diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp index fd253046e..85582338e 100644 Binary files a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp and b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py index b04515ccc..646335cb9 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py @@ -490,20 +490,20 @@ class Data2VecAudioModel(BaseFairseqModel): ## for prompt tuning if prompt is not None: - conv_feat_all = torch.tensor([]).to(features.device) - length = 0 - for i in range(padding_mask.size()[0]): - nonzero = padding_mask[i].nonzero() - try: - length += nonzero[0] - conv_feat_all = torch.cat([conv_feat_all, features[i, :nonzero[0], :]]) - except: - length += features.size()[1] - conv_feat_all = torch.cat([conv_feat_all, features[i]]) - - randint = np.random.randint(10000) - np.save(f'/home/work/workspace/icefall/egs/librispeech/ASR/conv_feat/{randint}.npy', conv_feat_all.cpu().numpy()) - exit() + if 1: + conv_feat_all = torch.tensor([]).to(features.device) + length = 0 + for i in range(padding_mask.size()[0]): + nonzero = padding_mask[i].nonzero() + try: + length += nonzero[0] + conv_feat_all = torch.cat([conv_feat_all, features[i, :nonzero[0], :]]) + except: + length += features.size()[1] + conv_feat_all = torch.cat([conv_feat_all, features[i]]) + + randint = np.random.randint(10000) + np.save(f'/home/work/workspace/icefall/egs/librispeech/ASR/conv_feat/{randint}.npy', conv_feat_all.cpu().numpy()) prompt = prompt.expand((features.size()[0], prompt.size()[0], prompt.size()[1])) features = torch.cat([prompt, features], dim=1)