Refactoring.

This commit is contained in:
Fangjun Kuang 2022-03-23 11:10:01 +08:00
parent 3ae7265737
commit aa71eaaac7

View File

@ -56,13 +56,9 @@ import torch
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from beam_search import beam_search, greedy_search, modified_beam_search
from conformer import Conformer
from decoder import Decoder
from joiner import Joiner
from model import Transducer
from train import get_transducer_model, get_params
from icefall.checkpoint import average_checkpoints, load_checkpoint
from icefall.env import get_env_info
from icefall.utils import (
AttributeDict,
setup_logger,
@ -143,70 +139,6 @@ def get_parser():
return parser
def get_params() -> AttributeDict:
params = AttributeDict(
{
# parameters for conformer
"feature_dim": 80,
"encoder_out_dim": 512,
"subsampling_factor": 4,
"attention_dim": 512,
"nhead": 8,
"dim_feedforward": 2048,
"num_encoder_layers": 12,
"vgg_frontend": False,
"env_info": get_env_info(),
}
)
return params
def get_encoder_model(params: AttributeDict):
# TODO: We can add an option to switch between Conformer and Transformer
encoder = Conformer(
num_features=params.feature_dim,
output_dim=params.encoder_out_dim,
subsampling_factor=params.subsampling_factor,
d_model=params.attention_dim,
nhead=params.nhead,
dim_feedforward=params.dim_feedforward,
num_encoder_layers=params.num_encoder_layers,
vgg_frontend=params.vgg_frontend,
)
return encoder
def get_decoder_model(params: AttributeDict):
decoder = Decoder(
vocab_size=params.vocab_size,
embedding_dim=params.encoder_out_dim,
blank_id=params.blank_id,
context_size=params.context_size,
)
return decoder
def get_joiner_model(params: AttributeDict):
joiner = Joiner(
input_dim=params.encoder_out_dim,
output_dim=params.vocab_size,
)
return joiner
def get_transducer_model(params: AttributeDict):
encoder = get_encoder_model(params)
decoder = get_decoder_model(params)
joiner = get_joiner_model(params)
model = Transducer(
encoder=encoder,
decoder=decoder,
joiner=joiner,
)
return model
def decode_one_batch(
params: AttributeDict,
model: nn.Module,
@ -487,8 +419,5 @@ def main():
logging.info("Done!")
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
if __name__ == "__main__":
main()