refactor codes

This commit is contained in:
yaozengwei 2024-10-08 00:34:32 +08:00
parent a6eead6c98
commit ae59e5d61e
4 changed files with 47 additions and 378 deletions

View File

@ -24,8 +24,8 @@ import torch.nn as nn
from encoder_interface import EncoderInterface
from scaling import ScaledLinear
from icefall.utils import add_sos, make_pad_mask
from spec_augment import SpecAugment, time_warp
from icefall.utils import add_sos, make_pad_mask, time_warp
from lhotse.dataset import SpecAugment
class AsrModel(nn.Module):
@ -188,8 +188,6 @@ class AsrModel(nn.Module):
encoder_out_lens: torch.Tensor,
targets: torch.Tensor,
target_lengths: torch.Tensor,
time_mask: Optional[torch.Tensor] = None,
cr_loss_masked_scale: float = 1.0,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute CTC loss with consistency regularization loss.
Args:
@ -200,10 +198,6 @@ class AsrModel(nn.Module):
targets:
Target Tensor of shape (2 * sum(target_lengths)). The targets are assumed
to be un-padded and concatenated within 1 dimension.
time_mask:
Downsampled time masks of shape (2 * N, T, 1).
cr_loss_masked_scale:
The loss scale used to scale up the cr_loss at masked positions.
"""
# Compute CTC loss
ctc_output = self.ctc_output(encoder_out) # (2 * N, T, C)
@ -226,14 +220,6 @@ class AsrModel(nn.Module):
reduction="none",
log_target=True,
) # (2 * N, T, C)
if time_mask is not None:
assert time_mask.shape[:-1] == ctc_output.shape[:-1], (
time_mask.shape, ctc_output.shape
)
masked_scale = time_mask * (cr_loss_masked_scale - 1) + 1
# e.g., if cr_loss_masked_scale = 3, scales at masked positions are 3,
# scales at unmasked positions are 1
cr_loss = cr_loss * masked_scale # scaling up masked positions
length_mask = make_pad_mask(encoder_out_lens).unsqueeze(-1)
cr_loss = cr_loss.masked_fill(length_mask, 0.0).sum()
@ -359,7 +345,6 @@ class AsrModel(nn.Module):
spec_augment: Optional[SpecAugment] = None,
supervision_segments: Optional[torch.Tensor] = None,
time_warp_factor: Optional[int] = 80,
cr_loss_masked_scale: float = 1.0,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Args:
@ -395,8 +380,6 @@ class AsrModel(nn.Module):
Parameter for the time warping; larger values mean more warping.
Set to ``None``, or less than ``1``, to disable.
Used only if use_cr_ctc is True.
cr_loss_masked_scale:
The loss scale used to scale up the cr_loss at masked positions.
Returns:
Return the transducer losses, CTC loss, AED loss,
@ -429,12 +412,9 @@ class AsrModel(nn.Module):
supervision_segments=supervision_segments,
)
# Independently apply frequency masking and time masking to the two copies
x, time_mask = spec_augment(x.repeat(2, 1, 1))
# time_mask: 1 for masked, 0 for unmasked
time_mask = downsample_time_mask(time_mask, x.dtype)
x = spec_augment(x.repeat(2, 1, 1))
else:
x = x.repeat(2, 1, 1)
time_mask = None
x_lens = x_lens.repeat(2)
y = k2.ragged.cat([y, y], axis=0)
@ -479,8 +459,6 @@ class AsrModel(nn.Module):
encoder_out_lens=encoder_out_lens,
targets=targets,
target_lengths=y_lens,
time_mask=time_mask,
cr_loss_masked_scale=cr_loss_masked_scale,
)
ctc_loss = ctc_loss * 0.5
cr_loss = cr_loss * 0.5
@ -501,31 +479,3 @@ class AsrModel(nn.Module):
attention_decoder_loss = torch.empty(0)
return simple_loss, pruned_loss, ctc_loss, attention_decoder_loss, cr_loss
def downsample_time_mask(time_mask: torch.Tensor, dtype: torch.dtype):
"""Downsample the time masks as in Zipformer.
Args:
time_mask: shape of (N, T)
Returns:
The downsampled time masks of shape (N, T', 1),
where T' = ((T - 7) // 2 + 1) // 2
"""
# Downsample the time masks as in Zipformer
time_mask = time_mask.to(dtype).unsqueeze(dim=1)
# as in conv-embed
time_mask = nn.functional.max_pool1d(
time_mask, kernel_size=3, stride=1, padding=0
) # T - 2
time_mask = nn.functional.max_pool1d(
time_mask, kernel_size=3, stride=2, padding=0
) # (T - 3) // 2
time_mask = nn.functional.max_pool1d(
time_mask, kernel_size=3, stride=1, padding=0
) # (T - 7) // 2
# as in output-downsampling
time_mask = nn.functional.max_pool1d(
time_mask, kernel_size=2, stride=2, padding=0, ceil_mode=True
)
time_mask = time_mask.transpose(1, 2) # (N * 2, T', 1)
return time_mask

View File

@ -1,313 +0,0 @@
# Copyright 2024 Xiaomi Corp. (authors: Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copied from https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/signal_transforms.py
# with minor modification for cr-ctc training.
import math
import random
from typing import Any, Dict, Optional, Tuple
import torch
from lhotse.dataset.signal_transforms import time_warp as time_warp_impl
class SpecAugment(torch.nn.Module):
"""SpecAugment from lhotse with minor modification, returning time masks.
SpecAugment performs three augmentations:
- time warping of the feature matrix
- masking of ranges of features (frequency bands)
- masking of ranges of frames (time)
The current implementation works with batches, but processes each example separately
in a loop rather than simultaneously to achieve different augmentation parameters for
each example.
"""
def __init__(
self,
time_warp_factor: Optional[int] = 80,
num_feature_masks: int = 2,
features_mask_size: int = 27,
num_frame_masks: int = 10,
frames_mask_size: int = 100,
max_frames_mask_fraction: float = 0.15,
p=0.9,
):
"""
SpecAugment's constructor.
:param time_warp_factor: parameter for the time warping; larger values mean more warping.
Set to ``None``, or less than ``1``, to disable.
:param num_feature_masks: how many feature masks should be applied. Set to ``0`` to disable.
:param features_mask_size: the width of the feature mask (expressed in the number of masked feature bins).
This is the ``F`` parameter from the SpecAugment paper.
:param num_frame_masks: the number of masking regions for utterances. Set to ``0`` to disable.
:param frames_mask_size: the width of the frame (temporal) masks (expressed in the number of masked frames).
This is the ``T`` parameter from the SpecAugment paper.
:param max_frames_mask_fraction: limits the size of the frame (temporal) mask to this value times the length
of the utterance (or supervision segment).
This is the parameter denoted by ``p`` in the SpecAugment paper.
:param p: the probability of applying this transform.
It is different from ``p`` in the SpecAugment paper!
"""
super().__init__()
assert 0 <= p <= 1
assert num_feature_masks >= 0
assert num_frame_masks >= 0
assert features_mask_size > 0
assert frames_mask_size > 0
self.time_warp_factor = time_warp_factor
self.num_feature_masks = num_feature_masks
self.features_mask_size = features_mask_size
self.num_frame_masks = num_frame_masks
self.frames_mask_size = frames_mask_size
self.max_frames_mask_fraction = max_frames_mask_fraction
self.p = p
def forward(
self,
features: torch.Tensor,
supervision_segments: Optional[torch.IntTensor] = None,
*args,
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Computes SpecAugment for a batch of feature matrices.
Since the batch will usually already be padded, the user can optionally
provide a ``supervision_segments`` tensor that will be used to apply SpecAugment
only to selected areas of the input. The format of this input is described below.
:param features: a batch of feature matrices with shape ``(B, T, F)``.
:param supervision_segments: an int tensor of shape ``(S, 3)``. ``S`` is the number of
supervision segments that exist in ``features`` -- there may be either
less or more than the batch size.
The second dimension encoder three kinds of information:
the sequence index of the corresponding feature matrix in `features`,
the start frame index, and the number of frames for each segment.
:return:
- an augmented tensor of shape ``(B, T, F)``.
- the corresponding time masks of shape ``(B, T)``.
"""
assert len(features.shape) == 3, (
"SpecAugment only supports batches of " "single-channel feature matrices."
)
features = features.clone()
time_masks = []
if supervision_segments is None:
# No supervisions - apply spec augment to full feature matrices.
for sequence_idx in range(features.size(0)):
masked_feature, time_mask = self._forward_single(features[sequence_idx])
features[sequence_idx] = masked_feature
time_masks.append(time_mask)
else:
# Supervisions provided - we will apply time warping only on the supervised areas.
for sequence_idx, start_frame, num_frames in supervision_segments:
end_frame = start_frame + num_frames
warped_feature, _ = self._forward_single(
features[sequence_idx, start_frame:end_frame], warp=True, mask=False
)
features[sequence_idx, start_frame:end_frame] = warped_feature
# ... and then time-mask the full feature matrices. Note that in this mode,
# it might happen that masks are applied to different sequences/examples
# than the time warping.
for sequence_idx in range(features.size(0)):
masked_feature, time_mask = self._forward_single(
features[sequence_idx], warp=False, mask=True
)
features[sequence_idx] = masked_feature
time_masks.append(time_mask)
time_masks = torch.cat(time_masks, dim=0)
assert time_masks.shape == features.shape[:-1], (time_masks.shape == features.shape[:-1])
return features, time_masks
def _forward_single(
self, features: torch.Tensor, warp: bool = True, mask: bool = True
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply SpecAugment to a single feature matrix of shape (T, F).
"""
if random.random() > self.p:
# Randomly choose whether this transform is applied
time_mask = torch.zeros(
1, features.size(0), dtype=torch.bool, device=features.device
)
return features, time_mask
time_mask = None
if warp:
if self.time_warp_factor is not None and self.time_warp_factor >= 1:
features = time_warp_impl(features, factor=self.time_warp_factor)
if mask:
mean = features.mean()
# Frequency masking
features, _ = mask_along_axis_optimized(
features,
mask_size=self.features_mask_size,
mask_times=self.num_feature_masks,
mask_value=mean,
axis=2,
)
# Time masking
max_tot_mask_frames = self.max_frames_mask_fraction * features.size(0)
num_frame_masks = min(
self.num_frame_masks,
math.ceil(max_tot_mask_frames / self.frames_mask_size),
)
max_mask_frames = min(
self.frames_mask_size, max_tot_mask_frames // num_frame_masks
)
features, time_mask = mask_along_axis_optimized(
features,
mask_size=max_mask_frames,
mask_times=num_frame_masks,
mask_value=mean,
axis=1,
return_time_mask=True,
)
return features, time_mask
def state_dict(self, **kwargs) -> Dict[str, Any]:
return dict(
time_warp_factor=self.time_warp_factor,
num_feature_masks=self.num_feature_masks,
features_mask_size=self.features_mask_size,
num_frame_masks=self.num_frame_masks,
frames_mask_size=self.frames_mask_size,
max_frames_mask_fraction=self.max_frames_mask_fraction,
p=self.p,
)
def load_state_dict(self, state_dict: Dict[str, Any]):
self.time_warp_factor = state_dict.get(
"time_warp_factor", self.time_warp_factor
)
self.num_feature_masks = state_dict.get(
"num_feature_masks", self.num_feature_masks
)
self.features_mask_size = state_dict.get(
"features_mask_size", self.features_mask_size
)
self.num_frame_masks = state_dict.get("num_frame_masks", self.num_frame_masks)
self.frames_mask_size = state_dict.get(
"frames_mask_size", self.frames_mask_size
)
self.max_frames_mask_fraction = state_dict.get(
"max_frames_mask_fraction", self.max_frames_mask_fraction
)
self.p = state_dict.get("p", self.p)
def mask_along_axis_optimized(
features: torch.Tensor,
mask_size: int,
mask_times: int,
mask_value: float,
axis: int,
return_time_mask: bool = False,
) -> torch.Tensor:
"""
Apply Frequency and Time masking along axis.
Frequency and Time masking as described in the SpecAugment paper.
:param features: input tensor of shape ``(T, F)``
:mask_size: the width size for masking.
:mask_times: the number of masking regions.
:mask_value: Value to assign to the masked regions.
:axis: Axis to apply masking on (1 -> time, 2 -> frequency)
:return_time_mask: Whether return the time mask of shape ``(1, T)``
"""
if axis not in [1, 2]:
raise ValueError("Only Frequency and Time masking are supported!")
if return_time_mask and axis == 1:
time_mask = torch.zeros(
1, features.size(0), dtype=torch.bool, device=features.device
)
else:
time_mask = None
features = features.unsqueeze(0)
features = features.reshape([-1] + list(features.size()[-2:]))
values = torch.randint(int(0), int(mask_size), (1, mask_times))
min_values = torch.rand(1, mask_times) * (features.size(axis) - values)
mask_starts = (min_values.long()).squeeze()
mask_ends = (min_values.long() + values.long()).squeeze()
if axis == 1:
if mask_times == 1:
features[:, mask_starts:mask_ends] = mask_value
if return_time_mask:
time_mask[:, mask_starts:mask_ends] = True
return features.squeeze(0), time_mask
for (mask_start, mask_end) in zip(mask_starts, mask_ends):
features[:, mask_start:mask_end] = mask_value
if return_time_mask:
time_mask[:, mask_start:mask_end] = True
else:
if mask_times == 1:
features[:, :, mask_starts:mask_ends] = mask_value
return features.squeeze(0), time_mask
for (mask_start, mask_end) in zip(mask_starts, mask_ends):
features[:, :, mask_start:mask_end] = mask_value
features = features.squeeze(0)
return features, time_mask
def time_warp(
features: torch.Tensor,
p: float = 0.9,
time_warp_factor: Optional[int] = 80,
supervision_segments: Optional[torch.Tensor] = None,
):
if time_warp_factor is None or time_warp_factor < 1:
return features
assert len(features.shape) == 3, (
"SpecAugment only supports batches of single-channel feature matrices."
)
features = features.clone()
if supervision_segments is None:
# No supervisions - apply spec augment to full feature matrices.
for sequence_idx in range(features.size(0)):
if random.random() > p:
# Randomly choose whether this transform is applied
continue
features[sequence_idx] = time_warp_impl(
features[sequence_idx], factor=time_warp_factor
)
else:
# Supervisions provided - we will apply time warping only on the supervised areas.
for sequence_idx, start_frame, num_frames in supervision_segments:
if random.random() > p:
# Randomly choose whether this transform is applied
continue
end_frame = start_frame + num_frames
features[sequence_idx, start_frame:end_frame] = time_warp_impl(
features[sequence_idx, start_frame:end_frame], factor=time_warp_factor
)
return features

View File

@ -72,6 +72,7 @@ from attention_decoder import AttentionDecoderModel
from decoder import Decoder
from joiner import Joiner
from lhotse.cut import Cut
from lhotse.dataset import SpecAugment
from lhotse.dataset.sampling.base import CutSampler
from lhotse.utils import fix_random_seed
from model import AsrModel
@ -102,7 +103,6 @@ from icefall.utils import (
setup_logger,
str2bool,
)
from spec_augment import SpecAugment
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
@ -460,22 +460,15 @@ def get_parser():
parser.add_argument(
"--cr-loss-scale",
type=float,
default=0.15,
default=0.2,
help="Scale for consistency-regularization loss.",
)
parser.add_argument(
"--time-mask-ratio",
type=float,
default=2.0,
help="When using cr-ctc, we increase the time-masking ratio.",
)
parser.add_argument(
"--cr-loss-masked-scale",
type=float,
default=1.0,
help="The value used to scale up the cr_loss at masked positions",
default=2.5,
help="When using cr-ctc, we increase the amount of time-masking in SpecAugment.",
)
parser.add_argument(
@ -950,7 +943,6 @@ def compute_loss(
spec_augment=spec_augment,
supervision_segments=supervision_segments,
time_warp_factor=params.spec_aug_time_warp_factor,
cr_loss_masked_scale=params.cr_loss_masked_scale,
)
loss = 0.0

View File

@ -21,6 +21,7 @@ import argparse
import collections
import logging
import os
import random
import re
import subprocess
from collections import defaultdict
@ -38,6 +39,7 @@ import sentencepiece as spm
import torch
import torch.distributed as dist
import torch.nn as nn
from lhotse.dataset.signal_transforms import time_warp as time_warp_impl
from pypinyin import lazy_pinyin, pinyin
from pypinyin.contrib.tone_convert import to_finals, to_finals_tone, to_initials
from torch.utils.tensorboard import SummaryWriter
@ -2271,3 +2273,41 @@ def num_tokens(
if 0 in ans:
num_tokens -= 1
return num_tokens
# Based on https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/signal_transforms.py
def time_warp(
features: torch.Tensor,
p: float = 0.9,
time_warp_factor: Optional[int] = 80,
supervision_segments: Optional[torch.Tensor] = None,
):
"""Apply time warping on a batch of features
"""
if time_warp_factor is None or time_warp_factor < 1:
return features
assert len(features.shape) == 3, (
"SpecAugment only supports batches of single-channel feature matrices."
)
features = features.clone()
if supervision_segments is None:
# No supervisions - apply spec augment to full feature matrices.
for sequence_idx in range(features.size(0)):
if random.random() > p:
# Randomly choose whether this transform is applied
continue
features[sequence_idx] = time_warp_impl(
features[sequence_idx], factor=time_warp_factor
)
else:
# Supervisions provided - we will apply time warping only on the supervised areas.
for sequence_idx, start_frame, num_frames in supervision_segments:
if random.random() > p:
# Randomly choose whether this transform is applied
continue
end_frame = start_frame + num_frames
features[sequence_idx, start_frame:end_frame] = time_warp_impl(
features[sequence_idx, start_frame:end_frame], factor=time_warp_factor
)
return features