diff --git a/egs/librispeech/ASR/.test.sh.swp b/egs/librispeech/ASR/.test.sh.swp index 38906f440..766ef8863 100644 Binary files a/egs/librispeech/ASR/.test.sh.swp and b/egs/librispeech/ASR/.test.sh.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp index 1cae70ff6..36f23c9db 100644 Binary files a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp and b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py index a80815416..636bb64ea 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py @@ -41,7 +41,6 @@ class TransformerEncoderAdapter(TransformerEncoder): for p in self.adapters.parameters(): #p.data = nn.Parameter(torch.zeros(p.size()).to('cuda')) p.data = nn.Parameter(torch.randn(p.size()).to('cuda')/100.) - print(p) def forward(self, x, padding_mask=None, layer=None, tgt_layer=None): x, layer_results = self.extract_features_with_adapter(