mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
Modified conformer with multi datasets (#312)
* Copy files for editing. * Use librispeech + gigaspeech with modified conformer. * Support specifying number of workers for on-the-fly feature extraction. * Feature extraction code for GigaSpeech. * Combine XL splits lazily during training. * Fix warnings in decoding. * Add decoding code for GigaSpeech. * Fix decoding the gigaspeech dataset. We have to use the decoder/joiner networks for the GigaSpeech dataset. * Disable speed perturbe for XL subset. * Compute the Nbest oracle WER for RNN-T decoding. * Minor fixes. * Minor fixes. * Add results. * Update results. * Update CI. * Update results. * Fix style issues. * Update results. * Fix style issues.
This commit is contained in:
parent
caab6cfd92
commit
ac84220de9
2
.flake8
2
.flake8
@ -9,6 +9,8 @@ per-file-ignores =
|
|||||||
egs/tedlium3/ASR/*/conformer.py: E501,
|
egs/tedlium3/ASR/*/conformer.py: E501,
|
||||||
egs/gigaspeech/ASR/*/conformer.py: E501,
|
egs/gigaspeech/ASR/*/conformer.py: E501,
|
||||||
egs/librispeech/ASR/pruned_transducer_stateless2/*.py: E501,
|
egs/librispeech/ASR/pruned_transducer_stateless2/*.py: E501,
|
||||||
|
egs/librispeech/ASR/*/optim.py: E501,
|
||||||
|
egs/librispeech/ASR/*/scaling.py: E501,
|
||||||
|
|
||||||
# invalid escape sequence (cause by tex formular), W605
|
# invalid escape sequence (cause by tex formular), W605
|
||||||
icefall/utils.py: E501, W605
|
icefall/utils.py: E501, W605
|
||||||
|
51
.github/scripts/run-librispeech-pruned-transducer-stateless2-2022-04-29.sh
vendored
Executable file
51
.github/scripts/run-librispeech-pruned-transducer-stateless2-2022-04-29.sh
vendored
Executable file
@ -0,0 +1,51 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
|
||||||
|
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless2-2022-04-29
|
||||||
|
|
||||||
|
log "Downloading pre-trained model from $repo_url"
|
||||||
|
git lfs install
|
||||||
|
git clone $repo_url
|
||||||
|
repo=$(basename $repo_url)
|
||||||
|
|
||||||
|
log "Display test files"
|
||||||
|
tree $repo/
|
||||||
|
soxi $repo/test_wavs/*.wav
|
||||||
|
ls -lh $repo/test_wavs/*.wav
|
||||||
|
|
||||||
|
pushd $repo/exp
|
||||||
|
ln -s pretrained-epoch-38-avg-10.pt pretrained.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
for sym in 1 2 3; do
|
||||||
|
log "Greedy search with --max-sym-per-frame $sym"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless2/pretrained.py \
|
||||||
|
--method greedy_search \
|
||||||
|
--max-sym-per-frame $sym \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
for method in modified_beam_search beam_search fast_beam_search; do
|
||||||
|
log "$method"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless2/pretrained.py \
|
||||||
|
--method $method \
|
||||||
|
--beam-size 4 \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
51
.github/scripts/run-librispeech-pruned-transducer-stateless3-2022-04-29.sh
vendored
Executable file
51
.github/scripts/run-librispeech-pruned-transducer-stateless3-2022-04-29.sh
vendored
Executable file
@ -0,0 +1,51 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
|
||||||
|
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-04-29
|
||||||
|
|
||||||
|
log "Downloading pre-trained model from $repo_url"
|
||||||
|
git lfs install
|
||||||
|
git clone $repo_url
|
||||||
|
repo=$(basename $repo_url)
|
||||||
|
|
||||||
|
log "Display test files"
|
||||||
|
tree $repo/
|
||||||
|
soxi $repo/test_wavs/*.wav
|
||||||
|
ls -lh $repo/test_wavs/*.wav
|
||||||
|
|
||||||
|
pushd $repo/exp
|
||||||
|
ln -s pretrained-epoch-25-avg-6.pt pretrained.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
for sym in 1 2 3; do
|
||||||
|
log "Greedy search with --max-sym-per-frame $sym"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless3/pretrained.py \
|
||||||
|
--method greedy_search \
|
||||||
|
--max-sym-per-frame $sym \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
for method in modified_beam_search beam_search fast_beam_search; do
|
||||||
|
log "$method"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless3/pretrained.py \
|
||||||
|
--method $method \
|
||||||
|
--beam-size 4 \
|
||||||
|
--checkpoint $repo/exp/pretrained.pt \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
done
|
85
.github/workflows/run-librispeech-2022-04-29.yml
vendored
Normal file
85
.github/workflows/run-librispeech-2022-04-29.yml
vendored
Normal file
@ -0,0 +1,85 @@
|
|||||||
|
# Copyright 2021 Fangjun Kuang (csukuangfj@gmail.com)
|
||||||
|
|
||||||
|
# See ../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
name: run-librispeech-2022-04-29
|
||||||
|
# stateless pruned transducer (reworked model) + giga speech
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- master
|
||||||
|
pull_request:
|
||||||
|
types: [labeled]
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
run_librispeech_2022_04_29:
|
||||||
|
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
os: [ubuntu-18.04]
|
||||||
|
python-version: [3.7, 3.8, 3.9]
|
||||||
|
|
||||||
|
fail-fast: false
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
|
||||||
|
- name: Setup Python ${{ matrix.python-version }}
|
||||||
|
uses: actions/setup-python@v2
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
cache: 'pip'
|
||||||
|
cache-dependency-path: '**/requirements-ci.txt'
|
||||||
|
|
||||||
|
- name: Install Python dependencies
|
||||||
|
run: |
|
||||||
|
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
|
||||||
|
|
||||||
|
- name: Cache kaldifeat
|
||||||
|
id: my-cache
|
||||||
|
uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: |
|
||||||
|
~/tmp/kaldifeat
|
||||||
|
key: cache-tmp-${{ matrix.python-version }}
|
||||||
|
|
||||||
|
- name: Install kaldifeat
|
||||||
|
if: steps.my-cache.outputs.cache-hit != 'true'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
mkdir -p ~/tmp
|
||||||
|
cd ~/tmp
|
||||||
|
git clone https://github.com/csukuangfj/kaldifeat
|
||||||
|
cd kaldifeat
|
||||||
|
mkdir build
|
||||||
|
cd build
|
||||||
|
cmake -DCMAKE_BUILD_TYPE=Release ..
|
||||||
|
make -j2 _kaldifeat
|
||||||
|
|
||||||
|
- name: Inference with pre-trained model
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
sudo apt-get -qq install git-lfs tree sox
|
||||||
|
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||||
|
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||||
|
|
||||||
|
.github/scripts/run-librispeech-pruned-transducer-stateless2-2022-04-29.sh
|
||||||
|
|
||||||
|
.github/scripts/run-librispeech-pruned-transducer-stateless3-2022-04-29.sh
|
17
README.md
17
README.md
@ -35,6 +35,9 @@ We do provide a Colab notebook for this recipe.
|
|||||||
|
|
||||||
### LibriSpeech
|
### LibriSpeech
|
||||||
|
|
||||||
|
Please see <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/README.md>
|
||||||
|
for the **latest** results.
|
||||||
|
|
||||||
We provide 4 models for this recipe:
|
We provide 4 models for this recipe:
|
||||||
|
|
||||||
- [conformer CTC model][LibriSpeech_conformer_ctc]
|
- [conformer CTC model][LibriSpeech_conformer_ctc]
|
||||||
@ -92,6 +95,20 @@ in the decoding.
|
|||||||
|
|
||||||
We provide a Colab notebook to run a pre-trained transducer conformer + stateless decoder model: [](https://colab.research.google.com/drive/1CO1bXJ-2khDckZIW8zjOPHGSKLHpTDlp?usp=sharing)
|
We provide a Colab notebook to run a pre-trained transducer conformer + stateless decoder model: [](https://colab.research.google.com/drive/1CO1bXJ-2khDckZIW8zjOPHGSKLHpTDlp?usp=sharing)
|
||||||
|
|
||||||
|
|
||||||
|
#### k2 pruned RNN-T
|
||||||
|
|
||||||
|
| | test-clean | test-other |
|
||||||
|
|-----|------------|------------|
|
||||||
|
| WER | 2.57 | 5.95 |
|
||||||
|
|
||||||
|
#### k2 pruned RNN-T + GigaSpeech
|
||||||
|
|
||||||
|
| | test-clean | test-other |
|
||||||
|
|-----|------------|------------|
|
||||||
|
| WER | 2.19 | 4.97 |
|
||||||
|
|
||||||
|
|
||||||
### Aishell
|
### Aishell
|
||||||
|
|
||||||
We provide two models for this recipe: [conformer CTC model][Aishell_conformer_ctc]
|
We provide two models for this recipe: [conformer CTC model][Aishell_conformer_ctc]
|
||||||
|
1
egs/librispeech/ASR/.gitignore
vendored
Normal file
1
egs/librispeech/ASR/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
|||||||
|
log-*
|
@ -1,23 +1,19 @@
|
|||||||
|
# Introduction Please refer to <https://icefall.readthedocs.io/en/latest/recipes/librispeech/index.html> for how to run models in this recipe.
|
||||||
# Introduction
|
|
||||||
|
|
||||||
Please refer to <https://icefall.readthedocs.io/en/latest/recipes/librispeech/index.html>
|
|
||||||
for how to run models in this recipe.
|
|
||||||
|
|
||||||
# Transducers
|
# Transducers
|
||||||
|
|
||||||
There are various folders containing the name `transducer` in this folder.
|
There are various folders containing the name `transducer` in this folder.
|
||||||
The following table lists the differences among them.
|
The following table lists the differences among them.
|
||||||
|
|
||||||
| | Encoder | Decoder | Comment |
|
| | Encoder | Decoder | Comment |
|
||||||
|---------------------------------------|---------------------|--------------------|-------------------------------------------------------|
|
|---------------------------------------|---------------------|--------------------|---------------------------------------------------|
|
||||||
| `transducer` | Conformer | LSTM | |
|
| `transducer` | Conformer | LSTM | |
|
||||||
| `transducer_stateless` | Conformer | Embedding + Conv1d | Using optimized_transducer from computing RNN-T loss |
|
| `transducer_stateless` | Conformer | Embedding + Conv1d | Using optimized_transducer from computing RNN-T loss |
|
||||||
| `transducer_stateless2` | Conformer | Embedding + Conv1d | Using torchaudio for computing RNN-T loss |
|
| `transducer_stateless2` | Conformer | Embedding + Conv1d | Using torchaudio for computing RNN-T loss |
|
||||||
| `transducer_lstm` | LSTM | LSTM | |
|
| `transducer_lstm` | LSTM | LSTM | |
|
||||||
| `transducer_stateless_multi_datasets` | Conformer | Embedding + Conv1d | Using data from GigaSpeech as extra training data |
|
| `transducer_stateless_multi_datasets` | Conformer | Embedding + Conv1d | Using data from GigaSpeech as extra training data |
|
||||||
| `pruned_transducer_stateless` | Conformer | Embedding + Conv1d | Using k2 pruned RNN-T loss |
|
| `pruned_transducer_stateless` | Conformer | Embedding + Conv1d | Using k2 pruned RNN-T loss |
|
||||||
| `pruned_transducer_stateless2` | Conformer(modified) | Embedding + Conv1d | Using k2 pruned RNN-T loss |
|
| `pruned_transducer_stateless2` | Conformer(modified) | Embedding + Conv1d | Using k2 pruned RNN-T loss |
|
||||||
|
| `pruned_transducer_stateless3` | Conformer(modified) | Embedding + Conv1d | Using k2 pruned RNN-T loss + using GigaSpeech as extra training data |
|
||||||
|
|
||||||
|
|
||||||
The decoder in `transducer_stateless` is modified from the paper
|
The decoder in `transducer_stateless` is modified from the paper
|
||||||
|
@ -1,5 +1,155 @@
|
|||||||
## Results
|
## Results
|
||||||
|
|
||||||
|
### LibriSpeech BPE training results (Pruned Transducer 3)
|
||||||
|
|
||||||
|
[pruned_transducer_stateless3](./pruned_transducer_stateless3)
|
||||||
|
Same as `Pruned Transducer 2` but using the XL subset from
|
||||||
|
[GigaSpeech](https://github.com/SpeechColab/GigaSpeech) as extra training data.
|
||||||
|
|
||||||
|
During training, it selects either a batch from GigaSpeech with prob `giga_prob`
|
||||||
|
or a batch from LibriSpeech with prob `1 - giga_prob`. All utterances within
|
||||||
|
a batch comes from the same dataset.
|
||||||
|
|
||||||
|
See <https://github.com/k2-fsa/icefall/pull/312>
|
||||||
|
|
||||||
|
The WERs are:
|
||||||
|
|
||||||
|
| | test-clean | test-other | comment |
|
||||||
|
|-------------------------------------|------------|------------|----------------------------------------|
|
||||||
|
| greedy search (max sym per frame 1) | 2.21 | 5.09 | --epoch 27 --avg 2 --max-duration 600 |
|
||||||
|
| greedy search (max sym per frame 1) | 2.25 | 5.02 | --epoch 27 --avg 12 --max-duration 600 |
|
||||||
|
| modified beam search | 2.19 | 5.03 | --epoch 25 --avg 6 --max-duration 600 |
|
||||||
|
| modified beam search | 2.23 | 4.94 | --epoch 27 --avg 10 --max-duration 600 |
|
||||||
|
| beam search | 2.16 | 4.95 | --epoch 25 --avg 7 --max-duration 600 |
|
||||||
|
| fast beam search | 2.21 | 4.96 | --epoch 27 --avg 10 --max-duration 600 |
|
||||||
|
| fast beam search | 2.19 | 4.97 | --epoch 27 --avg 12 --max-duration 600 |
|
||||||
|
|
||||||
|
The training commands are:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./prepare.sh
|
||||||
|
./prepare_giga_speech.sh
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless3/train.py \
|
||||||
|
--world-size 8 \
|
||||||
|
--num-epochs 30 \
|
||||||
|
--start-epoch 0 \
|
||||||
|
--full-libri 1 \
|
||||||
|
--exp-dir pruned_transducer_stateless3/exp \
|
||||||
|
--max-duration 300 \
|
||||||
|
--use-fp16 1 \
|
||||||
|
--lr-epochs 4 \
|
||||||
|
--num-workers 2 \
|
||||||
|
--giga-prob 0.8
|
||||||
|
```
|
||||||
|
|
||||||
|
The tensorboard log can be found at
|
||||||
|
<https://tensorboard.dev/experiment/gaD34WeYSMCOkzoo3dZXGg/>
|
||||||
|
(Note: The training process is killed manually at `epoch-28.pt`.)
|
||||||
|
|
||||||
|
Pretrained models, training logs, decoding logs, and decoding results
|
||||||
|
are available at
|
||||||
|
<https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-04-29>
|
||||||
|
|
||||||
|
Decoding commands are:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
|
||||||
|
# greedy search
|
||||||
|
./pruned_transducer_stateless3/decode.py \
|
||||||
|
--epoch 27 \
|
||||||
|
--avg 2 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method greedy_search \
|
||||||
|
--max-sym-per-frame 1
|
||||||
|
|
||||||
|
# modified beam search
|
||||||
|
./pruned_transducer_stateless3/decode.py \
|
||||||
|
--epoch 25 \
|
||||||
|
--avg 6 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method modified_beam_search \
|
||||||
|
--max-sym-per-frame 1
|
||||||
|
|
||||||
|
# beam search
|
||||||
|
./pruned_transducer_stateless3/decode.py \
|
||||||
|
--epoch 25 \
|
||||||
|
--avg 7 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method beam_search \
|
||||||
|
--max-sym-per-frame 1
|
||||||
|
|
||||||
|
# fast beam search
|
||||||
|
for epoch in 27; do
|
||||||
|
for avg in 10 12; do
|
||||||
|
./pruned_transducer_stateless3/decode.py \
|
||||||
|
--epoch $epoch \
|
||||||
|
--avg $avg \
|
||||||
|
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search \
|
||||||
|
--max-states 32 \
|
||||||
|
--beam 8
|
||||||
|
done
|
||||||
|
done
|
||||||
|
```
|
||||||
|
|
||||||
|
The following table shows the
|
||||||
|
[Nbest oracle WER](http://kaldi-asr.org/doc/lattices.html#lattices_operations_oracle)
|
||||||
|
for fast beam search.
|
||||||
|
| epoch | avg | num_paths | nbest_scale | test-clean | test-other |
|
||||||
|
|-------|-----|-----------|-------------|------------|------------|
|
||||||
|
| 27 | 10 | 50 | 0.5 | 0.91 | 2.74 |
|
||||||
|
| 27 | 10 | 50 | 0.8 | 0.94 | 2.82 |
|
||||||
|
| 27 | 10 | 50 | 1.0 | 1.06 | 2.88 |
|
||||||
|
| 27 | 10 | 100 | 0.5 | 0.82 | 2.58 |
|
||||||
|
| 27 | 10 | 100 | 0.8 | 0.92 | 2.65 |
|
||||||
|
| 27 | 10 | 100 | 1.0 | 0.95 | 2.77 |
|
||||||
|
| 27 | 10 | 200 | 0.5 | 0.81 | 2.50 |
|
||||||
|
| 27 | 10 | 200 | 0.8 | 0.85 | 2.56 |
|
||||||
|
| 27 | 10 | 200 | 1.0 | 0.91 | 2.64 |
|
||||||
|
| 27 | 10 | 400 | 0.5 | N/A | N/A |
|
||||||
|
| 27 | 10 | 400 | 0.8 | 0.81 | 2.49 |
|
||||||
|
| 27 | 10 | 400 | 1.0 | 0.85 | 2.54 |
|
||||||
|
|
||||||
|
The Nbest oracle WER is computed using the following steps:
|
||||||
|
|
||||||
|
- 1. Use `fast_beam_search` to produce a lattice.
|
||||||
|
- 2. Extract `N` paths from the lattice using [k2.random_path](https://k2-fsa.github.io/k2/python_api/api.html#random-paths)
|
||||||
|
- 3. [Unique](https://k2-fsa.github.io/k2/python_api/api.html#unique) paths so that each path
|
||||||
|
has a distinct sequence of tokens
|
||||||
|
- 4. Compute the edit distance of each path with the ground truth
|
||||||
|
- 5. The path with the lowest edit distance is the final output and is used to
|
||||||
|
compute the WER
|
||||||
|
|
||||||
|
The command to compute the Nbest oracle WER is:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
for epoch in 27; do
|
||||||
|
for avg in 10 ; do
|
||||||
|
for num_paths in 50 100 200 400; do
|
||||||
|
for nbest_scale in 0.5 0.8 1.0; do
|
||||||
|
./pruned_transducer_stateless3/decode.py \
|
||||||
|
--epoch $epoch \
|
||||||
|
--avg $avg \
|
||||||
|
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search_nbest_oracle \
|
||||||
|
--num-paths $num_paths \
|
||||||
|
--max-states 32 \
|
||||||
|
--beam 8 \
|
||||||
|
--nbest-scale $nbest_scale
|
||||||
|
done
|
||||||
|
done
|
||||||
|
done
|
||||||
|
done
|
||||||
|
```
|
||||||
|
|
||||||
### LibriSpeech BPE training results (Pruned Transducer 2)
|
### LibriSpeech BPE training results (Pruned Transducer 2)
|
||||||
|
|
||||||
[pruned_transducer_stateless2](./pruned_transducer_stateless2)
|
[pruned_transducer_stateless2](./pruned_transducer_stateless2)
|
||||||
@ -33,6 +183,10 @@ and:
|
|||||||
The Tensorboard log is at <https://tensorboard.dev/experiment/Xoz0oABMTWewo1slNFXkyA> (apologies, log starts
|
The Tensorboard log is at <https://tensorboard.dev/experiment/Xoz0oABMTWewo1slNFXkyA> (apologies, log starts
|
||||||
only from epoch 3).
|
only from epoch 3).
|
||||||
|
|
||||||
|
The pretrained models, training logs, decoding logs, and decoding results
|
||||||
|
can be found at
|
||||||
|
<https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless2-2022-04-29>
|
||||||
|
|
||||||
|
|
||||||
#### Training on train-clean-100:
|
#### Training on train-clean-100:
|
||||||
|
|
||||||
|
@ -0,0 +1,92 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
|
||||||
|
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import (
|
||||||
|
CutSet,
|
||||||
|
KaldifeatFbank,
|
||||||
|
KaldifeatFbankConfig,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or
|
||||||
|
# it wastes a lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank_gigaspeech_dev_test():
|
||||||
|
in_out_dir = Path("data/fbank")
|
||||||
|
# number of workers in dataloader
|
||||||
|
num_workers = 20
|
||||||
|
|
||||||
|
# number of seconds in a batch
|
||||||
|
batch_duration = 600
|
||||||
|
|
||||||
|
subsets = ("DEV", "TEST")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
for partition in subsets:
|
||||||
|
cuts_path = in_out_dir / f"cuts_{partition}.jsonl.gz"
|
||||||
|
if cuts_path.is_file():
|
||||||
|
logging.info(f"{cuts_path} exists - skipping")
|
||||||
|
continue
|
||||||
|
|
||||||
|
raw_cuts_path = in_out_dir / f"cuts_{partition}_raw.jsonl.gz"
|
||||||
|
|
||||||
|
logging.info(f"Loading {raw_cuts_path}")
|
||||||
|
cut_set = CutSet.from_file(raw_cuts_path)
|
||||||
|
|
||||||
|
logging.info("Computing features")
|
||||||
|
|
||||||
|
cut_set = cut_set.compute_and_store_features_batch(
|
||||||
|
extractor=extractor,
|
||||||
|
storage_path=f"{in_out_dir}/feats_{partition}",
|
||||||
|
num_workers=num_workers,
|
||||||
|
batch_duration=batch_duration,
|
||||||
|
)
|
||||||
|
cut_set = cut_set.trim_to_supervisions(
|
||||||
|
keep_overlapping=False, min_duration=None
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info(f"Saving to {cuts_path}")
|
||||||
|
cut_set.to_file(cuts_path)
|
||||||
|
logging.info(f"Saved to {cuts_path}")
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
compute_fbank_gigaspeech_dev_test()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
169
egs/librispeech/ASR/local/compute_fbank_gigaspeech_splits.py
Normal file
169
egs/librispeech/ASR/local/compute_fbank_gigaspeech_splits.py
Normal file
@ -0,0 +1,169 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
|
||||||
|
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
from datetime import datetime
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import CutSet, KaldifeatFbank, KaldifeatFbankConfig
|
||||||
|
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or
|
||||||
|
# it wastes a lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-workers",
|
||||||
|
type=int,
|
||||||
|
default=20,
|
||||||
|
help="Number of dataloading workers used for reading the audio.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--batch-duration",
|
||||||
|
type=float,
|
||||||
|
default=600.0,
|
||||||
|
help="The maximum number of audio seconds in a batch."
|
||||||
|
"Determines batch size dynamically.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-splits",
|
||||||
|
type=int,
|
||||||
|
required=True,
|
||||||
|
help="The number of splits of the XL subset",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--start",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="Process pieces starting from this number (inclusive).",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--stop",
|
||||||
|
type=int,
|
||||||
|
default=-1,
|
||||||
|
help="Stop processing pieces until this number (exclusive).",
|
||||||
|
)
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank_gigaspeech_splits(args):
|
||||||
|
num_splits = args.num_splits
|
||||||
|
output_dir = f"data/fbank/XL_split_{num_splits}"
|
||||||
|
output_dir = Path(output_dir)
|
||||||
|
assert output_dir.exists(), f"{output_dir} does not exist!"
|
||||||
|
|
||||||
|
num_digits = len(str(num_splits))
|
||||||
|
|
||||||
|
start = args.start
|
||||||
|
stop = args.stop
|
||||||
|
if stop < start:
|
||||||
|
stop = num_splits
|
||||||
|
|
||||||
|
stop = min(stop, num_splits)
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
num_digits = 8 # num_digits is fixed by lhotse split-lazy
|
||||||
|
for i in range(start, stop):
|
||||||
|
idx = f"{i + 1}".zfill(num_digits)
|
||||||
|
logging.info(f"Processing {idx}/{num_splits}")
|
||||||
|
|
||||||
|
cuts_path = output_dir / f"cuts_XL.{idx}.jsonl.gz"
|
||||||
|
if cuts_path.is_file():
|
||||||
|
logging.info(f"{cuts_path} exists - skipping")
|
||||||
|
continue
|
||||||
|
|
||||||
|
raw_cuts_path = output_dir / f"cuts_XL_raw.{idx}.jsonl.gz"
|
||||||
|
if not raw_cuts_path.is_file():
|
||||||
|
logging.info(f"{raw_cuts_path} does not exist - skipping it")
|
||||||
|
continue
|
||||||
|
|
||||||
|
logging.info(f"Loading {raw_cuts_path}")
|
||||||
|
cut_set = CutSet.from_file(raw_cuts_path)
|
||||||
|
|
||||||
|
logging.info("Computing features")
|
||||||
|
if (output_dir / f"feats_XL_{idx}.lca").exists():
|
||||||
|
logging.info(f"Removing {output_dir}/feats_XL_{idx}.lca")
|
||||||
|
os.remove(output_dir / f"feats_XL_{idx}.lca")
|
||||||
|
|
||||||
|
cut_set = cut_set.compute_and_store_features_batch(
|
||||||
|
extractor=extractor,
|
||||||
|
storage_path=f"{output_dir}/feats_XL_{idx}",
|
||||||
|
num_workers=args.num_workers,
|
||||||
|
batch_duration=args.batch_duration,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("About to split cuts into smaller chunks.")
|
||||||
|
cut_set = cut_set.trim_to_supervisions(
|
||||||
|
keep_overlapping=False, min_duration=None
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info(f"Saving to {cuts_path}")
|
||||||
|
cut_set.to_file(cuts_path)
|
||||||
|
logging.info(f"Saved to {cuts_path}")
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
now = datetime.now()
|
||||||
|
date_time = now.strftime("%Y-%m-%d-%H-%M-%S")
|
||||||
|
|
||||||
|
log_filename = "log-compute_fbank_gigaspeech_splits"
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
log_filename = f"{log_filename}-{date_time}"
|
||||||
|
|
||||||
|
logging.basicConfig(
|
||||||
|
filename=log_filename,
|
||||||
|
format=formatter,
|
||||||
|
level=logging.INFO,
|
||||||
|
filemode="w",
|
||||||
|
)
|
||||||
|
|
||||||
|
console = logging.StreamHandler()
|
||||||
|
console.setLevel(logging.INFO)
|
||||||
|
console.setFormatter(logging.Formatter(formatter))
|
||||||
|
logging.getLogger("").addHandler(console)
|
||||||
|
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
logging.info(vars(args))
|
||||||
|
|
||||||
|
compute_fbank_gigaspeech_splits(args)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -91,21 +91,20 @@ def preprocess_giga_speech():
|
|||||||
)
|
)
|
||||||
# Run data augmentation that needs to be done in the
|
# Run data augmentation that needs to be done in the
|
||||||
# time domain.
|
# time domain.
|
||||||
if partition not in ["DEV", "TEST"]:
|
# if partition not in ["DEV", "TEST"]:
|
||||||
logging.info(
|
# logging.info(
|
||||||
f"Speed perturb for {partition} with factors 0.9 and 1.1 "
|
# f"Speed perturb for {partition} with factors 0.9 and 1.1 "
|
||||||
"(Perturbing may take 8 minutes and saving may take 20 minutes)"
|
# "(Perturbing may take 8 minutes and saving may"
|
||||||
)
|
# " take 20 minutes)"
|
||||||
cut_set = (
|
# )
|
||||||
cut_set
|
# cut_set = (
|
||||||
+ cut_set.perturb_speed(0.9)
|
# cut_set
|
||||||
+ cut_set.perturb_speed(1.1)
|
# + cut_set.perturb_speed(0.9)
|
||||||
)
|
# + cut_set.perturb_speed(1.1)
|
||||||
|
# )
|
||||||
logging.info("About to split cuts into smaller chunks.")
|
#
|
||||||
cut_set = cut_set.trim_to_supervisions(
|
# Note: No need to perturb the training subset as not all of the
|
||||||
keep_overlapping=False, min_duration=None
|
# data is going to be used in the training.
|
||||||
)
|
|
||||||
logging.info(f"Saving to {raw_cuts_path}")
|
logging.info(f"Saving to {raw_cuts_path}")
|
||||||
cut_set.to_file(raw_cuts_path)
|
cut_set.to_file(raw_cuts_path)
|
||||||
|
|
||||||
|
51
egs/librispeech/ASR/local/test_load_XL_split.py
Executable file
51
egs/librispeech/ASR/local/test_load_XL_split.py
Executable file
@ -0,0 +1,51 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file can be used to check if any split is corrupted.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import glob
|
||||||
|
import re
|
||||||
|
|
||||||
|
import lhotse
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
d = "data/fbank/XL_split_2000"
|
||||||
|
filenames = list(glob.glob(f"{d}/cuts_XL.*.jsonl.gz"))
|
||||||
|
|
||||||
|
pattern = re.compile(r"cuts_XL.([0-9]+).jsonl.gz")
|
||||||
|
|
||||||
|
idx_filenames = [(int(pattern.search(c).group(1)), c) for c in filenames]
|
||||||
|
|
||||||
|
idx_filenames = sorted(idx_filenames, key=lambda x: x[0])
|
||||||
|
|
||||||
|
print(f"Loading {len(idx_filenames)} splits")
|
||||||
|
|
||||||
|
s = 0
|
||||||
|
for i, f in idx_filenames:
|
||||||
|
cuts = lhotse.load_manifest_lazy(f)
|
||||||
|
print(i, "filename", f)
|
||||||
|
for i, c in enumerate(cuts):
|
||||||
|
s += c.features.load().shape[0]
|
||||||
|
if i > 5:
|
||||||
|
break
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -24,6 +24,15 @@ stop_stage=100
|
|||||||
# DEV 12 hours
|
# DEV 12 hours
|
||||||
# Test 40 hours
|
# Test 40 hours
|
||||||
|
|
||||||
|
# Split XL subset to this number of pieces
|
||||||
|
# This is to avoid OOM during feature extraction.
|
||||||
|
num_splits=2000
|
||||||
|
# We use lazy split from lhotse.
|
||||||
|
# The XL subset (10k hours) contains 37956 cuts without speed perturbing.
|
||||||
|
# We want to split it into 2000 splits, so each split
|
||||||
|
# contains about 37956 / 2000 = 19 cuts. As a result, there will be 1998 splits.
|
||||||
|
chunk_size=19 # number of cuts in each split. The last split may contain fewer cuts.
|
||||||
|
|
||||||
dl_dir=$PWD/download
|
dl_dir=$PWD/download
|
||||||
|
|
||||||
. shared/parse_options.sh || exit 1
|
. shared/parse_options.sh || exit 1
|
||||||
@ -107,3 +116,27 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|||||||
touch data/fbank/.preprocess_complete
|
touch data/fbank/.preprocess_complete
|
||||||
fi
|
fi
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||||
|
log "Stage 3: Compute features for DEV and TEST subsets of GigaSpeech (may take 2 minutes)"
|
||||||
|
python3 ./local/compute_fbank_gigaspeech_dev_test.py
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||||
|
log "Stage 4: Split XL subset into ${num_splits} pieces"
|
||||||
|
split_dir=data/fbank/XL_split_${num_splits}
|
||||||
|
if [ ! -f $split_dir/.split_completed ]; then
|
||||||
|
lhotse split-lazy ./data/fbank/cuts_XL_raw.jsonl.gz $split_dir $chunk_size
|
||||||
|
touch $split_dir/.split_completed
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||||
|
log "Stage 5: Compute features for XL"
|
||||||
|
# Note: The script supports --start and --stop options.
|
||||||
|
# You can use several machines to compute the features in parallel.
|
||||||
|
python3 ./local/compute_fbank_gigaspeech_splits.py \
|
||||||
|
--num-workers $nj \
|
||||||
|
--batch-duration 600 \
|
||||||
|
--num-splits $num_splits
|
||||||
|
fi
|
||||||
|
@ -174,7 +174,7 @@ def get_parser():
|
|||||||
"--beam-size",
|
"--beam-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=4,
|
default=4,
|
||||||
help="""An interger indicating how many candidates we will keep for each
|
help="""An integer indicating how many candidates we will keep for each
|
||||||
frame. Used only when --decoding-method is beam_search or
|
frame. Used only when --decoding-method is beam_search or
|
||||||
modified_beam_search.""",
|
modified_beam_search.""",
|
||||||
)
|
)
|
||||||
|
@ -14,6 +14,7 @@
|
|||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
|
import warnings
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from typing import Dict, List, Optional
|
from typing import Dict, List, Optional
|
||||||
|
|
||||||
@ -21,11 +22,11 @@ import k2
|
|||||||
import torch
|
import torch
|
||||||
from model import Transducer
|
from model import Transducer
|
||||||
|
|
||||||
from icefall.decode import one_best_decoding
|
from icefall.decode import Nbest, one_best_decoding
|
||||||
from icefall.utils import get_texts
|
from icefall.utils import get_texts
|
||||||
|
|
||||||
|
|
||||||
def fast_beam_search(
|
def fast_beam_search_one_best(
|
||||||
model: Transducer,
|
model: Transducer,
|
||||||
decoding_graph: k2.Fsa,
|
decoding_graph: k2.Fsa,
|
||||||
encoder_out: torch.Tensor,
|
encoder_out: torch.Tensor,
|
||||||
@ -36,6 +37,9 @@ def fast_beam_search(
|
|||||||
) -> List[List[int]]:
|
) -> List[List[int]]:
|
||||||
"""It limits the maximum number of symbols per frame to 1.
|
"""It limits the maximum number of symbols per frame to 1.
|
||||||
|
|
||||||
|
A lattice is first obtained using modified beam search, and then
|
||||||
|
the shortest path within the lattice is used as the final output.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
model:
|
model:
|
||||||
An instance of `Transducer`.
|
An instance of `Transducer`.
|
||||||
@ -55,6 +59,148 @@ def fast_beam_search(
|
|||||||
Returns:
|
Returns:
|
||||||
Return the decoded result.
|
Return the decoded result.
|
||||||
"""
|
"""
|
||||||
|
lattice = fast_beam_search(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=beam,
|
||||||
|
max_states=max_states,
|
||||||
|
max_contexts=max_contexts,
|
||||||
|
)
|
||||||
|
|
||||||
|
best_path = one_best_decoding(lattice)
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
return hyps
|
||||||
|
|
||||||
|
|
||||||
|
def fast_beam_search_nbest_oracle(
|
||||||
|
model: Transducer,
|
||||||
|
decoding_graph: k2.Fsa,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
encoder_out_lens: torch.Tensor,
|
||||||
|
beam: float,
|
||||||
|
max_states: int,
|
||||||
|
max_contexts: int,
|
||||||
|
num_paths: int,
|
||||||
|
ref_texts: List[List[int]],
|
||||||
|
use_double_scores: bool = True,
|
||||||
|
nbest_scale: float = 0.5,
|
||||||
|
) -> List[List[int]]:
|
||||||
|
"""It limits the maximum number of symbols per frame to 1.
|
||||||
|
|
||||||
|
A lattice is first obtained using modified beam search, and then
|
||||||
|
we select `num_paths` linear paths from the lattice. The path
|
||||||
|
that has the minimum edit distance with the given reference transcript
|
||||||
|
is used as the output.
|
||||||
|
|
||||||
|
This is the best result we can achieve for any nbest based rescoring
|
||||||
|
methods.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
An instance of `Transducer`.
|
||||||
|
decoding_graph:
|
||||||
|
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
|
||||||
|
encoder_out:
|
||||||
|
A tensor of shape (N, T, C) from the encoder.
|
||||||
|
encoder_out_lens:
|
||||||
|
A tensor of shape (N,) containing the number of frames in `encoder_out`
|
||||||
|
before padding.
|
||||||
|
beam:
|
||||||
|
Beam value, similar to the beam used in Kaldi..
|
||||||
|
max_states:
|
||||||
|
Max states per stream per frame.
|
||||||
|
max_contexts:
|
||||||
|
Max contexts pre stream per frame.
|
||||||
|
num_paths:
|
||||||
|
Number of paths to extract from the decoded lattice.
|
||||||
|
ref_texts:
|
||||||
|
A list-of-list of integers containing the reference transcripts.
|
||||||
|
If the decoding_graph is a trivial_graph, the integer ID is the
|
||||||
|
BPE token ID.
|
||||||
|
use_double_scores:
|
||||||
|
True to use double precision for computation. False to use
|
||||||
|
single precision.
|
||||||
|
nbest_scale:
|
||||||
|
It's the scale applied to the lattice.scores. A smaller value
|
||||||
|
yields more unique paths.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return the decoded result.
|
||||||
|
"""
|
||||||
|
lattice = fast_beam_search(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=beam,
|
||||||
|
max_states=max_states,
|
||||||
|
max_contexts=max_contexts,
|
||||||
|
)
|
||||||
|
|
||||||
|
nbest = Nbest.from_lattice(
|
||||||
|
lattice=lattice,
|
||||||
|
num_paths=num_paths,
|
||||||
|
use_double_scores=use_double_scores,
|
||||||
|
nbest_scale=nbest_scale,
|
||||||
|
)
|
||||||
|
|
||||||
|
hyps = nbest.build_levenshtein_graphs()
|
||||||
|
refs = k2.levenshtein_graph(ref_texts, device=hyps.device)
|
||||||
|
|
||||||
|
levenshtein_alignment = k2.levenshtein_alignment(
|
||||||
|
refs=refs,
|
||||||
|
hyps=hyps,
|
||||||
|
hyp_to_ref_map=nbest.shape.row_ids(1),
|
||||||
|
sorted_match_ref=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
tot_scores = levenshtein_alignment.get_tot_scores(
|
||||||
|
use_double_scores=False, log_semiring=False
|
||||||
|
)
|
||||||
|
ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores)
|
||||||
|
|
||||||
|
max_indexes = ragged_tot_scores.argmax()
|
||||||
|
|
||||||
|
best_path = k2.index_fsa(nbest.fsa, max_indexes)
|
||||||
|
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
return hyps
|
||||||
|
|
||||||
|
|
||||||
|
def fast_beam_search(
|
||||||
|
model: Transducer,
|
||||||
|
decoding_graph: k2.Fsa,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
encoder_out_lens: torch.Tensor,
|
||||||
|
beam: float,
|
||||||
|
max_states: int,
|
||||||
|
max_contexts: int,
|
||||||
|
) -> k2.Fsa:
|
||||||
|
"""It limits the maximum number of symbols per frame to 1.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
An instance of `Transducer`.
|
||||||
|
decoding_graph:
|
||||||
|
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
|
||||||
|
encoder_out:
|
||||||
|
A tensor of shape (N, T, C) from the encoder.
|
||||||
|
encoder_out_lens:
|
||||||
|
A tensor of shape (N,) containing the number of frames in `encoder_out`
|
||||||
|
before padding.
|
||||||
|
beam:
|
||||||
|
Beam value, similar to the beam used in Kaldi..
|
||||||
|
max_states:
|
||||||
|
Max states per stream per frame.
|
||||||
|
max_contexts:
|
||||||
|
Max contexts pre stream per frame.
|
||||||
|
Returns:
|
||||||
|
Return an FsaVec with axes [utt][state][arc] containing the decoded
|
||||||
|
lattice. Note: When the input graph is a TrivialGraph, the returned
|
||||||
|
lattice is actually an acceptor.
|
||||||
|
"""
|
||||||
assert encoder_out.ndim == 3
|
assert encoder_out.ndim == 3
|
||||||
|
|
||||||
context_size = model.decoder.context_size
|
context_size = model.decoder.context_size
|
||||||
@ -103,9 +249,7 @@ def fast_beam_search(
|
|||||||
decoding_streams.terminate_and_flush_to_streams()
|
decoding_streams.terminate_and_flush_to_streams()
|
||||||
lattice = decoding_streams.format_output(encoder_out_lens.tolist())
|
lattice = decoding_streams.format_output(encoder_out_lens.tolist())
|
||||||
|
|
||||||
best_path = one_best_decoding(lattice)
|
return lattice
|
||||||
hyps = get_texts(best_path)
|
|
||||||
return hyps
|
|
||||||
|
|
||||||
|
|
||||||
def greedy_search(
|
def greedy_search(
|
||||||
@ -130,6 +274,7 @@ def greedy_search(
|
|||||||
|
|
||||||
blank_id = model.decoder.blank_id
|
blank_id = model.decoder.blank_id
|
||||||
context_size = model.decoder.context_size
|
context_size = model.decoder.context_size
|
||||||
|
unk_id = getattr(model, "unk_id", blank_id)
|
||||||
|
|
||||||
device = model.device
|
device = model.device
|
||||||
|
|
||||||
@ -170,7 +315,7 @@ def greedy_search(
|
|||||||
# logits is (1, 1, 1, vocab_size)
|
# logits is (1, 1, 1, vocab_size)
|
||||||
|
|
||||||
y = logits.argmax().item()
|
y = logits.argmax().item()
|
||||||
if y != blank_id:
|
if y not in (blank_id, unk_id):
|
||||||
hyp.append(y)
|
hyp.append(y)
|
||||||
decoder_input = torch.tensor(
|
decoder_input = torch.tensor(
|
||||||
[hyp[-context_size:]], device=device
|
[hyp[-context_size:]], device=device
|
||||||
@ -211,6 +356,7 @@ def greedy_search_batch(
|
|||||||
T = encoder_out.size(1)
|
T = encoder_out.size(1)
|
||||||
|
|
||||||
blank_id = model.decoder.blank_id
|
blank_id = model.decoder.blank_id
|
||||||
|
unk_id = getattr(model, "unk_id", blank_id)
|
||||||
context_size = model.decoder.context_size
|
context_size = model.decoder.context_size
|
||||||
|
|
||||||
hyps = [[blank_id] * context_size for _ in range(batch_size)]
|
hyps = [[blank_id] * context_size for _ in range(batch_size)]
|
||||||
@ -239,7 +385,7 @@ def greedy_search_batch(
|
|||||||
y = logits.argmax(dim=1).tolist()
|
y = logits.argmax(dim=1).tolist()
|
||||||
emitted = False
|
emitted = False
|
||||||
for i, v in enumerate(y):
|
for i, v in enumerate(y):
|
||||||
if v != blank_id:
|
if v not in (blank_id, unk_id):
|
||||||
hyps[i].append(v)
|
hyps[i].append(v)
|
||||||
emitted = True
|
emitted = True
|
||||||
if emitted:
|
if emitted:
|
||||||
@ -432,6 +578,7 @@ def modified_beam_search(
|
|||||||
T = encoder_out.size(1)
|
T = encoder_out.size(1)
|
||||||
|
|
||||||
blank_id = model.decoder.blank_id
|
blank_id = model.decoder.blank_id
|
||||||
|
unk_id = getattr(model, "unk_id", blank_id)
|
||||||
context_size = model.decoder.context_size
|
context_size = model.decoder.context_size
|
||||||
device = model.device
|
device = model.device
|
||||||
B = [HypothesisList() for _ in range(batch_size)]
|
B = [HypothesisList() for _ in range(batch_size)]
|
||||||
@ -503,8 +650,10 @@ def modified_beam_search(
|
|||||||
for i in range(batch_size):
|
for i in range(batch_size):
|
||||||
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
||||||
|
|
||||||
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
with warnings.catch_warnings():
|
||||||
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
warnings.simplefilter("ignore")
|
||||||
|
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
||||||
|
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
||||||
|
|
||||||
for k in range(len(topk_hyp_indexes)):
|
for k in range(len(topk_hyp_indexes)):
|
||||||
hyp_idx = topk_hyp_indexes[k]
|
hyp_idx = topk_hyp_indexes[k]
|
||||||
@ -512,7 +661,7 @@ def modified_beam_search(
|
|||||||
|
|
||||||
new_ys = hyp.ys[:]
|
new_ys = hyp.ys[:]
|
||||||
new_token = topk_token_indexes[k]
|
new_token = topk_token_indexes[k]
|
||||||
if new_token != blank_id:
|
if new_token not in (blank_id, unk_id):
|
||||||
new_ys.append(new_token)
|
new_ys.append(new_token)
|
||||||
|
|
||||||
new_log_prob = topk_log_probs[k]
|
new_log_prob = topk_log_probs[k]
|
||||||
@ -553,6 +702,7 @@ def _deprecated_modified_beam_search(
|
|||||||
# support only batch_size == 1 for now
|
# support only batch_size == 1 for now
|
||||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||||
blank_id = model.decoder.blank_id
|
blank_id = model.decoder.blank_id
|
||||||
|
unk_id = getattr(model, "unk_id", blank_id)
|
||||||
context_size = model.decoder.context_size
|
context_size = model.decoder.context_size
|
||||||
|
|
||||||
device = model.device
|
device = model.device
|
||||||
@ -614,14 +764,16 @@ def _deprecated_modified_beam_search(
|
|||||||
topk_hyp_indexes = topk_indexes // logits.size(-1)
|
topk_hyp_indexes = topk_indexes // logits.size(-1)
|
||||||
topk_token_indexes = topk_indexes % logits.size(-1)
|
topk_token_indexes = topk_indexes % logits.size(-1)
|
||||||
|
|
||||||
topk_hyp_indexes = topk_hyp_indexes.tolist()
|
with warnings.catch_warnings():
|
||||||
topk_token_indexes = topk_token_indexes.tolist()
|
warnings.simplefilter("ignore")
|
||||||
|
topk_hyp_indexes = topk_hyp_indexes.tolist()
|
||||||
|
topk_token_indexes = topk_token_indexes.tolist()
|
||||||
|
|
||||||
for i in range(len(topk_hyp_indexes)):
|
for i in range(len(topk_hyp_indexes)):
|
||||||
hyp = A[topk_hyp_indexes[i]]
|
hyp = A[topk_hyp_indexes[i]]
|
||||||
new_ys = hyp.ys[:]
|
new_ys = hyp.ys[:]
|
||||||
new_token = topk_token_indexes[i]
|
new_token = topk_token_indexes[i]
|
||||||
if new_token != blank_id:
|
if new_token not in (blank_id, unk_id):
|
||||||
new_ys.append(new_token)
|
new_ys.append(new_token)
|
||||||
new_log_prob = topk_log_probs[i]
|
new_log_prob = topk_log_probs[i]
|
||||||
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
||||||
@ -658,6 +810,7 @@ def beam_search(
|
|||||||
# support only batch_size == 1 for now
|
# support only batch_size == 1 for now
|
||||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||||
blank_id = model.decoder.blank_id
|
blank_id = model.decoder.blank_id
|
||||||
|
unk_id = getattr(model, "unk_id", blank_id)
|
||||||
context_size = model.decoder.context_size
|
context_size = model.decoder.context_size
|
||||||
|
|
||||||
device = model.device
|
device = model.device
|
||||||
@ -743,7 +896,7 @@ def beam_search(
|
|||||||
# Second, process other non-blank labels
|
# Second, process other non-blank labels
|
||||||
values, indices = log_prob.topk(beam + 1)
|
values, indices = log_prob.topk(beam + 1)
|
||||||
for i, v in zip(indices.tolist(), values.tolist()):
|
for i, v in zip(indices.tolist(), values.tolist()):
|
||||||
if i == blank_id:
|
if i in (blank_id, unk_id):
|
||||||
continue
|
continue
|
||||||
new_ys = y_star.ys + [i]
|
new_ys = y_star.ys + [i]
|
||||||
new_log_prob = y_star.log_prob + v
|
new_log_prob = y_star.log_prob + v
|
||||||
|
@ -69,7 +69,7 @@ import torch.nn as nn
|
|||||||
from asr_datamodule import LibriSpeechAsrDataModule
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
from beam_search import (
|
from beam_search import (
|
||||||
beam_search,
|
beam_search,
|
||||||
fast_beam_search,
|
fast_beam_search_one_best,
|
||||||
greedy_search,
|
greedy_search,
|
||||||
greedy_search_batch,
|
greedy_search_batch,
|
||||||
modified_beam_search,
|
modified_beam_search,
|
||||||
@ -252,7 +252,7 @@ def decode_one_batch(
|
|||||||
hyps = []
|
hyps = []
|
||||||
|
|
||||||
if params.decoding_method == "fast_beam_search":
|
if params.decoding_method == "fast_beam_search":
|
||||||
hyp_tokens = fast_beam_search(
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
model=model,
|
model=model,
|
||||||
decoding_graph=decoding_graph,
|
decoding_graph=decoding_graph,
|
||||||
encoder_out=encoder_out,
|
encoder_out=encoder_out,
|
||||||
|
306
egs/librispeech/ASR/pruned_transducer_stateless2/pretrained.py
Executable file
306
egs/librispeech/ASR/pruned_transducer_stateless2/pretrained.py
Executable file
@ -0,0 +1,306 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
|
||||||
|
(1) greedy search
|
||||||
|
./pruned_transducer_stateless2/pretrained.py \
|
||||||
|
--checkpoint ./pruned_transducer_stateless2/exp/pretrained.pt \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
--method greedy_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav \
|
||||||
|
|
||||||
|
(1) beam search
|
||||||
|
./pruned_transducer_stateless2/pretrained.py \
|
||||||
|
--checkpoint ./pruned_transducer_stateless2/exp/pretrained.pt \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
--method beam_search \
|
||||||
|
--beam-size 4 \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav \
|
||||||
|
|
||||||
|
You can also use `./pruned_transducer_stateless2/exp/epoch-xx.pt`.
|
||||||
|
|
||||||
|
Note: ./pruned_transducer_stateless2/exp/pretrained.pt is generated by
|
||||||
|
./pruned_transducer_stateless2/export.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import kaldifeat
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from beam_search import (
|
||||||
|
beam_search,
|
||||||
|
fast_beam_search_one_best,
|
||||||
|
greedy_search,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from train import get_params, get_transducer_model
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--checkpoint",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the checkpoint. "
|
||||||
|
"The checkpoint is assumed to be saved by "
|
||||||
|
"icefall.checkpoint.save_checkpoint().",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
help="""Path to bpe.model.
|
||||||
|
Used only when method is ctc-decoding.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- beam_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"sound_files",
|
||||||
|
type=str,
|
||||||
|
nargs="+",
|
||||||
|
help="The input sound file(s) to transcribe. "
|
||||||
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
|
"For example, wav and flac are supported. "
|
||||||
|
"The sample rate has to be 16kHz.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sample-rate",
|
||||||
|
type=int,
|
||||||
|
default=16000,
|
||||||
|
help="The sample rate of the input sound file",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="Used only when --method is beam_search and modified_beam_search",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
|
"2 means tri-gram",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Maximum number of symbols per frame. Used only when
|
||||||
|
--method is greedy_search.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def read_sound_files(
|
||||||
|
filenames: List[str], expected_sample_rate: float
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||||
|
Args:
|
||||||
|
filenames:
|
||||||
|
A list of sound filenames.
|
||||||
|
expected_sample_rate:
|
||||||
|
The expected sample rate of the sound files.
|
||||||
|
Returns:
|
||||||
|
Return a list of 1-D float32 torch tensors.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
for f in filenames:
|
||||||
|
wave, sample_rate = torchaudio.load(f)
|
||||||
|
assert sample_rate == expected_sample_rate, (
|
||||||
|
f"expected sample rate: {expected_sample_rate}. "
|
||||||
|
f"Given: {sample_rate}"
|
||||||
|
)
|
||||||
|
# We use only the first channel
|
||||||
|
ans.append(wave[0])
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.unk_id = sp.piece_to_id("<unk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(f"{params}")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
logging.info("Creating model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||||
|
model.load_state_dict(checkpoint["model"], strict=False)
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
logging.info("Constructing Fbank computer")
|
||||||
|
opts = kaldifeat.FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = params.sample_rate
|
||||||
|
opts.mel_opts.num_bins = params.feature_dim
|
||||||
|
|
||||||
|
fbank = kaldifeat.Fbank(opts)
|
||||||
|
|
||||||
|
logging.info(f"Reading sound files: {params.sound_files}")
|
||||||
|
waves = read_sound_files(
|
||||||
|
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||||
|
)
|
||||||
|
waves = [w.to(device) for w in waves]
|
||||||
|
|
||||||
|
logging.info("Decoding started")
|
||||||
|
features = fbank(waves)
|
||||||
|
feature_lengths = [f.size(0) for f in features]
|
||||||
|
|
||||||
|
features = pad_sequence(
|
||||||
|
features, batch_first=True, padding_value=math.log(1e-10)
|
||||||
|
)
|
||||||
|
|
||||||
|
feature_lengths = torch.tensor(feature_lengths, device=device)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
|
x=features, x_lens=feature_lengths
|
||||||
|
)
|
||||||
|
|
||||||
|
num_waves = encoder_out.size(0)
|
||||||
|
hyps = []
|
||||||
|
msg = f"Using {params.method}"
|
||||||
|
if params.method == "beam_search":
|
||||||
|
msg += f" with beam size {params.beam_size}"
|
||||||
|
logging.info(msg)
|
||||||
|
|
||||||
|
if params.method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=8.0,
|
||||||
|
max_contexts=32,
|
||||||
|
max_states=8,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif params.method == "modified_beam_search":
|
||||||
|
hyp_tokens = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
|
hyp_tokens = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
else:
|
||||||
|
for i in range(num_waves):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported method: {params.method}")
|
||||||
|
|
||||||
|
hyps.append(sp.decode(hyp).split())
|
||||||
|
|
||||||
|
s = "\n"
|
||||||
|
for filename, hyp in zip(params.sound_files, hyps):
|
||||||
|
words = " ".join(hyp)
|
||||||
|
s += f"{filename}:\n{words}\n\n"
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
logging.info("Decoding Done")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
@ -0,0 +1,314 @@
|
|||||||
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
# 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig
|
||||||
|
from lhotse.dataset import (
|
||||||
|
BucketingSampler,
|
||||||
|
CutMix,
|
||||||
|
DynamicBucketingSampler,
|
||||||
|
K2SpeechRecognitionDataset,
|
||||||
|
SpecAugment,
|
||||||
|
)
|
||||||
|
from lhotse.dataset.input_strategies import (
|
||||||
|
OnTheFlyFeatures,
|
||||||
|
PrecomputedFeatures,
|
||||||
|
)
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
class AsrDataModule:
|
||||||
|
def __init__(self, args: argparse.Namespace):
|
||||||
|
self.args = args
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
|
group = parser.add_argument_group(
|
||||||
|
title="ASR data related options",
|
||||||
|
description="These options are used for the preparation of "
|
||||||
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
|
"augmentations, etc.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--max-duration",
|
||||||
|
type=int,
|
||||||
|
default=200.0,
|
||||||
|
help="Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--bucketing-sampler",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, the batches will come from buckets of "
|
||||||
|
"similar duration (saves padding frames).",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--num-buckets",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="The number of buckets for the BucketingSampler "
|
||||||
|
"and DynamicBucketingSampler."
|
||||||
|
"(you might want to increase it for larger datasets).",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--shuffle",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled (=default), the examples will be "
|
||||||
|
"shuffled for each epoch.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--return-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, each batch will have the "
|
||||||
|
"field: batch['supervisions']['cut'] with the cuts that "
|
||||||
|
"were used to construct it.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--num-workers",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The number of training dataloader workers that "
|
||||||
|
"collect the batches.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--on-the-fly-num-workers",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="The number of workers for on-the-fly feature extraction",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-spec-aug",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, use SpecAugment for training dataset.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--spec-aug-time-warp-factor",
|
||||||
|
type=int,
|
||||||
|
default=80,
|
||||||
|
help="Used only when --enable-spec-aug is True. "
|
||||||
|
"It specifies the factor for time warping in SpecAugment. "
|
||||||
|
"Larger values mean more warping. "
|
||||||
|
"A value less than 1 means to disable time warp.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-musan",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, select noise from MUSAN and mix it"
|
||||||
|
"with training dataset. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--manifest-dir",
|
||||||
|
type=Path,
|
||||||
|
default=Path("data/fbank"),
|
||||||
|
help="Path to directory with train/valid/test cuts.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--on-the-fly-feats",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, use on-the-fly cut mixing and feature "
|
||||||
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
|
"if available. Used only in dev/test CutSet",
|
||||||
|
)
|
||||||
|
|
||||||
|
def train_dataloaders(
|
||||||
|
self,
|
||||||
|
cuts_train: CutSet,
|
||||||
|
dynamic_bucketing: bool,
|
||||||
|
on_the_fly_feats: bool,
|
||||||
|
cuts_musan: Optional[CutSet] = None,
|
||||||
|
) -> DataLoader:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
cuts_train:
|
||||||
|
Cuts for training.
|
||||||
|
cuts_musan:
|
||||||
|
If not None, it is the cuts for mixing.
|
||||||
|
dynamic_bucketing:
|
||||||
|
True to use DynamicBucketingSampler;
|
||||||
|
False to use BucketingSampler.
|
||||||
|
on_the_fly_feats:
|
||||||
|
True to use OnTheFlyFeatures;
|
||||||
|
False to use PrecomputedFeatures.
|
||||||
|
"""
|
||||||
|
transforms = []
|
||||||
|
if cuts_musan is not None:
|
||||||
|
logging.info("Enable MUSAN")
|
||||||
|
transforms.append(
|
||||||
|
CutMix(
|
||||||
|
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable MUSAN")
|
||||||
|
|
||||||
|
input_transforms = []
|
||||||
|
|
||||||
|
if self.args.enable_spec_aug:
|
||||||
|
logging.info("Enable SpecAugment")
|
||||||
|
logging.info(
|
||||||
|
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
||||||
|
)
|
||||||
|
input_transforms.append(
|
||||||
|
SpecAugment(
|
||||||
|
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||||
|
num_frame_masks=2,
|
||||||
|
features_mask_size=27,
|
||||||
|
num_feature_masks=2,
|
||||||
|
frames_mask_size=100,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable SpecAugment")
|
||||||
|
|
||||||
|
logging.info("About to create train dataset")
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
# NOTE: the PerturbSpeed transform should be added only if we
|
||||||
|
# remove it from data prep stage.
|
||||||
|
# Add on-the-fly speed perturbation; since originally it would
|
||||||
|
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||||
|
# 3x more epochs.
|
||||||
|
# Speed perturbation probably should come first before
|
||||||
|
# concatenation, but in principle the transforms order doesn't have
|
||||||
|
# to be strict (e.g. could be randomized)
|
||||||
|
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||||
|
# Drop feats to be on the safe side.
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=(
|
||||||
|
OnTheFlyFeatures(
|
||||||
|
extractor=Fbank(FbankConfig(num_mel_bins=80)),
|
||||||
|
num_workers=self.args.on_the_fly_num_workers,
|
||||||
|
)
|
||||||
|
if on_the_fly_feats
|
||||||
|
else PrecomputedFeatures()
|
||||||
|
),
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if dynamic_bucketing:
|
||||||
|
logging.info("Using DynamicBucketingSampler.")
|
||||||
|
train_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
num_buckets=self.args.num_buckets,
|
||||||
|
drop_last=True,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Using BucketingSampler.")
|
||||||
|
train_sampler = BucketingSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
num_buckets=self.args.num_buckets,
|
||||||
|
bucket_method="equal_duration",
|
||||||
|
drop_last=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("About to create train dataloader")
|
||||||
|
train_dl = DataLoader(
|
||||||
|
train,
|
||||||
|
sampler=train_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
persistent_workers=False,
|
||||||
|
)
|
||||||
|
return train_dl
|
||||||
|
|
||||||
|
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||||
|
transforms = []
|
||||||
|
|
||||||
|
logging.info("About to create dev dataset")
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(
|
||||||
|
Fbank(FbankConfig(num_mel_bins=80))
|
||||||
|
),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
valid_sampler = BucketingSampler(
|
||||||
|
cuts_valid,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
logging.info("About to create dev dataloader")
|
||||||
|
valid_dl = DataLoader(
|
||||||
|
validate,
|
||||||
|
sampler=valid_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=2,
|
||||||
|
persistent_workers=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
return valid_dl
|
||||||
|
|
||||||
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||||
|
logging.debug("About to create test dataset")
|
||||||
|
test = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||||
|
if self.args.on_the_fly_feats
|
||||||
|
else PrecomputedFeatures(),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
sampler = BucketingSampler(
|
||||||
|
cuts, max_duration=self.args.max_duration, shuffle=False
|
||||||
|
)
|
||||||
|
logging.debug("About to create test dataloader")
|
||||||
|
test_dl = DataLoader(
|
||||||
|
test,
|
||||||
|
batch_size=None,
|
||||||
|
sampler=sampler,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
)
|
||||||
|
return test_dl
|
1
egs/librispeech/ASR/pruned_transducer_stateless3/beam_search.py
Symbolic link
1
egs/librispeech/ASR/pruned_transducer_stateless3/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless2/beam_search.py
|
1
egs/librispeech/ASR/pruned_transducer_stateless3/conformer.py
Symbolic link
1
egs/librispeech/ASR/pruned_transducer_stateless3/conformer.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless2/conformer.py
|
567
egs/librispeech/ASR/pruned_transducer_stateless3/decode-giga.py
Executable file
567
egs/librispeech/ASR/pruned_transducer_stateless3/decode-giga.py
Executable file
@ -0,0 +1,567 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
(1) greedy search
|
||||||
|
./pruned_transducer_stateless3/decode-giga.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||||
|
--max-duration 100 \
|
||||||
|
--decoding-method greedy_search
|
||||||
|
|
||||||
|
(2) beam search
|
||||||
|
./pruned_transducer_stateless3/decode-giga.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||||
|
--max-duration 100 \
|
||||||
|
--decoding-method beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(3) modified beam search
|
||||||
|
./pruned_transducer_stateless3/decode-giga.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||||
|
--max-duration 100 \
|
||||||
|
--decoding-method modified_beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(4) fast beam search
|
||||||
|
./pruned_transducer_stateless3/decode-giga.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||||
|
--max-duration 1500 \
|
||||||
|
--decoding-method fast_beam_search \
|
||||||
|
--beam 4 \
|
||||||
|
--max-contexts 4 \
|
||||||
|
--max-states 8
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import AsrDataModule
|
||||||
|
from beam_search import (
|
||||||
|
beam_search,
|
||||||
|
fast_beam_search,
|
||||||
|
greedy_search,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from gigaspeech import GigaSpeech
|
||||||
|
from gigaspeech_scoring import asr_text_post_processing
|
||||||
|
from train import get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=28,
|
||||||
|
help="It specifies the checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch'. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg-last-n",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch and --avg are ignored and it
|
||||||
|
will use the last n checkpoints exp_dir/checkpoint-xxx.pt
|
||||||
|
where xxx is the number of processed batches while
|
||||||
|
saving that checkpoint.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="pruned_transducer_stateless3/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- beam_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An integer indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --decoding-method is beam_search or
|
||||||
|
modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=4,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
|
"2 means tri-gram",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Maximum number of symbols per frame.
|
||||||
|
Used only when --decoding_method is greedy_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def post_processing(
|
||||||
|
results: List[Tuple[List[List[str]], List[List[str]]]],
|
||||||
|
) -> List[Tuple[List[List[str]], List[List[str]]]]:
|
||||||
|
new_results = []
|
||||||
|
for ref, hyp in results:
|
||||||
|
new_ref = asr_text_post_processing(" ".join(ref)).split()
|
||||||
|
new_hyp = asr_text_post_processing(" ".join(hyp)).split()
|
||||||
|
new_results.append((new_ref, new_hyp))
|
||||||
|
return new_results
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
batch: dict,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[List[str]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: It indicates the setting used for decoding. For example,
|
||||||
|
if greedy_search is used, it would be "greedy_search"
|
||||||
|
If beam search with a beam size of 7 is used, it would be
|
||||||
|
"beam_7"
|
||||||
|
- value: It contains the decoding result. `len(value)` equals to
|
||||||
|
batch size. `value[i]` is the decoding result for the i-th
|
||||||
|
utterance in the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. See above description for the format of
|
||||||
|
the returned dict.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
|
||||||
|
feature = feature.to(device)
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
|
x=feature, x_lens=feature_lens
|
||||||
|
)
|
||||||
|
hyps = []
|
||||||
|
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
hyp_tokens = fast_beam_search(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif (
|
||||||
|
params.decoding_method == "greedy_search"
|
||||||
|
and params.max_sym_per_frame == 1
|
||||||
|
):
|
||||||
|
hyp_tokens = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
hyp_tokens = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
else:
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported decoding method: {params.decoding_method}"
|
||||||
|
)
|
||||||
|
hyps.append(sp.decode(hyp).split())
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
return {"greedy_search": hyps}
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
return {
|
||||||
|
(
|
||||||
|
f"beam_{params.beam}_"
|
||||||
|
f"max_contexts_{params.max_contexts}_"
|
||||||
|
f"max_states_{params.max_states}"
|
||||||
|
): hyps
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
return {f"beam_size_{params.beam_size}": hyps}
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
log_interval = 100
|
||||||
|
else:
|
||||||
|
log_interval = 2
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
batch=batch,
|
||||||
|
)
|
||||||
|
|
||||||
|
for name, hyps in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for hyp_words, ref_text in zip(hyps, texts):
|
||||||
|
ref_words = ref_text.split()
|
||||||
|
this_batch.append((ref_words, hyp_words))
|
||||||
|
|
||||||
|
results[name].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(texts)
|
||||||
|
|
||||||
|
if batch_idx % log_interval == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||||
|
)
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
results = post_processing(results)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir
|
||||||
|
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
AsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
assert params.decoding_method in (
|
||||||
|
"greedy_search",
|
||||||
|
"beam_search",
|
||||||
|
"fast_beam_search",
|
||||||
|
"modified_beam_search",
|
||||||
|
)
|
||||||
|
params.res_dir = params.exp_dir / "giga" / params.decoding_method
|
||||||
|
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
if "fast_beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
elif "beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-beam-{params.beam_size}"
|
||||||
|
else:
|
||||||
|
params.suffix += f"-context-{params.context_size}"
|
||||||
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
if params.avg_last_n > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir)[: params.avg_last_n]
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
# In beam_search.py, we are using model.decoder() and model.joiner(),
|
||||||
|
# so we have to switch to the branch for the GigaSpeech dataset.
|
||||||
|
model.decoder = model.decoder_giga
|
||||||
|
model.joiner = model.joiner_giga
|
||||||
|
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
else:
|
||||||
|
decoding_graph = None
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
asr_datamodule = AsrDataModule(args)
|
||||||
|
gigaspeech = GigaSpeech(manifest_dir=args.manifest_dir)
|
||||||
|
|
||||||
|
test_cuts = gigaspeech.test_cuts()
|
||||||
|
dev_cuts = gigaspeech.dev_cuts()
|
||||||
|
|
||||||
|
test_dl = asr_datamodule.test_dataloaders(test_cuts)
|
||||||
|
dev_dl = asr_datamodule.test_dataloaders(dev_cuts)
|
||||||
|
|
||||||
|
test_sets = ["test", "dev"]
|
||||||
|
test_sets_dl = [test_dl, dev_dl]
|
||||||
|
|
||||||
|
for test_set, dl in zip(test_sets, test_sets_dl):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
626
egs/librispeech/ASR/pruned_transducer_stateless3/decode.py
Executable file
626
egs/librispeech/ASR/pruned_transducer_stateless3/decode.py
Executable file
@ -0,0 +1,626 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
(1) greedy search
|
||||||
|
./pruned_transducer_stateless3/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||||
|
--max-duration 100 \
|
||||||
|
--decoding-method greedy_search
|
||||||
|
|
||||||
|
(2) beam search
|
||||||
|
./pruned_transducer_stateless3/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||||
|
--max-duration 100 \
|
||||||
|
--decoding-method beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(3) modified beam search
|
||||||
|
./pruned_transducer_stateless3/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||||
|
--max-duration 100 \
|
||||||
|
--decoding-method modified_beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(4) fast beam search
|
||||||
|
./pruned_transducer_stateless3/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||||
|
--max-duration 1500 \
|
||||||
|
--decoding-method fast_beam_search \
|
||||||
|
--beam 4 \
|
||||||
|
--max-contexts 4 \
|
||||||
|
--max-states 8
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import AsrDataModule
|
||||||
|
from beam_search import (
|
||||||
|
beam_search,
|
||||||
|
fast_beam_search_nbest_oracle,
|
||||||
|
fast_beam_search_one_best,
|
||||||
|
greedy_search,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from librispeech import LibriSpeech
|
||||||
|
from train import get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=28,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 0.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="pruned_transducer_stateless3/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- beam_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
|
- fast_beam_search_nbest_oracle
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An integer indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --decoding-method is beam_search or
|
||||||
|
modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=4,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is
|
||||||
|
fast_beam_search or fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search or fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search or fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
|
"2 means tri-gram",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Maximum number of symbols per frame.
|
||||||
|
Used only when --decoding_method is greedy_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-paths",
|
||||||
|
type=int,
|
||||||
|
default=100,
|
||||||
|
help="""Number of paths for computed nbest oracle WER
|
||||||
|
when the decoding method is fast_beam_search_nbest_oracle.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--nbest-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.5,
|
||||||
|
help="""Scale applied to lattice scores when computing nbest paths.
|
||||||
|
Used only when the decoding_method is fast_beam_search_nbest_oracle.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
batch: dict,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[List[str]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: It indicates the setting used for decoding. For example,
|
||||||
|
if greedy_search is used, it would be "greedy_search"
|
||||||
|
If beam search with a beam size of 7 is used, it would be
|
||||||
|
"beam_7"
|
||||||
|
- value: It contains the decoding result. `len(value)` equals to
|
||||||
|
batch size. `value[i]` is the decoding result for the i-th
|
||||||
|
utterance in the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is
|
||||||
|
fast_beam_search or fast_beam_search_nbest_oracle.
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. See above description for the format of
|
||||||
|
the returned dict.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
|
||||||
|
feature = feature.to(device)
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
|
x=feature, x_lens=feature_lens
|
||||||
|
)
|
||||||
|
hyps = []
|
||||||
|
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||||
|
hyp_tokens = fast_beam_search_nbest_oracle(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
ref_texts=sp.encode(supervisions["text"]),
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif (
|
||||||
|
params.decoding_method == "greedy_search"
|
||||||
|
and params.max_sym_per_frame == 1
|
||||||
|
):
|
||||||
|
hyp_tokens = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
hyp_tokens = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
else:
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported decoding method: {params.decoding_method}"
|
||||||
|
)
|
||||||
|
hyps.append(sp.decode(hyp).split())
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
return {"greedy_search": hyps}
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
return {
|
||||||
|
(
|
||||||
|
f"beam_{params.beam}_"
|
||||||
|
f"max_contexts_{params.max_contexts}_"
|
||||||
|
f"max_states_{params.max_states}"
|
||||||
|
): hyps
|
||||||
|
}
|
||||||
|
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||||
|
return {
|
||||||
|
(
|
||||||
|
f"beam_{params.beam}_"
|
||||||
|
f"max_contexts_{params.max_contexts}_"
|
||||||
|
f"max_states_{params.max_states}_"
|
||||||
|
f"num_paths_{params.num_paths}_"
|
||||||
|
f"nbest_scale_{params.nbest_scale}"
|
||||||
|
): hyps
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
return {f"beam_size_{params.beam_size}": hyps}
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
log_interval = 100
|
||||||
|
else:
|
||||||
|
log_interval = 2
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
batch=batch,
|
||||||
|
)
|
||||||
|
|
||||||
|
for name, hyps in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for hyp_words, ref_text in zip(hyps, texts):
|
||||||
|
ref_words = ref_text.split()
|
||||||
|
this_batch.append((ref_words, hyp_words))
|
||||||
|
|
||||||
|
results[name].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(texts)
|
||||||
|
|
||||||
|
if batch_idx % log_interval == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||||
|
)
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir
|
||||||
|
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
AsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
assert params.decoding_method in (
|
||||||
|
"greedy_search",
|
||||||
|
"beam_search",
|
||||||
|
"fast_beam_search",
|
||||||
|
"fast_beam_search_nbest_oracle",
|
||||||
|
"modified_beam_search",
|
||||||
|
)
|
||||||
|
params.res_dir = params.exp_dir / params.decoding_method
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
|
else:
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
params.suffix += f"-num-paths-{params.num_paths}"
|
||||||
|
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
||||||
|
elif "beam_search" in params.decoding_method:
|
||||||
|
params.suffix += (
|
||||||
|
f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
params.suffix += f"-context-{params.context_size}"
|
||||||
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> and <unk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.unk_id = sp.unk_id()
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
model.device = device
|
||||||
|
model.unk_id = params.unk_id
|
||||||
|
|
||||||
|
if params.decoding_method in (
|
||||||
|
"fast_beam_search",
|
||||||
|
"fast_beam_search_nbest_oracle",
|
||||||
|
):
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
else:
|
||||||
|
decoding_graph = None
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
asr_datamodule = AsrDataModule(args)
|
||||||
|
librispeech = LibriSpeech(manifest_dir=args.manifest_dir)
|
||||||
|
|
||||||
|
test_clean_cuts = librispeech.test_clean_cuts()
|
||||||
|
test_other_cuts = librispeech.test_other_cuts()
|
||||||
|
|
||||||
|
test_clean_dl = asr_datamodule.test_dataloaders(test_clean_cuts)
|
||||||
|
test_other_dl = asr_datamodule.test_dataloaders(test_other_cuts)
|
||||||
|
|
||||||
|
test_sets = ["test-clean", "test-other"]
|
||||||
|
test_dl = [test_clean_dl, test_other_dl]
|
||||||
|
|
||||||
|
for test_set, test_dl in zip(test_sets, test_dl):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/librispeech/ASR/pruned_transducer_stateless3/decoder.py
Symbolic link
1
egs/librispeech/ASR/pruned_transducer_stateless3/decoder.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless2/decoder.py
|
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless2/encoder_interface.py
|
183
egs/librispeech/ASR/pruned_transducer_stateless3/export.py
Executable file
183
egs/librispeech/ASR/pruned_transducer_stateless3/export.py
Executable file
@ -0,0 +1,183 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
# This script converts several saved checkpoints
|
||||||
|
# to a single one using model averaging.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
./pruned_transducer_stateless3/export.py \
|
||||||
|
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 20 \
|
||||||
|
--avg 10
|
||||||
|
|
||||||
|
It will generate a file exp_dir/pretrained.pt
|
||||||
|
|
||||||
|
To use the generated file with `pruned_transducer_stateless3/decode.py`,
|
||||||
|
you can do:
|
||||||
|
|
||||||
|
cd /path/to/exp_dir
|
||||||
|
ln -s pretrained.pt epoch-9999.pt
|
||||||
|
|
||||||
|
cd /path/to/egs/librispeech/ASR
|
||||||
|
./pruned_transducer_stateless3/decode.py \
|
||||||
|
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||||
|
--epoch 9999 \
|
||||||
|
--avg 1 \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method greedy_search \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
from train import get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=28,
|
||||||
|
help="It specifies the checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch'. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="pruned_transducer_stateless3/exp",
|
||||||
|
help="""It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--jit",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""True to save a model after applying torch.jit.script.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
|
"2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_parser().parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
assert args.jit is False, "Support torchscript will be added later"
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
if params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
model.to("cpu")
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
if params.jit:
|
||||||
|
logging.info("Using torch.jit.script")
|
||||||
|
model = torch.jit.script(model)
|
||||||
|
filename = params.exp_dir / "cpu_jit.pt"
|
||||||
|
model.save(str(filename))
|
||||||
|
logging.info(f"Saved to {filename}")
|
||||||
|
else:
|
||||||
|
logging.info("Not using torch.jit.script")
|
||||||
|
# Save it using a format so that it can be loaded
|
||||||
|
# by :func:`load_checkpoint`
|
||||||
|
filename = params.exp_dir / "pretrained.pt"
|
||||||
|
torch.save({"model": model.state_dict()}, str(filename))
|
||||||
|
logging.info(f"Saved to {filename}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
@ -0,0 +1,94 @@
|
|||||||
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
# 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import glob
|
||||||
|
import logging
|
||||||
|
import re
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import lhotse
|
||||||
|
from lhotse import CutSet, load_manifest
|
||||||
|
|
||||||
|
|
||||||
|
class GigaSpeech:
|
||||||
|
def __init__(self, manifest_dir: str):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
manifest_dir:
|
||||||
|
It is expected to contain the following files::
|
||||||
|
|
||||||
|
- XL_split_2000/cuts_XL.*.jsonl.gz
|
||||||
|
- cuts_L_raw.jsonl.gz
|
||||||
|
- cuts_M_raw.jsonl.gz
|
||||||
|
- cuts_S_raw.jsonl.gz
|
||||||
|
- cuts_XS_raw.jsonl.gz
|
||||||
|
- cuts_DEV_raw.jsonl.gz
|
||||||
|
- cuts_TEST_raw.jsonl.gz
|
||||||
|
"""
|
||||||
|
self.manifest_dir = Path(manifest_dir)
|
||||||
|
|
||||||
|
def train_XL_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get train-XL cuts")
|
||||||
|
|
||||||
|
filenames = list(
|
||||||
|
glob.glob(f"{self.manifest_dir}/XL_split_2000/cuts_XL.*.jsonl.gz")
|
||||||
|
)
|
||||||
|
|
||||||
|
pattern = re.compile(r"cuts_XL.([0-9]+).jsonl.gz")
|
||||||
|
idx_filenames = [
|
||||||
|
(int(pattern.search(f).group(1)), f) for f in filenames
|
||||||
|
]
|
||||||
|
idx_filenames = sorted(idx_filenames, key=lambda x: x[0])
|
||||||
|
|
||||||
|
sorted_filenames = [f[1] for f in idx_filenames]
|
||||||
|
|
||||||
|
logging.info(f"Loading {len(sorted_filenames)} splits")
|
||||||
|
|
||||||
|
return lhotse.combine(
|
||||||
|
lhotse.load_manifest_lazy(p) for p in sorted_filenames
|
||||||
|
)
|
||||||
|
|
||||||
|
def train_L_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_L_raw.jsonl.gz"
|
||||||
|
logging.info(f"About to get train-L cuts from {f}")
|
||||||
|
return CutSet.from_jsonl_lazy(f)
|
||||||
|
|
||||||
|
def train_M_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_M_raw.jsonl.gz"
|
||||||
|
logging.info(f"About to get train-M cuts from {f}")
|
||||||
|
return CutSet.from_jsonl_lazy(f)
|
||||||
|
|
||||||
|
def train_S_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_S_raw.jsonl.gz"
|
||||||
|
logging.info(f"About to get train-S cuts from {f}")
|
||||||
|
return CutSet.from_jsonl_lazy(f)
|
||||||
|
|
||||||
|
def train_XS_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_XS_raw.jsonl.gz"
|
||||||
|
logging.info(f"About to get train-XS cuts from {f}")
|
||||||
|
return CutSet.from_jsonl_lazy(f)
|
||||||
|
|
||||||
|
def test_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_TEST.jsonl.gz"
|
||||||
|
logging.info(f"About to get TEST cuts from {f}")
|
||||||
|
return load_manifest(f)
|
||||||
|
|
||||||
|
def dev_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_DEV.jsonl.gz"
|
||||||
|
logging.info(f"About to get DEV cuts from {f}")
|
||||||
|
return load_manifest(f)
|
@ -0,0 +1 @@
|
|||||||
|
../../../gigaspeech/ASR/conformer_ctc/gigaspeech_scoring.py
|
1
egs/librispeech/ASR/pruned_transducer_stateless3/joiner.py
Symbolic link
1
egs/librispeech/ASR/pruned_transducer_stateless3/joiner.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless2/joiner.py
|
@ -0,0 +1,74 @@
|
|||||||
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
# 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from lhotse import CutSet, load_manifest
|
||||||
|
|
||||||
|
|
||||||
|
class LibriSpeech:
|
||||||
|
def __init__(self, manifest_dir: str):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
manifest_dir:
|
||||||
|
It is expected to contain the following files::
|
||||||
|
|
||||||
|
- cuts_dev-clean.json.gz
|
||||||
|
- cuts_dev-other.json.gz
|
||||||
|
- cuts_test-clean.json.gz
|
||||||
|
- cuts_test-other.json.gz
|
||||||
|
- cuts_train-clean-100.json.gz
|
||||||
|
- cuts_train-clean-360.json.gz
|
||||||
|
- cuts_train-other-500.json.gz
|
||||||
|
"""
|
||||||
|
self.manifest_dir = Path(manifest_dir)
|
||||||
|
|
||||||
|
def train_clean_100_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_train-clean-100.json.gz"
|
||||||
|
logging.info(f"About to get train-clean-100 cuts from {f}")
|
||||||
|
return load_manifest(f)
|
||||||
|
|
||||||
|
def train_clean_360_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_train-clean-360.json.gz"
|
||||||
|
logging.info(f"About to get train-clean-360 cuts from {f}")
|
||||||
|
return load_manifest(f)
|
||||||
|
|
||||||
|
def train_other_500_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_train-other-500.json.gz"
|
||||||
|
logging.info(f"About to get train-other-500 cuts from {f}")
|
||||||
|
return load_manifest(f)
|
||||||
|
|
||||||
|
def test_clean_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_test-clean.json.gz"
|
||||||
|
logging.info(f"About to get test-clean cuts from {f}")
|
||||||
|
return load_manifest(f)
|
||||||
|
|
||||||
|
def test_other_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_test-other.json.gz"
|
||||||
|
logging.info(f"About to get test-other cuts from {f}")
|
||||||
|
return load_manifest(f)
|
||||||
|
|
||||||
|
def dev_clean_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_dev-clean.json.gz"
|
||||||
|
logging.info(f"About to get dev-clean cuts from {f}")
|
||||||
|
return load_manifest(f)
|
||||||
|
|
||||||
|
def dev_other_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_dev-other.json.gz"
|
||||||
|
logging.info(f"About to get dev-other cuts from {f}")
|
||||||
|
return load_manifest(f)
|
235
egs/librispeech/ASR/pruned_transducer_stateless3/model.py
Normal file
235
egs/librispeech/ASR/pruned_transducer_stateless3/model.py
Normal file
@ -0,0 +1,235 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from encoder_interface import EncoderInterface
|
||||||
|
from scaling import ScaledLinear
|
||||||
|
|
||||||
|
from icefall.utils import add_sos
|
||||||
|
|
||||||
|
|
||||||
|
class Transducer(nn.Module):
|
||||||
|
"""It implements https://arxiv.org/pdf/1211.3711.pdf
|
||||||
|
"Sequence Transduction with Recurrent Neural Networks"
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
encoder: EncoderInterface,
|
||||||
|
decoder: nn.Module,
|
||||||
|
joiner: nn.Module,
|
||||||
|
encoder_dim: int,
|
||||||
|
decoder_dim: int,
|
||||||
|
joiner_dim: int,
|
||||||
|
vocab_size: int,
|
||||||
|
decoder_giga: Optional[nn.Module] = None,
|
||||||
|
joiner_giga: Optional[nn.Module] = None,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
encoder:
|
||||||
|
It is the transcription network in the paper. Its accepts
|
||||||
|
two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,).
|
||||||
|
It returns two tensors: `logits` of shape (N, T, encoder_dm) and
|
||||||
|
`logit_lens` of shape (N,).
|
||||||
|
decoder:
|
||||||
|
It is the prediction network in the paper. Its input shape
|
||||||
|
is (N, U) and its output shape is (N, U, decoder_dim).
|
||||||
|
It should contain one attribute: `blank_id`.
|
||||||
|
joiner:
|
||||||
|
It has two inputs with shapes: (N, T, encoder_dim) and
|
||||||
|
(N, U, decoder_dim). Its output shape is (N, T, U, vocab_size).
|
||||||
|
Note that its output contains
|
||||||
|
unnormalized probs, i.e., not processed by log-softmax.
|
||||||
|
encoder_dim:
|
||||||
|
Output dimension of the encoder network.
|
||||||
|
decoder_dim:
|
||||||
|
Output dimension of the decoder network.
|
||||||
|
joiner_dim:
|
||||||
|
Input dimension of the joiner network.
|
||||||
|
vocab_size:
|
||||||
|
Output dimension of the joiner network.
|
||||||
|
decoder_giga:
|
||||||
|
Optional. The decoder network for the GigaSpeech dataset.
|
||||||
|
joiner_giga:
|
||||||
|
Optional. The joiner network for the GigaSpeech dataset.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
assert isinstance(encoder, EncoderInterface), type(encoder)
|
||||||
|
assert hasattr(decoder, "blank_id")
|
||||||
|
|
||||||
|
self.encoder = encoder
|
||||||
|
self.decoder = decoder
|
||||||
|
self.joiner = joiner
|
||||||
|
|
||||||
|
self.decoder_giga = decoder_giga
|
||||||
|
self.joiner_giga = joiner_giga
|
||||||
|
|
||||||
|
self.simple_am_proj = ScaledLinear(
|
||||||
|
encoder_dim, vocab_size, initial_speed=0.5
|
||||||
|
)
|
||||||
|
self.simple_lm_proj = ScaledLinear(decoder_dim, vocab_size)
|
||||||
|
|
||||||
|
if decoder_giga is not None:
|
||||||
|
self.simple_am_proj_giga = ScaledLinear(
|
||||||
|
encoder_dim, vocab_size, initial_speed=0.5
|
||||||
|
)
|
||||||
|
self.simple_lm_proj_giga = ScaledLinear(decoder_dim, vocab_size)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x: torch.Tensor,
|
||||||
|
x_lens: torch.Tensor,
|
||||||
|
y: k2.RaggedTensor,
|
||||||
|
libri: bool = True,
|
||||||
|
prune_range: int = 5,
|
||||||
|
am_scale: float = 0.0,
|
||||||
|
lm_scale: float = 0.0,
|
||||||
|
warmup: float = 1.0,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
A 3-D tensor of shape (N, T, C).
|
||||||
|
x_lens:
|
||||||
|
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
||||||
|
before padding.
|
||||||
|
y:
|
||||||
|
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
||||||
|
utterance.
|
||||||
|
libri:
|
||||||
|
True to use the decoder and joiner for the LibriSpeech dataset.
|
||||||
|
False to use the decoder and joiner for the GigaSpeech dataset.
|
||||||
|
prune_range:
|
||||||
|
The prune range for rnnt loss, it means how many symbols(context)
|
||||||
|
we are considering for each frame to compute the loss.
|
||||||
|
am_scale:
|
||||||
|
The scale to smooth the loss with am (output of encoder network)
|
||||||
|
part
|
||||||
|
lm_scale:
|
||||||
|
The scale to smooth the loss with lm (output of predictor network)
|
||||||
|
part
|
||||||
|
warmup:
|
||||||
|
A value warmup >= 0 that determines which modules are active, values
|
||||||
|
warmup > 1 "are fully warmed up" and all modules will be active.
|
||||||
|
Returns:
|
||||||
|
Return the transducer loss.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
Regarding am_scale & lm_scale, it will make the loss-function one of
|
||||||
|
the form:
|
||||||
|
lm_scale * lm_probs + am_scale * am_probs +
|
||||||
|
(1-lm_scale-am_scale) * combined_probs
|
||||||
|
"""
|
||||||
|
assert x.ndim == 3, x.shape
|
||||||
|
assert x_lens.ndim == 1, x_lens.shape
|
||||||
|
assert y.num_axes == 2, y.num_axes
|
||||||
|
|
||||||
|
assert x.size(0) == x_lens.size(0) == y.dim0
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens = self.encoder(x, x_lens, warmup=warmup)
|
||||||
|
assert torch.all(encoder_out_lens > 0)
|
||||||
|
|
||||||
|
if libri:
|
||||||
|
decoder = self.decoder
|
||||||
|
simple_lm_proj = self.simple_lm_proj
|
||||||
|
simple_am_proj = self.simple_am_proj
|
||||||
|
joiner = self.joiner
|
||||||
|
else:
|
||||||
|
decoder = self.decoder_giga
|
||||||
|
simple_lm_proj = self.simple_lm_proj_giga
|
||||||
|
simple_am_proj = self.simple_am_proj_giga
|
||||||
|
joiner = self.joiner_giga
|
||||||
|
|
||||||
|
# Now for the decoder, i.e., the prediction network
|
||||||
|
row_splits = y.shape.row_splits(1)
|
||||||
|
y_lens = row_splits[1:] - row_splits[:-1]
|
||||||
|
|
||||||
|
blank_id = decoder.blank_id
|
||||||
|
sos_y = add_sos(y, sos_id=blank_id)
|
||||||
|
|
||||||
|
# sos_y_padded: [B, S + 1], start with SOS.
|
||||||
|
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
||||||
|
|
||||||
|
# decoder_out: [B, S + 1, decoder_dim]
|
||||||
|
decoder_out = decoder(sos_y_padded)
|
||||||
|
|
||||||
|
# Note: y does not start with SOS
|
||||||
|
# y_padded : [B, S]
|
||||||
|
y_padded = y.pad(mode="constant", padding_value=0)
|
||||||
|
|
||||||
|
y_padded = y_padded.to(torch.int64)
|
||||||
|
boundary = torch.zeros(
|
||||||
|
(x.size(0), 4), dtype=torch.int64, device=x.device
|
||||||
|
)
|
||||||
|
boundary[:, 2] = y_lens
|
||||||
|
boundary[:, 3] = encoder_out_lens
|
||||||
|
|
||||||
|
lm = simple_lm_proj(decoder_out)
|
||||||
|
am = simple_am_proj(encoder_out)
|
||||||
|
|
||||||
|
with torch.cuda.amp.autocast(enabled=False):
|
||||||
|
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
|
||||||
|
lm=lm.float(),
|
||||||
|
am=am.float(),
|
||||||
|
symbols=y_padded,
|
||||||
|
termination_symbol=blank_id,
|
||||||
|
lm_only_scale=lm_scale,
|
||||||
|
am_only_scale=am_scale,
|
||||||
|
boundary=boundary,
|
||||||
|
reduction="sum",
|
||||||
|
return_grad=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# ranges : [B, T, prune_range]
|
||||||
|
ranges = k2.get_rnnt_prune_ranges(
|
||||||
|
px_grad=px_grad,
|
||||||
|
py_grad=py_grad,
|
||||||
|
boundary=boundary,
|
||||||
|
s_range=prune_range,
|
||||||
|
)
|
||||||
|
|
||||||
|
# am_pruned : [B, T, prune_range, encoder_dim]
|
||||||
|
# lm_pruned : [B, T, prune_range, decoder_dim]
|
||||||
|
am_pruned, lm_pruned = k2.do_rnnt_pruning(
|
||||||
|
am=joiner.encoder_proj(encoder_out),
|
||||||
|
lm=joiner.decoder_proj(decoder_out),
|
||||||
|
ranges=ranges,
|
||||||
|
)
|
||||||
|
|
||||||
|
# logits : [B, T, prune_range, vocab_size]
|
||||||
|
|
||||||
|
# project_input=False since we applied the decoder's input projections
|
||||||
|
# prior to do_rnnt_pruning (this is an optimization for speed).
|
||||||
|
logits = joiner(am_pruned, lm_pruned, project_input=False)
|
||||||
|
|
||||||
|
with torch.cuda.amp.autocast(enabled=False):
|
||||||
|
pruned_loss = k2.rnnt_loss_pruned(
|
||||||
|
logits=logits.float(),
|
||||||
|
symbols=y_padded,
|
||||||
|
ranges=ranges,
|
||||||
|
termination_symbol=blank_id,
|
||||||
|
boundary=boundary,
|
||||||
|
reduction="sum",
|
||||||
|
)
|
||||||
|
|
||||||
|
return (simple_loss, pruned_loss)
|
1
egs/librispeech/ASR/pruned_transducer_stateless3/optim.py
Symbolic link
1
egs/librispeech/ASR/pruned_transducer_stateless3/optim.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless2/optim.py
|
306
egs/librispeech/ASR/pruned_transducer_stateless3/pretrained.py
Executable file
306
egs/librispeech/ASR/pruned_transducer_stateless3/pretrained.py
Executable file
@ -0,0 +1,306 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
|
||||||
|
(1) greedy search
|
||||||
|
./pruned_transducer_stateless3/pretrained.py \
|
||||||
|
--checkpoint ./pruned_transducer_stateless3/exp/pretrained.pt \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
--method greedy_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav \
|
||||||
|
|
||||||
|
(1) beam search
|
||||||
|
./pruned_transducer_stateless3/pretrained.py \
|
||||||
|
--checkpoint ./pruned_transducer_stateless3/exp/pretrained.pt \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
--method beam_search \
|
||||||
|
--beam-size 4 \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav \
|
||||||
|
|
||||||
|
You can also use `./pruned_transducer_stateless3/exp/epoch-xx.pt`.
|
||||||
|
|
||||||
|
Note: ./pruned_transducer_stateless3/exp/pretrained.pt is generated by
|
||||||
|
./pruned_transducer_stateless3/export.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import kaldifeat
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from beam_search import (
|
||||||
|
beam_search,
|
||||||
|
fast_beam_search_one_best,
|
||||||
|
greedy_search,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from train import get_params, get_transducer_model
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--checkpoint",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the checkpoint. "
|
||||||
|
"The checkpoint is assumed to be saved by "
|
||||||
|
"icefall.checkpoint.save_checkpoint().",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
help="""Path to bpe.model.
|
||||||
|
Used only when method is ctc-decoding.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- beam_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"sound_files",
|
||||||
|
type=str,
|
||||||
|
nargs="+",
|
||||||
|
help="The input sound file(s) to transcribe. "
|
||||||
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
|
"For example, wav and flac are supported. "
|
||||||
|
"The sample rate has to be 16kHz.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sample-rate",
|
||||||
|
type=int,
|
||||||
|
default=16000,
|
||||||
|
help="The sample rate of the input sound file",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="Used only when --method is beam_search and modified_beam_search",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
|
"2 means tri-gram",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Maximum number of symbols per frame. Used only when
|
||||||
|
--method is greedy_search.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def read_sound_files(
|
||||||
|
filenames: List[str], expected_sample_rate: float
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||||
|
Args:
|
||||||
|
filenames:
|
||||||
|
A list of sound filenames.
|
||||||
|
expected_sample_rate:
|
||||||
|
The expected sample rate of the sound files.
|
||||||
|
Returns:
|
||||||
|
Return a list of 1-D float32 torch tensors.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
for f in filenames:
|
||||||
|
wave, sample_rate = torchaudio.load(f)
|
||||||
|
assert sample_rate == expected_sample_rate, (
|
||||||
|
f"expected sample rate: {expected_sample_rate}. "
|
||||||
|
f"Given: {sample_rate}"
|
||||||
|
)
|
||||||
|
# We use only the first channel
|
||||||
|
ans.append(wave[0])
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.unk_id = sp.piece_to_id("<unk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(f"{params}")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
logging.info("Creating model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||||
|
model.load_state_dict(checkpoint["model"], strict=False)
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
logging.info("Constructing Fbank computer")
|
||||||
|
opts = kaldifeat.FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = params.sample_rate
|
||||||
|
opts.mel_opts.num_bins = params.feature_dim
|
||||||
|
|
||||||
|
fbank = kaldifeat.Fbank(opts)
|
||||||
|
|
||||||
|
logging.info(f"Reading sound files: {params.sound_files}")
|
||||||
|
waves = read_sound_files(
|
||||||
|
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||||
|
)
|
||||||
|
waves = [w.to(device) for w in waves]
|
||||||
|
|
||||||
|
logging.info("Decoding started")
|
||||||
|
features = fbank(waves)
|
||||||
|
feature_lengths = [f.size(0) for f in features]
|
||||||
|
|
||||||
|
features = pad_sequence(
|
||||||
|
features, batch_first=True, padding_value=math.log(1e-10)
|
||||||
|
)
|
||||||
|
|
||||||
|
feature_lengths = torch.tensor(feature_lengths, device=device)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
|
x=features, x_lens=feature_lengths
|
||||||
|
)
|
||||||
|
|
||||||
|
num_waves = encoder_out.size(0)
|
||||||
|
hyps = []
|
||||||
|
msg = f"Using {params.method}"
|
||||||
|
if params.method == "beam_search":
|
||||||
|
msg += f" with beam size {params.beam_size}"
|
||||||
|
logging.info(msg)
|
||||||
|
|
||||||
|
if params.method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=8.0,
|
||||||
|
max_contexts=32,
|
||||||
|
max_states=8,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif params.method == "modified_beam_search":
|
||||||
|
hyp_tokens = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
|
hyp_tokens = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
else:
|
||||||
|
for i in range(num_waves):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported method: {params.method}")
|
||||||
|
|
||||||
|
hyps.append(sp.decode(hyp).split())
|
||||||
|
|
||||||
|
s = "\n"
|
||||||
|
for filename, hyp in zip(params.sound_files, hyps):
|
||||||
|
words = " ".join(hyp)
|
||||||
|
s += f"{filename}:\n{words}\n\n"
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
logging.info("Decoding Done")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
1
egs/librispeech/ASR/pruned_transducer_stateless3/scaling.py
Symbolic link
1
egs/librispeech/ASR/pruned_transducer_stateless3/scaling.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless2/scaling.py
|
1125
egs/librispeech/ASR/pruned_transducer_stateless3/train.py
Executable file
1125
egs/librispeech/ASR/pruned_transducer_stateless3/train.py
Executable file
File diff suppressed because it is too large
Load Diff
@ -11,7 +11,7 @@ graphviz==0.19.1
|
|||||||
-f https://download.pytorch.org/whl/cpu/torch_stable.html torch==1.10.0+cpu
|
-f https://download.pytorch.org/whl/cpu/torch_stable.html torch==1.10.0+cpu
|
||||||
-f https://download.pytorch.org/whl/cpu/torch_stable.html torchaudio==0.10.0+cpu
|
-f https://download.pytorch.org/whl/cpu/torch_stable.html torchaudio==0.10.0+cpu
|
||||||
|
|
||||||
-f https://k2-fsa.org/nightly/ k2==1.14.dev20220316+cpu.torch1.10.0
|
-f https://k2-fsa.org/nightly/ k2==1.15.1.dev20220426+cpu.torch1.10.0
|
||||||
|
|
||||||
git+https://github.com/lhotse-speech/lhotse
|
git+https://github.com/lhotse-speech/lhotse
|
||||||
kaldilm==1.11
|
kaldilm==1.11
|
||||||
|
Loading…
x
Reference in New Issue
Block a user