear
|
||||
|
||||
from icefall.utils import add_sos, make_pad_mask
|
||||
from spec_augment import SpecAugment, time_warp
|
||||
from icefall.utils import add_sos, make_pad_mask, time_warp
|
||||
from lhotse.dataset import SpecAugment
|
||||
|
||||
|
||||
class AsrModel(nn.Module):
|
||||
@ -188,8 +188,6 @@ class AsrModel(nn.Module):
|
||||
encoder_out_lens: torch.Tensor,
|
||||
targets: torch.Tensor,
|
||||
target_lengths: torch.Tensor,
|
||||
time_mask: Optional[torch.Tensor] = None,
|
||||
cr_loss_masked_scale: float = 1.0,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Compute CTC loss with consistency regularization loss.
|
||||
Args:
|
||||
@ -200,10 +198,6 @@ class AsrModel(nn.Module):
|
||||
targets:
|
||||
Target Tensor of shape (2 * sum(target_lengths)). The targets are assumed
|
||||
to be un-padded and concatenated within 1 dimension.
|
||||
time_mask:
|
||||
Downsampled time masks of shape (2 * N, T, 1).
|
||||
cr_loss_masked_scale:
|
||||
The loss scale used to scale up the cr_loss at masked positions.
|
||||
"""
|
||||
# Compute CTC loss
|
||||
ctc_output = self.ctc_output(encoder_out) # (2 * N, T, C)
|
||||
@ -226,14 +220,6 @@ class AsrModel(nn.Module):
|
||||
reduction="none",
|
||||
log_target=True,
|
||||
) # (2 * N, T, C)
|
||||
if time_mask is not None:
|
||||
assert time_mask.shape[:-1] == ctc_output.shape[:-1], (
|
||||
time_mask.shape, ctc_output.shape
|
||||
)
|
||||
masked_scale = time_mask * (cr_loss_masked_scale - 1) + 1
|
||||
# e.g., if cr_loss_masked_scale = 3, scales at masked positions are 3,
|
||||
# scales at unmasked positions are 1
|
||||
cr_loss = cr_loss * masked_scale # scaling up masked positions
|
||||
length_mask = make_pad_mask(encoder_out_lens).unsqueeze(-1)
|
||||
cr_loss = cr_loss.masked_fill(length_mask, 0.0).sum()
|
||||
|
||||
@ -359,7 +345,6 @@ class AsrModel(nn.Module):
|
||||
spec_augment: Optional[SpecAugment] = None,
|
||||
supervision_segments: Optional[torch.Tensor] = None,
|
||||
time_warp_factor: Optional[int] = 80,
|
||||
cr_loss_masked_scale: float = 1.0,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
@ -395,8 +380,6 @@ class AsrModel(nn.Module):
|
||||
Parameter for the time warping; larger values mean more warping.
|
||||
Set to ``None``, or less than ``1``, to disable.
|
||||
Used only if use_cr_ctc is True.
|
||||
cr_loss_masked_scale:
|
||||
The loss scale used to scale up the cr_loss at masked positions.
|
||||
|
||||
Returns:
|
||||
Return the transducer losses, CTC loss, AED loss,
|
||||
@ -429,12 +412,9 @@ class AsrModel(nn.Module):
|
||||
supervision_segments=supervision_segments,
|
||||
)
|
||||
# Independently apply frequency masking and time masking to the two copies
|
||||
x, time_mask = spec_augment(x.repeat(2, 1, 1))
|
||||
# time_mask: 1 for masked, 0 for unmasked
|
||||
time_mask = downsample_time_mask(time_mask, x.dtype)
|
||||
x = spec_augment(x.repeat(2, 1, 1))
|
||||
else:
|
||||
x = x.repeat(2, 1, 1)
|
||||
time_mask = None
|
||||
x_lens = x_lens.repeat(2)
|
||||
y = k2.ragged.cat([y, y], axis=0)
|
||||
|
||||
@ -479,8 +459,6 @@ class AsrModel(nn.Module):
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
targets=targets,
|
||||
target_lengths=y_lens,
|
||||
time_mask=time_mask,
|
||||
cr_loss_masked_scale=cr_loss_masked_scale,
|
||||
)
|
||||
ctc_loss = ctc_loss * 0.5
|
||||
cr_loss = cr_loss * 0.5
|
||||
@ -501,31 +479,3 @@ class AsrModel(nn.Module):
|
||||
attention_decoder_loss = torch.empty(0)
|
||||
|
||||
return simple_loss, pruned_loss, ctc_loss, attention_decoder_loss, cr_loss
|
||||
|
||||
|
||||
def downsample_time_mask(time_mask: torch.Tensor, dtype: torch.dtype):
|
||||
"""Downsample the time masks as in Zipformer.
|
||||
Args:
|
||||
time_mask: shape of (N, T)
|
||||
Returns:
|
||||
The downsampled time masks of shape (N, T', 1),
|
||||
where T' = ((T - 7) // 2 + 1) // 2
|
||||
"""
|
||||
# Downsample the time masks as in Zipformer
|
||||
time_mask = time_mask.to(dtype).unsqueeze(dim=1)
|
||||
# as in conv-embed
|
||||
time_mask = nn.functional.max_pool1d(
|
||||
time_mask, kernel_size=3, stride=1, padding=0
|
||||
) # T - 2
|
||||
time_mask = nn.functional.max_pool1d(
|
||||
time_mask, kernel_size=3, stride=2, padding=0
|
||||
) # (T - 3) // 2
|
||||
time_mask = nn.functional.max_pool1d(
|
||||
time_mask, kernel_size=3, stride=1, padding=0
|
||||
) # (T - 7) // 2
|
||||
# as in output-downsampling
|
||||
time_mask = nn.functional.max_pool1d(
|
||||
time_mask, kernel_size=2, stride=2, padding=0, ceil_mode=True
|
||||
)
|
||||
time_mask = time_mask.transpose(1, 2) # (N * 2, T', 1)
|
||||
return time_mask
|
||||
|
@ -1,313 +0,0 @@
|
||||
# Copyright 2024 Xiaomi Corp. (authors: Zengwei Yao)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
# Copied from https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/signal_transforms.py
|
||||
# with minor modification for cr-ctc training.
|
||||
|
||||
|
||||
import math
|
||||
import random
|
||||
from typing import Any, Dict, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from lhotse.dataset.signal_transforms import time_warp as time_warp_impl
|
||||
|
||||
|
||||
class SpecAugment(torch.nn.Module):
|
||||
"""SpecAugment from lhotse with minor modification, returning time masks.
|
||||
|
||||
SpecAugment performs three augmentations:
|
||||
- time warping of the feature matrix
|
||||
- masking of ranges of features (frequency bands)
|
||||
- masking of ranges of frames (time)
|
||||
|
||||
The current implementation works with batches, but processes each example separately
|
||||
in a loop rather than simultaneously to achieve different augmentation parameters for
|
||||
each example.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
time_warp_factor: Optional[int] = 80,
|
||||
num_feature_masks: int = 2,
|
||||
features_mask_size: int = 27,
|
||||
num_frame_masks: int = 10,
|
||||
frames_mask_size: int = 100,
|
||||
max_frames_mask_fraction: float = 0.15,
|
||||
p=0.9,
|
||||
):
|
||||
"""
|
||||
SpecAugment's constructor.
|
||||
|
||||
:param time_warp_factor: parameter for the time warping; larger values mean more warping.
|
||||
Set to ``None``, or less than ``1``, to disable.
|
||||
:param num_feature_masks: how many feature masks should be applied. Set to ``0`` to disable.
|
||||
:param features_mask_size: the width of the feature mask (expressed in the number of masked feature bins).
|
||||
This is the ``F`` parameter from the SpecAugment paper.
|
||||
:param num_frame_masks: the number of masking regions for utterances. Set to ``0`` to disable.
|
||||
:param frames_mask_size: the width of the frame (temporal) masks (expressed in the number of masked frames).
|
||||
This is the ``T`` parameter from the SpecAugment paper.
|
||||
:param max_frames_mask_fraction: limits the size of the frame (temporal) mask to this value times the length
|
||||
of the utterance (or supervision segment).
|
||||
This is the parameter denoted by ``p`` in the SpecAugment paper.
|
||||
:param p: the probability of applying this transform.
|
||||
It is different from ``p`` in the SpecAugment paper!
|
||||
"""
|
||||
super().__init__()
|
||||
assert 0 <= p <= 1
|
||||
assert num_feature_masks >= 0
|
||||
assert num_frame_masks >= 0
|
||||
assert features_mask_size > 0
|
||||
assert frames_mask_size > 0
|
||||
self.time_warp_factor = time_warp_factor
|
||||
self.num_feature_masks = num_feature_masks
|
||||
self.features_mask_size = features_mask_size
|
||||
self.num_frame_masks = num_frame_masks
|
||||
self.frames_mask_size = frames_mask_size
|
||||
self.max_frames_mask_fraction = max_frames_mask_fraction
|
||||
self.p = p
|
||||
|
||||
def forward(
|
||||
self,
|
||||
features: torch.Tensor,
|
||||
supervision_segments: Optional[torch.IntTensor] = None,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Computes SpecAugment for a batch of feature matrices.
|
||||
|
||||
Since the batch will usually already be padded, the user can optionally
|
||||
provide a ``supervision_segments`` tensor that will be used to apply SpecAugment
|
||||
only to selected areas of the input. The format of this input is described below.
|
||||
|
||||
:param features: a batch of feature matrices with shape ``(B, T, F)``.
|
||||
:param supervision_segments: an int tensor of shape ``(S, 3)``. ``S`` is the number of
|
||||
supervision segments that exist in ``features`` -- there may be either
|
||||
less or more than the batch size.
|
||||
The second dimension encoder three kinds of information:
|
||||
the sequence index of the corresponding feature matrix in `features`,
|
||||
the start frame index, and the number of frames for each segment.
|
||||
:return:
|
||||
- an augmented tensor of shape ``(B, T, F)``.
|
||||
- the corresponding time masks of shape ``(B, T)``.
|
||||
"""
|
||||
assert len(features.shape) == 3, (
|
||||
"SpecAugment only supports batches of " "single-channel feature matrices."
|
||||
)
|
||||
features = features.clone()
|
||||
|
||||
time_masks = []
|
||||
|
||||
if supervision_segments is None:
|
||||
# No supervisions - apply spec augment to full feature matrices.
|
||||
for sequence_idx in range(features.size(0)):
|
||||
masked_feature, time_mask = self._forward_single(features[sequence_idx])
|
||||
features[sequence_idx] = masked_feature
|
||||
time_masks.append(time_mask)
|
||||
else:
|
||||
# Supervisions provided - we will apply time warping only on the supervised areas.
|
||||
for sequence_idx, start_frame, num_frames in supervision_segments:
|
||||
end_frame = start_frame + num_frames
|
||||
warped_feature, _ = self._forward_single(
|
||||
features[sequence_idx, start_frame:end_frame], warp=True, mask=False
|
||||
)
|
||||
features[sequence_idx, start_frame:end_frame] = warped_feature
|
||||
# ... and then time-mask the full feature matrices. Note that in this mode,
|
||||
# it might happen that masks are applied to different sequences/examples
|
||||
# than the time warping.
|
||||
for sequence_idx in range(features.size(0)):
|
||||
masked_feature, time_mask = self._forward_single(
|
||||
features[sequence_idx], warp=False, mask=True
|
||||
)
|
||||
features[sequence_idx] = masked_feature
|
||||
time_masks.append(time_mask)
|
||||
|
||||
time_masks = torch.cat(time_masks, dim=0)
|
||||
assert time_masks.shape == features.shape[:-1], (time_masks.shape == features.shape[:-1])
|
||||
return features, time_masks
|
||||
|
||||
def _forward_single(
|
||||
self, features: torch.Tensor, warp: bool = True, mask: bool = True
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Apply SpecAugment to a single feature matrix of shape (T, F).
|
||||
"""
|
||||
if random.random() > self.p:
|
||||
# Randomly choose whether this transform is applied
|
||||
time_mask = torch.zeros(
|
||||
1, features.size(0), dtype=torch.bool, device=features.device
|
||||
)
|
||||
return features, time_mask
|
||||
|
||||
time_mask = None
|
||||
if warp:
|
||||
if self.time_warp_factor is not None and self.time_warp_factor >= 1:
|
||||
features = time_warp_impl(features, factor=self.time_warp_factor)
|
||||
|
||||
if mask:
|
||||
mean = features.mean()
|
||||
# Frequency masking
|
||||
features, _ = mask_along_axis_optimized(
|
||||
features,
|
||||
mask_size=self.features_mask_size,
|
||||
mask_times=self.num_feature_masks,
|
||||
mask_value=mean,
|
||||
axis=2,
|
||||
)
|
||||
# Time masking
|
||||
max_tot_mask_frames = self.max_frames_mask_fraction * features.size(0)
|
||||
num_frame_masks = min(
|
||||
self.num_frame_masks,
|
||||
math.ceil(max_tot_mask_frames / self.frames_mask_size),
|
||||
)
|
||||
max_mask_frames = min(
|
||||
self.frames_mask_size, max_tot_mask_frames // num_frame_masks
|
||||
)
|
||||
features, time_mask = mask_along_axis_optimized(
|
||||
features,
|
||||
mask_size=max_mask_frames,
|
||||
mask_times=num_frame_masks,
|
||||
mask_value=mean,
|
||||
axis=1,
|
||||
return_time_mask=True,
|
||||
)
|
||||
|
||||
return features, time_mask
|
||||
|
||||
def state_dict(self, **kwargs) -> Dict[str, Any]:
|
||||
return dict(
|
||||
time_warp_factor=self.time_warp_factor,
|
||||
num_feature_masks=self.num_feature_masks,
|
||||
features_mask_size=self.features_mask_size,
|
||||
num_frame_masks=self.num_frame_masks,
|
||||
frames_mask_size=self.frames_mask_size,
|
||||
max_frames_mask_fraction=self.max_frames_mask_fraction,
|
||||
p=self.p,
|
||||
)
|
||||
|
||||
def load_state_dict(self, state_dict: Dict[str, Any]):
|
||||
self.time_warp_factor = state_dict.get(
|
||||
"time_warp_factor", self.time_warp_factor
|
||||
)
|
||||
self.num_feature_masks = state_dict.get(
|
||||
"num_feature_masks", self.num_feature_masks
|
||||
)
|
||||
self.features_mask_size = state_dict.get(
|
||||
"features_mask_size", self.features_mask_size
|
||||
)
|
||||
self.num_frame_masks = state_dict.get("num_frame_masks", self.num_frame_masks)
|
||||
self.frames_mask_size = state_dict.get(
|
||||
"frames_mask_size", self.frames_mask_size
|
||||
)
|
||||
self.max_frames_mask_fraction = state_dict.get(
|
||||
"max_frames_mask_fraction", self.max_frames_mask_fraction
|
||||
)
|
||||
self.p = state_dict.get("p", self.p)
|
||||
|
||||
|
||||
def mask_along_axis_optimized(
|
||||
features: torch.Tensor,
|
||||
mask_size: int,
|
||||
mask_times: int,
|
||||
mask_value: float,
|
||||
axis: int,
|
||||
return_time_mask: bool = False,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Apply Frequency and Time masking along axis.
|
||||
Frequency and Time masking as described in the SpecAugment paper.
|
||||
|
||||
:param features: input tensor of shape ``(T, F)``
|
||||
:mask_size: the width size for masking.
|
||||
:mask_times: the number of masking regions.
|
||||
:mask_value: Value to assign to the masked regions.
|
||||
:axis: Axis to apply masking on (1 -> time, 2 -> frequency)
|
||||
:return_time_mask: Whether return the time mask of shape ``(1, T)``
|
||||
"""
|
||||
if axis not in [1, 2]:
|
||||
raise ValueError("Only Frequency and Time masking are supported!")
|
||||
|
||||
if return_time_mask and axis == 1:
|
||||
time_mask = torch.zeros(
|
||||
1, features.size(0), dtype=torch.bool, device=features.device
|
||||
)
|
||||
else:
|
||||
time_mask = None
|
||||
|
||||
features = features.unsqueeze(0)
|
||||
features = features.reshape([-1] + list(features.size()[-2:]))
|
||||
|
||||
values = torch.randint(int(0), int(mask_size), (1, mask_times))
|
||||
min_values = torch.rand(1, mask_times) * (features.size(axis) - values)
|
||||
mask_starts = (min_values.long()).squeeze()
|
||||
mask_ends = (min_values.long() + values.long()).squeeze()
|
||||
|
||||
if axis == 1:
|
||||
if mask_times == 1:
|
||||
features[:, mask_starts:mask_ends] = mask_value
|
||||
if return_time_mask:
|
||||
time_mask[:, mask_starts:mask_ends] = True
|
||||
return features.squeeze(0), time_mask
|
||||
for (mask_start, mask_end) in zip(mask_starts, mask_ends):
|
||||
features[:, mask_start:mask_end] = mask_value
|
||||
if return_time_mask:
|
||||
time_mask[:, mask_start:mask_end] = True
|
||||
else:
|
||||
if mask_times == 1:
|
||||
features[:, :, mask_starts:mask_ends] = mask_value
|
||||
return features.squeeze(0), time_mask
|
||||
for (mask_start, mask_end) in zip(mask_starts, mask_ends):
|
||||
features[:, :, mask_start:mask_end] = mask_value
|
||||
|
||||
features = features.squeeze(0)
|
||||
return features, time_mask
|
||||
|
||||
|
||||
def time_warp(
|
||||
features: torch.Tensor,
|
||||
p: float = 0.9,
|
||||
time_warp_factor: Optional[int] = 80,
|
||||
supervision_segments: Optional[torch.Tensor] = None,
|
||||
):
|
||||
if time_warp_factor is None or time_warp_factor < 1:
|
||||
return features
|
||||
assert len(features.shape) == 3, (
|
||||
"SpecAugment only supports batches of single-channel feature matrices."
|
||||
)
|
||||
features = features.clone()
|
||||
if supervision_segments is None:
|
||||
# No supervisions - apply spec augment to full feature matrices.
|
||||
for sequence_idx in range(features.size(0)):
|
||||
if random.random() > p:
|
||||
# Randomly choose whether this transform is applied
|
||||
continue
|
||||
features[sequence_idx] = time_warp_impl(
|
||||
features[sequence_idx], factor=time_warp_factor
|
||||
)
|
||||
else:
|
||||
# Supervisions provided - we will apply time warping only on the supervised areas.
|
||||
for sequence_idx, start_frame, num_frames in supervision_segments:
|
||||
if random.random() > p:
|
||||
# Randomly choose whether this transform is applied
|
||||
continue
|
||||
end_frame = start_frame + num_frames
|
||||
features[sequence_idx, start_frame:end_frame] = time_warp_impl(
|
||||
features[sequence_idx, start_frame:end_frame], factor=time_warp_factor
|
||||
)
|
||||
|
||||
return features
|
@ -72,6 +72,7 @@ from attention_decoder import AttentionDecoderModel
|
||||
from decoder import Decoder
|
||||
from joiner import Joiner
|
||||
from lhotse.cut import Cut
|
||||
from lhotse.dataset import SpecAugment
|
||||
from lhotse.dataset.sampling.base import CutSampler
|
||||
from lhotse.utils import fix_random_seed
|
||||
from model import AsrModel
|
||||
@ -102,7 +103,6 @@ from icefall.utils import (
|
||||
setup_logger,
|
||||
str2bool,
|
||||
)
|
||||
from spec_augment import SpecAugment
|
||||
|
||||
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
|
||||
|
||||
@ -460,22 +460,15 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--cr-loss-scale",
|
||||
type=float,
|
||||
default=0.15,
|
||||
default=0.2,
|
||||
help="Scale for consistency-regularization loss.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--time-mask-ratio",
|
||||
type=float,
|
||||
default=2.0,
|
||||
help="When using cr-ctc, we increase the time-masking ratio.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--cr-loss-masked-scale",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The value used to scale up the cr_loss at masked positions",
|
||||
default=2.5,
|
||||
help="When using cr-ctc, we increase the amount of time-masking in SpecAugment.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -950,7 +943,6 @@ def compute_loss(
|
||||
spec_augment=spec_augment,
|
||||
supervision_segments=supervision_segments,
|
||||
time_warp_factor=params.spec_aug_time_warp_factor,
|
||||
cr_loss_masked_scale=params.cr_loss_masked_scale,
|
||||
)
|
||||
|
||||
loss = 0.0
|
||||
|
@ -21,6 +21,7 @@ import argparse
|
||||
import collections
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
import re
|
||||
import subprocess
|
||||
from collections import defaultdict
|
||||
@ -38,6 +39,7 @@ import sentencepiece as spm
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from lhotse.dataset.signal_transforms import time_warp as time_warp_impl
|
||||
from pypinyin import lazy_pinyin, pinyin
|
||||
from pypinyin.contrib.tone_convert import to_finals, to_finals_tone, to_initials
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
@ -2271,3 +2273,41 @@ def num_tokens(
|
||||
if 0 in ans:
|
||||
num_tokens -= 1
|
||||
return num_tokens
|
||||
|
||||
|
||||
# Based on https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/signal_transforms.py
|
||||
def time_warp(
|
||||
features: torch.Tensor,
|
||||
p: float = 0.9,
|
||||
time_warp_factor: Optional[int] = 80,
|
||||
supervision_segments: Optional[torch.Tensor] = None,
|
||||
):
|
||||
"""Apply time warping on a batch of features
|
||||
"""
|
||||
if time_warp_factor is None or time_warp_factor < 1:
|
||||
return features
|
||||
assert len(features.shape) == 3, (
|
||||
"SpecAugment only supports batches of single-channel feature matrices."
|
||||
)
|
||||
features = features.clone()
|
||||
if supervision_segments is None:
|
||||
# No supervisions - apply spec augment to full feature matrices.
|
||||
for sequence_idx in range(features.size(0)):
|
||||
if random.random() > p:
|
||||
# Randomly choose whether this transform is applied
|
||||
continue
|
||||
features[sequence_idx] = time_warp_impl(
|
||||
features[sequence_idx], factor=time_warp_factor
|
||||
)
|
||||
else:
|
||||
# Supervisions provided - we will apply time warping only on the supervised areas.
|
||||
for sequence_idx, start_frame, num_frames in supervision_segments:
|
||||
if random.random() > p:
|
||||
# Randomly choose whether this transform is applied
|
||||
continue
|
||||
end_frame = start_frame + num_frames
|
||||
features[sequence_idx, start_frame:end_frame] = time_warp_impl(
|
||||
features[sequence_idx, start_frame:end_frame], factor=time_warp_factor
|
||||
)
|
||||
|
||||
return features
|
||||
|
Loading…
x
Reference in New Issue
Block a user