mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
Merge pull request #690 from desh2608/style_change
Apply new Black style changes
This commit is contained in:
commit
a7fbb18bdc
2
.git-blame-ignore-revs
Normal file
2
.git-blame-ignore-revs
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
# Migrate to 88 characters per line (see: https://github.com/lhotse-speech/lhotse/issues/890)
|
||||||
|
d110b04ad389134c82fa314e3aafc7b40043efb0
|
11
.github/workflows/style_check.yml
vendored
11
.github/workflows/style_check.yml
vendored
@ -45,17 +45,18 @@ jobs:
|
|||||||
|
|
||||||
- name: Install Python dependencies
|
- name: Install Python dependencies
|
||||||
run: |
|
run: |
|
||||||
python3 -m pip install --upgrade pip black==21.6b0 flake8==3.9.2 click==8.0.4
|
python3 -m pip install --upgrade pip black==22.3.0 flake8==5.0.4 click==8.1.0
|
||||||
# See https://github.com/psf/black/issues/2964
|
# Click issue fixed in https://github.com/psf/black/pull/2966
|
||||||
# The version of click should be selected from 8.0.0, 8.0.1, 8.0.2, 8.0.3, and 8.0.4
|
|
||||||
|
|
||||||
- name: Run flake8
|
- name: Run flake8
|
||||||
shell: bash
|
shell: bash
|
||||||
working-directory: ${{github.workspace}}
|
working-directory: ${{github.workspace}}
|
||||||
run: |
|
run: |
|
||||||
# stop the build if there are Python syntax errors or undefined names
|
# stop the build if there are Python syntax errors or undefined names
|
||||||
flake8 . --count --show-source --statistics
|
flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
|
||||||
flake8 .
|
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
|
||||||
|
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 \
|
||||||
|
--statistics --extend-ignore=E203,E266,E501,F401,E402,F403,F841,W503
|
||||||
|
|
||||||
- name: Run black
|
- name: Run black
|
||||||
shell: bash
|
shell: bash
|
||||||
|
@ -1,26 +1,38 @@
|
|||||||
repos:
|
repos:
|
||||||
- repo: https://github.com/psf/black
|
- repo: https://github.com/psf/black
|
||||||
rev: 21.6b0
|
rev: 22.3.0
|
||||||
hooks:
|
hooks:
|
||||||
- id: black
|
- id: black
|
||||||
args: [--line-length=80]
|
args: ["--line-length=88"]
|
||||||
additional_dependencies: ['click==8.0.1']
|
additional_dependencies: ['click==8.1.0']
|
||||||
exclude: icefall\/__init__\.py
|
exclude: icefall\/__init__\.py
|
||||||
|
|
||||||
- repo: https://github.com/PyCQA/flake8
|
- repo: https://github.com/PyCQA/flake8
|
||||||
rev: 3.9.2
|
rev: 5.0.4
|
||||||
hooks:
|
hooks:
|
||||||
- id: flake8
|
- id: flake8
|
||||||
args: [--max-line-length=80]
|
args: ["--max-line-length=88", "--extend-ignore=E203,E266,E501,F401,E402,F403,F841,W503"]
|
||||||
|
|
||||||
|
# What are we ignoring here?
|
||||||
|
# E203: whitespace before ':'
|
||||||
|
# E266: too many leading '#' for block comment
|
||||||
|
# E501: line too long
|
||||||
|
# F401: module imported but unused
|
||||||
|
# E402: module level import not at top of file
|
||||||
|
# F403: 'from module import *' used; unable to detect undefined names
|
||||||
|
# F841: local variable is assigned to but never used
|
||||||
|
# W503: line break before binary operator
|
||||||
|
# In addition, the default ignore list is:
|
||||||
|
# E121,E123,E126,E226,E24,E704,W503,W504
|
||||||
|
|
||||||
- repo: https://github.com/pycqa/isort
|
- repo: https://github.com/pycqa/isort
|
||||||
rev: 5.9.2
|
rev: 5.10.1
|
||||||
hooks:
|
hooks:
|
||||||
- id: isort
|
- id: isort
|
||||||
args: [--profile=black, --line-length=80]
|
args: ["--profile=black"]
|
||||||
|
|
||||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||||
rev: v4.0.1
|
rev: v4.2.0
|
||||||
hooks:
|
hooks:
|
||||||
- id: check-executables-have-shebangs
|
- id: check-executables-have-shebangs
|
||||||
- id: end-of-file-fixer
|
- id: end-of-file-fixer
|
||||||
|
@ -88,4 +88,3 @@ RUN git clone https://github.com/k2-fsa/icefall /workspace/icefall && \
|
|||||||
ENV PYTHONPATH /workspace/icefall:$PYTHONPATH
|
ENV PYTHONPATH /workspace/icefall:$PYTHONPATH
|
||||||
|
|
||||||
WORKDIR /workspace/icefall
|
WORKDIR /workspace/icefall
|
||||||
|
|
||||||
|
@ -19,4 +19,3 @@ It can be downloaded from `<https://www.openslr.org/33/>`_
|
|||||||
tdnn_lstm_ctc
|
tdnn_lstm_ctc
|
||||||
conformer_ctc
|
conformer_ctc
|
||||||
stateless_transducer
|
stateless_transducer
|
||||||
|
|
||||||
|
@ -6,4 +6,3 @@ TIMIT
|
|||||||
|
|
||||||
tdnn_ligru_ctc
|
tdnn_ligru_ctc
|
||||||
tdnn_lstm_ctc
|
tdnn_lstm_ctc
|
||||||
|
|
||||||
|
@ -87,9 +87,7 @@ def compute_fbank_aidatatang_200zh(num_mel_bins: int = 80):
|
|||||||
)
|
)
|
||||||
if "train" in partition:
|
if "train" in partition:
|
||||||
cut_set = (
|
cut_set = (
|
||||||
cut_set
|
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||||
+ cut_set.perturb_speed(0.9)
|
|
||||||
+ cut_set.perturb_speed(1.1)
|
|
||||||
)
|
)
|
||||||
cut_set = cut_set.compute_and_store_features(
|
cut_set = cut_set.compute_and_store_features(
|
||||||
extractor=extractor,
|
extractor=extractor,
|
||||||
@ -116,9 +114,7 @@ def get_args():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
@ -86,9 +86,7 @@ def lexicon_to_fst_no_sil(
|
|||||||
cur_state = loop_state
|
cur_state = loop_state
|
||||||
|
|
||||||
word = word2id[word]
|
word = word2id[word]
|
||||||
pieces = [
|
pieces = [token2id[i] if i in token2id else token2id["<unk>"] for i in pieces]
|
||||||
token2id[i] if i in token2id else token2id["<unk>"] for i in pieces
|
|
||||||
]
|
|
||||||
|
|
||||||
for i in range(len(pieces) - 1):
|
for i in range(len(pieces) - 1):
|
||||||
w = word if i == 0 else eps
|
w = word if i == 0 else eps
|
||||||
@ -142,9 +140,7 @@ def contain_oov(token_sym_table: Dict[str, int], tokens: List[str]) -> bool:
|
|||||||
return False
|
return False
|
||||||
|
|
||||||
|
|
||||||
def generate_lexicon(
|
def generate_lexicon(token_sym_table: Dict[str, int], words: List[str]) -> Lexicon:
|
||||||
token_sym_table: Dict[str, int], words: List[str]
|
|
||||||
) -> Lexicon:
|
|
||||||
"""Generate a lexicon from a word list and token_sym_table.
|
"""Generate a lexicon from a word list and token_sym_table.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
|
@ -317,9 +317,7 @@ def lexicon_to_fst(
|
|||||||
|
|
||||||
def get_args():
|
def get_args():
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument(
|
parser.add_argument("--lang-dir", type=str, help="The lang dir, data/lang_phone")
|
||||||
"--lang-dir", type=str, help="The lang dir, data/lang_phone"
|
|
||||||
)
|
|
||||||
return parser.parse_args()
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
@ -88,9 +88,7 @@ def test_read_lexicon(filename: str):
|
|||||||
fsa.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
fsa.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
||||||
fsa.draw("L.pdf", title="L")
|
fsa.draw("L.pdf", title="L")
|
||||||
|
|
||||||
fsa_disambig = lexicon_to_fst(
|
fsa_disambig = lexicon_to_fst(lexicon_disambig, phone2id=phone2id, word2id=word2id)
|
||||||
lexicon_disambig, phone2id=phone2id, word2id=word2id
|
|
||||||
)
|
|
||||||
fsa_disambig.labels_sym = k2.SymbolTable.from_file("phones.txt")
|
fsa_disambig.labels_sym = k2.SymbolTable.from_file("phones.txt")
|
||||||
fsa_disambig.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
fsa_disambig.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
||||||
fsa_disambig.draw("L_disambig.pdf", title="L_disambig")
|
fsa_disambig.draw("L_disambig.pdf", title="L_disambig")
|
||||||
|
@ -50,15 +50,15 @@ def get_parser():
|
|||||||
"-n",
|
"-n",
|
||||||
default=1,
|
default=1,
|
||||||
type=int,
|
type=int,
|
||||||
help="number of characters to split, i.e., \
|
help=(
|
||||||
aabb -> a a b b with -n 1 and aa bb with -n 2",
|
"number of characters to split, i.e., aabb -> a a b"
|
||||||
|
" b with -n 1 and aa bb with -n 2"
|
||||||
|
),
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--skip-ncols", "-s", default=0, type=int, help="skip first n columns"
|
"--skip-ncols", "-s", default=0, type=int, help="skip first n columns"
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument("--space", default="<space>", type=str, help="space symbol")
|
||||||
"--space", default="<space>", type=str, help="space symbol"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--non-lang-syms",
|
"--non-lang-syms",
|
||||||
"-l",
|
"-l",
|
||||||
@ -66,9 +66,7 @@ def get_parser():
|
|||||||
type=str,
|
type=str,
|
||||||
help="list of non-linguistic symobles, e.g., <NOISE> etc.",
|
help="list of non-linguistic symobles, e.g., <NOISE> etc.",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument("text", type=str, default=False, nargs="?", help="input text")
|
||||||
"text", type=str, default=False, nargs="?", help="input text"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--trans_type",
|
"--trans_type",
|
||||||
"-t",
|
"-t",
|
||||||
@ -108,8 +106,7 @@ def token2id(
|
|||||||
if token_type == "lazy_pinyin":
|
if token_type == "lazy_pinyin":
|
||||||
text = lazy_pinyin(chars_list)
|
text = lazy_pinyin(chars_list)
|
||||||
sub_ids = [
|
sub_ids = [
|
||||||
token_table[txt] if txt in token_table else oov_id
|
token_table[txt] if txt in token_table else oov_id for txt in text
|
||||||
for txt in text
|
|
||||||
]
|
]
|
||||||
ids.append(sub_ids)
|
ids.append(sub_ids)
|
||||||
else: # token_type = "pinyin"
|
else: # token_type = "pinyin"
|
||||||
@ -135,9 +132,7 @@ def main():
|
|||||||
if args.text:
|
if args.text:
|
||||||
f = codecs.open(args.text, encoding="utf-8")
|
f = codecs.open(args.text, encoding="utf-8")
|
||||||
else:
|
else:
|
||||||
f = codecs.getreader("utf-8")(
|
f = codecs.getreader("utf-8")(sys.stdin if is_python2 else sys.stdin.buffer)
|
||||||
sys.stdin if is_python2 else sys.stdin.buffer
|
|
||||||
)
|
|
||||||
|
|
||||||
sys.stdout = codecs.getwriter("utf-8")(
|
sys.stdout = codecs.getwriter("utf-8")(
|
||||||
sys.stdout if is_python2 else sys.stdout.buffer
|
sys.stdout if is_python2 else sys.stdout.buffer
|
||||||
|
@ -113,4 +113,3 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|||||||
./local/prepare_char.py
|
./local/prepare_char.py
|
||||||
fi
|
fi
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
@ -81,10 +81,12 @@ class Aidatatang_200zhAsrDataModule:
|
|||||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
group = parser.add_argument_group(
|
group = parser.add_argument_group(
|
||||||
title="ASR data related options",
|
title="ASR data related options",
|
||||||
description="These options are used for the preparation of "
|
description=(
|
||||||
|
"These options are used for the preparation of "
|
||||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
"effective batch sizes, sampling strategies, applied data "
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
"augmentations, etc.",
|
"augmentations, etc."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--manifest-dir",
|
"--manifest-dir",
|
||||||
@ -96,75 +98,91 @@ class Aidatatang_200zhAsrDataModule:
|
|||||||
"--max-duration",
|
"--max-duration",
|
||||||
type=int,
|
type=int,
|
||||||
default=200.0,
|
default=200.0,
|
||||||
help="Maximum pooled recordings duration (seconds) in a "
|
help=(
|
||||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
"Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--bucketing-sampler",
|
"--bucketing-sampler",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled, the batches will come from buckets of "
|
help=(
|
||||||
"similar duration (saves padding frames).",
|
"When enabled, the batches will come from buckets of "
|
||||||
|
"similar duration (saves padding frames)."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--num-buckets",
|
"--num-buckets",
|
||||||
type=int,
|
type=int,
|
||||||
default=300,
|
default=300,
|
||||||
help="The number of buckets for the DynamicBucketingSampler"
|
help=(
|
||||||
"(you might want to increase it for larger datasets).",
|
"The number of buckets for the DynamicBucketingSampler"
|
||||||
|
"(you might want to increase it for larger datasets)."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--concatenate-cuts",
|
"--concatenate-cuts",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=False,
|
default=False,
|
||||||
help="When enabled, utterances (cuts) will be concatenated "
|
help=(
|
||||||
"to minimize the amount of padding.",
|
"When enabled, utterances (cuts) will be concatenated "
|
||||||
|
"to minimize the amount of padding."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--duration-factor",
|
"--duration-factor",
|
||||||
type=float,
|
type=float,
|
||||||
default=1.0,
|
default=1.0,
|
||||||
help="Determines the maximum duration of a concatenated cut "
|
help=(
|
||||||
"relative to the duration of the longest cut in a batch.",
|
"Determines the maximum duration of a concatenated cut "
|
||||||
|
"relative to the duration of the longest cut in a batch."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--gap",
|
"--gap",
|
||||||
type=float,
|
type=float,
|
||||||
default=1.0,
|
default=1.0,
|
||||||
help="The amount of padding (in seconds) inserted between "
|
help=(
|
||||||
|
"The amount of padding (in seconds) inserted between "
|
||||||
"concatenated cuts. This padding is filled with noise when "
|
"concatenated cuts. This padding is filled with noise when "
|
||||||
"noise augmentation is used.",
|
"noise augmentation is used."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--on-the-fly-feats",
|
"--on-the-fly-feats",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=False,
|
default=False,
|
||||||
help="When enabled, use on-the-fly cut mixing and feature "
|
help=(
|
||||||
|
"When enabled, use on-the-fly cut mixing and feature "
|
||||||
"extraction. Will drop existing precomputed feature manifests "
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
"if available.",
|
"if available."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--shuffle",
|
"--shuffle",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled (=default), the examples will be "
|
help=(
|
||||||
"shuffled for each epoch.",
|
"When enabled (=default), the examples will be shuffled for each epoch."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--return-cuts",
|
"--return-cuts",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled, each batch will have the "
|
help=(
|
||||||
|
"When enabled, each batch will have the "
|
||||||
"field: batch['supervisions']['cut'] with the cuts that "
|
"field: batch['supervisions']['cut'] with the cuts that "
|
||||||
"were used to construct it.",
|
"were used to construct it."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--num-workers",
|
"--num-workers",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The number of training dataloader workers that "
|
help="The number of training dataloader workers that collect the batches.",
|
||||||
"collect the batches.",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
@ -178,18 +196,22 @@ class Aidatatang_200zhAsrDataModule:
|
|||||||
"--spec-aug-time-warp-factor",
|
"--spec-aug-time-warp-factor",
|
||||||
type=int,
|
type=int,
|
||||||
default=80,
|
default=80,
|
||||||
help="Used only when --enable-spec-aug is True. "
|
help=(
|
||||||
|
"Used only when --enable-spec-aug is True. "
|
||||||
"It specifies the factor for time warping in SpecAugment. "
|
"It specifies the factor for time warping in SpecAugment. "
|
||||||
"Larger values mean more warping. "
|
"Larger values mean more warping. "
|
||||||
"A value less than 1 means to disable time warp.",
|
"A value less than 1 means to disable time warp."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--enable-musan",
|
"--enable-musan",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled, select noise from MUSAN and mix it"
|
help=(
|
||||||
"with training dataset. ",
|
"When enabled, select noise from MUSAN and mix it"
|
||||||
|
"with training dataset. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
def train_dataloaders(
|
def train_dataloaders(
|
||||||
@ -205,24 +227,20 @@ class Aidatatang_200zhAsrDataModule:
|
|||||||
The state dict for the training sampler.
|
The state dict for the training sampler.
|
||||||
"""
|
"""
|
||||||
logging.info("About to get Musan cuts")
|
logging.info("About to get Musan cuts")
|
||||||
cuts_musan = load_manifest(
|
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||||
self.args.manifest_dir / "musan_cuts.jsonl.gz"
|
|
||||||
)
|
|
||||||
|
|
||||||
transforms = []
|
transforms = []
|
||||||
if self.args.enable_musan:
|
if self.args.enable_musan:
|
||||||
logging.info("Enable MUSAN")
|
logging.info("Enable MUSAN")
|
||||||
transforms.append(
|
transforms.append(
|
||||||
CutMix(
|
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||||
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
|
|
||||||
)
|
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Disable MUSAN")
|
logging.info("Disable MUSAN")
|
||||||
|
|
||||||
if self.args.concatenate_cuts:
|
if self.args.concatenate_cuts:
|
||||||
logging.info(
|
logging.info(
|
||||||
f"Using cut concatenation with duration factor "
|
"Using cut concatenation with duration factor "
|
||||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||||
)
|
)
|
||||||
# Cut concatenation should be the first transform in the list,
|
# Cut concatenation should be the first transform in the list,
|
||||||
@ -237,9 +255,7 @@ class Aidatatang_200zhAsrDataModule:
|
|||||||
input_transforms = []
|
input_transforms = []
|
||||||
if self.args.enable_spec_aug:
|
if self.args.enable_spec_aug:
|
||||||
logging.info("Enable SpecAugment")
|
logging.info("Enable SpecAugment")
|
||||||
logging.info(
|
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||||
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
|
||||||
)
|
|
||||||
# Set the value of num_frame_masks according to Lhotse's version.
|
# Set the value of num_frame_masks according to Lhotse's version.
|
||||||
# In different Lhotse's versions, the default of num_frame_masks is
|
# In different Lhotse's versions, the default of num_frame_masks is
|
||||||
# different.
|
# different.
|
||||||
@ -282,9 +298,7 @@ class Aidatatang_200zhAsrDataModule:
|
|||||||
# Drop feats to be on the safe side.
|
# Drop feats to be on the safe side.
|
||||||
train = K2SpeechRecognitionDataset(
|
train = K2SpeechRecognitionDataset(
|
||||||
cut_transforms=transforms,
|
cut_transforms=transforms,
|
||||||
input_strategy=OnTheFlyFeatures(
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
|
||||||
),
|
|
||||||
input_transforms=input_transforms,
|
input_transforms=input_transforms,
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
@ -340,9 +354,7 @@ class Aidatatang_200zhAsrDataModule:
|
|||||||
if self.args.on_the_fly_feats:
|
if self.args.on_the_fly_feats:
|
||||||
validate = K2SpeechRecognitionDataset(
|
validate = K2SpeechRecognitionDataset(
|
||||||
cut_transforms=transforms,
|
cut_transforms=transforms,
|
||||||
input_strategy=OnTheFlyFeatures(
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
|
||||||
),
|
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
|
@ -69,11 +69,7 @@ from beam_search import (
|
|||||||
)
|
)
|
||||||
from train import get_params, get_transducer_model
|
from train import get_params, get_transducer_model
|
||||||
|
|
||||||
from icefall.checkpoint import (
|
from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint
|
||||||
average_checkpoints,
|
|
||||||
find_checkpoints,
|
|
||||||
load_checkpoint,
|
|
||||||
)
|
|
||||||
from icefall.lexicon import Lexicon
|
from icefall.lexicon import Lexicon
|
||||||
from icefall.utils import (
|
from icefall.utils import (
|
||||||
AttributeDict,
|
AttributeDict,
|
||||||
@ -92,25 +88,30 @@ def get_parser():
|
|||||||
"--epoch",
|
"--epoch",
|
||||||
type=int,
|
type=int,
|
||||||
default=28,
|
default=28,
|
||||||
help="It specifies the checkpoint to use for decoding."
|
help=(
|
||||||
"Note: Epoch counts from 0.",
|
"It specifies the checkpoint to use for decoding.Note: Epoch counts from 0."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--batch",
|
"--batch",
|
||||||
type=int,
|
type=int,
|
||||||
default=None,
|
default=None,
|
||||||
help="It specifies the batch checkpoint to use for decoding."
|
help=(
|
||||||
"Note: Epoch counts from 0.",
|
"It specifies the batch checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=15,
|
default=15,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help=(
|
||||||
|
"Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch'. ",
|
"'--epoch'. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -192,8 +193,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
@ -249,9 +249,7 @@ def decode_one_batch(
|
|||||||
supervisions = batch["supervisions"]
|
supervisions = batch["supervisions"]
|
||||||
feature_lens = supervisions["num_frames"].to(device)
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
encoder_out, encoder_out_lens = model.encoder(
|
encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
|
||||||
x=feature, x_lens=feature_lens
|
|
||||||
)
|
|
||||||
hyps = []
|
hyps = []
|
||||||
|
|
||||||
if params.decoding_method == "fast_beam_search":
|
if params.decoding_method == "fast_beam_search":
|
||||||
@ -266,10 +264,7 @@ def decode_one_batch(
|
|||||||
)
|
)
|
||||||
for i in range(encoder_out.size(0)):
|
for i in range(encoder_out.size(0)):
|
||||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||||
elif (
|
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
params.decoding_method == "greedy_search"
|
|
||||||
and params.max_sym_per_frame == 1
|
|
||||||
):
|
|
||||||
hyp_tokens = greedy_search_batch(
|
hyp_tokens = greedy_search_batch(
|
||||||
model=model,
|
model=model,
|
||||||
encoder_out=encoder_out,
|
encoder_out=encoder_out,
|
||||||
@ -315,11 +310,7 @@ def decode_one_batch(
|
|||||||
return {"greedy_search": hyps}
|
return {"greedy_search": hyps}
|
||||||
elif params.decoding_method == "fast_beam_search":
|
elif params.decoding_method == "fast_beam_search":
|
||||||
return {
|
return {
|
||||||
(
|
f"beam_{params.beam}_max_contexts_{params.max_contexts}_max_states_{params.max_states}": hyps
|
||||||
f"beam_{params.beam}_"
|
|
||||||
f"max_contexts_{params.max_contexts}_"
|
|
||||||
f"max_states_{params.max_states}"
|
|
||||||
): hyps
|
|
||||||
}
|
}
|
||||||
else:
|
else:
|
||||||
return {f"beam_size_{params.beam_size}": hyps}
|
return {f"beam_size_{params.beam_size}": hyps}
|
||||||
@ -390,9 +381,7 @@ def decode_dataset(
|
|||||||
if batch_idx % log_interval == 0:
|
if batch_idx % log_interval == 0:
|
||||||
batch_str = f"{batch_idx}/{num_batches}"
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
logging.info(
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
|
||||||
)
|
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
@ -425,8 +414,7 @@ def save_results(
|
|||||||
|
|
||||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
errs_info = (
|
errs_info = (
|
||||||
params.res_dir
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
)
|
||||||
with open(errs_info, "w") as f:
|
with open(errs_info, "w") as f:
|
||||||
print("settings\tWER", file=f)
|
print("settings\tWER", file=f)
|
||||||
|
@ -62,17 +62,20 @@ def get_parser():
|
|||||||
"--epoch",
|
"--epoch",
|
||||||
type=int,
|
type=int,
|
||||||
default=28,
|
default=28,
|
||||||
help="It specifies the checkpoint to use for decoding."
|
help=(
|
||||||
"Note: Epoch counts from 0.",
|
"It specifies the checkpoint to use for decoding.Note: Epoch counts from 0."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=15,
|
default=15,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help=(
|
||||||
|
"Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch'. ",
|
"'--epoch'. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -103,8 +106,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
@ -173,9 +175,7 @@ def main():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
main()
|
main()
|
||||||
|
@ -85,9 +85,11 @@ def get_parser():
|
|||||||
"--checkpoint",
|
"--checkpoint",
|
||||||
type=str,
|
type=str,
|
||||||
required=True,
|
required=True,
|
||||||
help="Path to the checkpoint. "
|
help=(
|
||||||
|
"Path to the checkpoint. "
|
||||||
"The checkpoint is assumed to be saved by "
|
"The checkpoint is assumed to be saved by "
|
||||||
"icefall.checkpoint.save_checkpoint().",
|
"icefall.checkpoint.save_checkpoint()."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -112,10 +114,12 @@ def get_parser():
|
|||||||
"sound_files",
|
"sound_files",
|
||||||
type=str,
|
type=str,
|
||||||
nargs="+",
|
nargs="+",
|
||||||
help="The input sound file(s) to transcribe. "
|
help=(
|
||||||
|
"The input sound file(s) to transcribe. "
|
||||||
"Supported formats are those supported by torchaudio.load(). "
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
"For example, wav and flac are supported. "
|
"For example, wav and flac are supported. "
|
||||||
"The sample rate has to be 16kHz.",
|
"The sample rate has to be 16kHz."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -162,8 +166,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -193,10 +196,9 @@ def read_sound_files(
|
|||||||
ans = []
|
ans = []
|
||||||
for f in filenames:
|
for f in filenames:
|
||||||
wave, sample_rate = torchaudio.load(f)
|
wave, sample_rate = torchaudio.load(f)
|
||||||
assert sample_rate == expected_sample_rate, (
|
assert (
|
||||||
f"expected sample rate: {expected_sample_rate}. "
|
sample_rate == expected_sample_rate
|
||||||
f"Given: {sample_rate}"
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||||
)
|
|
||||||
# We use only the first channel
|
# We use only the first channel
|
||||||
ans.append(wave[0])
|
ans.append(wave[0])
|
||||||
return ans
|
return ans
|
||||||
@ -257,9 +259,7 @@ def main():
|
|||||||
features = fbank(waves)
|
features = fbank(waves)
|
||||||
feature_lengths = [f.size(0) for f in features]
|
feature_lengths = [f.size(0) for f in features]
|
||||||
|
|
||||||
features = pad_sequence(
|
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||||
features, batch_first=True, padding_value=math.log(1e-10)
|
|
||||||
)
|
|
||||||
|
|
||||||
feature_lengths = torch.tensor(feature_lengths, device=device)
|
feature_lengths = torch.tensor(feature_lengths, device=device)
|
||||||
|
|
||||||
@ -284,10 +284,7 @@ def main():
|
|||||||
)
|
)
|
||||||
for i in range(encoder_out.size(0)):
|
for i in range(encoder_out.size(0)):
|
||||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||||
elif (
|
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
params.decoding_method == "greedy_search"
|
|
||||||
and params.max_sym_per_frame == 1
|
|
||||||
):
|
|
||||||
hyp_tokens = greedy_search_batch(
|
hyp_tokens = greedy_search_batch(
|
||||||
model=model,
|
model=model,
|
||||||
encoder_out=encoder_out,
|
encoder_out=encoder_out,
|
||||||
@ -339,9 +336,7 @@ def main():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
main()
|
main()
|
||||||
|
@ -81,9 +81,7 @@ from icefall.env import get_env_info
|
|||||||
from icefall.lexicon import Lexicon
|
from icefall.lexicon import Lexicon
|
||||||
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
||||||
|
|
||||||
LRSchedulerType = Union[
|
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
|
||||||
torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler
|
|
||||||
]
|
|
||||||
|
|
||||||
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
||||||
|
|
||||||
@ -187,42 +185,45 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--prune-range",
|
"--prune-range",
|
||||||
type=int,
|
type=int,
|
||||||
default=5,
|
default=5,
|
||||||
help="The prune range for rnnt loss, it means how many symbols(context)"
|
help=(
|
||||||
"we are using to compute the loss",
|
"The prune range for rnnt loss, it means how many symbols(context)"
|
||||||
|
"we are using to compute the loss"
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--lm-scale",
|
"--lm-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.25,
|
default=0.25,
|
||||||
help="The scale to smooth the loss with lm "
|
help=(
|
||||||
"(output of prediction network) part.",
|
"The scale to smooth the loss with lm (output of prediction network) part."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--am-scale",
|
"--am-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.0,
|
default=0.0,
|
||||||
help="The scale to smooth the loss with am (output of encoder network)"
|
help="The scale to smooth the loss with am (output of encoder network)part.",
|
||||||
"part.",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--simple-loss-scale",
|
"--simple-loss-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.5,
|
default=0.5,
|
||||||
help="To get pruning ranges, we will calculate a simple version"
|
help=(
|
||||||
|
"To get pruning ranges, we will calculate a simple version"
|
||||||
"loss(joiner is just addition), this simple loss also uses for"
|
"loss(joiner is just addition), this simple loss also uses for"
|
||||||
"training (as a regularization item). We will scale the simple loss"
|
"training (as a regularization item). We will scale the simple loss"
|
||||||
"with this parameter before adding to the final loss.",
|
"with this parameter before adding to the final loss."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -542,22 +543,15 @@ def compute_loss(
|
|||||||
# overwhelming the simple_loss and causing it to diverge,
|
# overwhelming the simple_loss and causing it to diverge,
|
||||||
# in case it had not fully learned the alignment yet.
|
# in case it had not fully learned the alignment yet.
|
||||||
pruned_loss_scale = (
|
pruned_loss_scale = (
|
||||||
0.0
|
0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
|
||||||
if warmup < 1.0
|
|
||||||
else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
|
|
||||||
)
|
|
||||||
loss = (
|
|
||||||
params.simple_loss_scale * simple_loss
|
|
||||||
+ pruned_loss_scale * pruned_loss
|
|
||||||
)
|
)
|
||||||
|
loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
|
||||||
assert loss.requires_grad == is_training
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
info = MetricsTracker()
|
info = MetricsTracker()
|
||||||
with warnings.catch_warnings():
|
with warnings.catch_warnings():
|
||||||
warnings.simplefilter("ignore")
|
warnings.simplefilter("ignore")
|
||||||
info["frames"] = (
|
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
||||||
(feature_lens // params.subsampling_factor).sum().item()
|
|
||||||
)
|
|
||||||
|
|
||||||
# Note: We use reduction=sum while computing the loss.
|
# Note: We use reduction=sum while computing the loss.
|
||||||
info["loss"] = loss.detach().cpu().item()
|
info["loss"] = loss.detach().cpu().item()
|
||||||
@ -711,9 +705,7 @@ def train_one_epoch(
|
|||||||
loss_info.write_summary(
|
loss_info.write_summary(
|
||||||
tb_writer, "train/current_", params.batch_idx_train
|
tb_writer, "train/current_", params.batch_idx_train
|
||||||
)
|
)
|
||||||
tot_loss.write_summary(
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||||
tb_writer, "train/tot_", params.batch_idx_train
|
|
||||||
)
|
|
||||||
|
|
||||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||||
logging.info("Computing validation loss")
|
logging.info("Computing validation loss")
|
||||||
@ -813,7 +805,7 @@ def run(rank, world_size, args):
|
|||||||
|
|
||||||
if params.print_diagnostics:
|
if params.print_diagnostics:
|
||||||
opts = diagnostics.TensorDiagnosticOptions(
|
opts = diagnostics.TensorDiagnosticOptions(
|
||||||
2 ** 22
|
2**22
|
||||||
) # allow 4 megabytes per sub-module
|
) # allow 4 megabytes per sub-module
|
||||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||||
|
|
||||||
|
@ -157,9 +157,7 @@ class ConformerEncoderLayer(nn.Module):
|
|||||||
normalize_before: bool = True,
|
normalize_before: bool = True,
|
||||||
) -> None:
|
) -> None:
|
||||||
super(ConformerEncoderLayer, self).__init__()
|
super(ConformerEncoderLayer, self).__init__()
|
||||||
self.self_attn = RelPositionMultiheadAttention(
|
self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0)
|
||||||
d_model, nhead, dropout=0.0
|
|
||||||
)
|
|
||||||
|
|
||||||
self.feed_forward = nn.Sequential(
|
self.feed_forward = nn.Sequential(
|
||||||
nn.Linear(d_model, dim_feedforward),
|
nn.Linear(d_model, dim_feedforward),
|
||||||
@ -177,18 +175,14 @@ class ConformerEncoderLayer(nn.Module):
|
|||||||
|
|
||||||
self.conv_module = ConvolutionModule(d_model, cnn_module_kernel)
|
self.conv_module = ConvolutionModule(d_model, cnn_module_kernel)
|
||||||
|
|
||||||
self.norm_ff_macaron = nn.LayerNorm(
|
self.norm_ff_macaron = nn.LayerNorm(d_model) # for the macaron style FNN module
|
||||||
d_model
|
|
||||||
) # for the macaron style FNN module
|
|
||||||
self.norm_ff = nn.LayerNorm(d_model) # for the FNN module
|
self.norm_ff = nn.LayerNorm(d_model) # for the FNN module
|
||||||
self.norm_mha = nn.LayerNorm(d_model) # for the MHA module
|
self.norm_mha = nn.LayerNorm(d_model) # for the MHA module
|
||||||
|
|
||||||
self.ff_scale = 0.5
|
self.ff_scale = 0.5
|
||||||
|
|
||||||
self.norm_conv = nn.LayerNorm(d_model) # for the CNN module
|
self.norm_conv = nn.LayerNorm(d_model) # for the CNN module
|
||||||
self.norm_final = nn.LayerNorm(
|
self.norm_final = nn.LayerNorm(d_model) # for the final output of the block
|
||||||
d_model
|
|
||||||
) # for the final output of the block
|
|
||||||
|
|
||||||
self.dropout = nn.Dropout(dropout)
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
|
||||||
@ -222,9 +216,7 @@ class ConformerEncoderLayer(nn.Module):
|
|||||||
residual = src
|
residual = src
|
||||||
if self.normalize_before:
|
if self.normalize_before:
|
||||||
src = self.norm_ff_macaron(src)
|
src = self.norm_ff_macaron(src)
|
||||||
src = residual + self.ff_scale * self.dropout(
|
src = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(src))
|
||||||
self.feed_forward_macaron(src)
|
|
||||||
)
|
|
||||||
if not self.normalize_before:
|
if not self.normalize_before:
|
||||||
src = self.norm_ff_macaron(src)
|
src = self.norm_ff_macaron(src)
|
||||||
|
|
||||||
@ -343,9 +335,7 @@ class RelPositionalEncoding(torch.nn.Module):
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(
|
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None:
|
||||||
self, d_model: int, dropout_rate: float, max_len: int = 5000
|
|
||||||
) -> None:
|
|
||||||
"""Construct an PositionalEncoding object."""
|
"""Construct an PositionalEncoding object."""
|
||||||
super(RelPositionalEncoding, self).__init__()
|
super(RelPositionalEncoding, self).__init__()
|
||||||
self.d_model = d_model
|
self.d_model = d_model
|
||||||
@ -361,9 +351,7 @@ class RelPositionalEncoding(torch.nn.Module):
|
|||||||
# the length of self.pe is 2 * input_len - 1
|
# the length of self.pe is 2 * input_len - 1
|
||||||
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
||||||
# Note: TorchScript doesn't implement operator== for torch.Device
|
# Note: TorchScript doesn't implement operator== for torch.Device
|
||||||
if self.pe.dtype != x.dtype or str(self.pe.device) != str(
|
if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device):
|
||||||
x.device
|
|
||||||
):
|
|
||||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||||
return
|
return
|
||||||
# Suppose `i` means to the position of query vector and `j` means the
|
# Suppose `i` means to the position of query vector and `j` means the
|
||||||
@ -633,9 +621,9 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
|
|
||||||
if torch.equal(query, key) and torch.equal(key, value):
|
if torch.equal(query, key) and torch.equal(key, value):
|
||||||
# self-attention
|
# self-attention
|
||||||
q, k, v = nn.functional.linear(
|
q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk(
|
||||||
query, in_proj_weight, in_proj_bias
|
3, dim=-1
|
||||||
).chunk(3, dim=-1)
|
)
|
||||||
|
|
||||||
elif torch.equal(key, value):
|
elif torch.equal(key, value):
|
||||||
# encoder-decoder attention
|
# encoder-decoder attention
|
||||||
@ -703,33 +691,25 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
if attn_mask.dim() == 2:
|
if attn_mask.dim() == 2:
|
||||||
attn_mask = attn_mask.unsqueeze(0)
|
attn_mask = attn_mask.unsqueeze(0)
|
||||||
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
||||||
raise RuntimeError(
|
raise RuntimeError("The size of the 2D attn_mask is not correct.")
|
||||||
"The size of the 2D attn_mask is not correct."
|
|
||||||
)
|
|
||||||
elif attn_mask.dim() == 3:
|
elif attn_mask.dim() == 3:
|
||||||
if list(attn_mask.size()) != [
|
if list(attn_mask.size()) != [
|
||||||
bsz * num_heads,
|
bsz * num_heads,
|
||||||
query.size(0),
|
query.size(0),
|
||||||
key.size(0),
|
key.size(0),
|
||||||
]:
|
]:
|
||||||
raise RuntimeError(
|
raise RuntimeError("The size of the 3D attn_mask is not correct.")
|
||||||
"The size of the 3D attn_mask is not correct."
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
raise RuntimeError(
|
raise RuntimeError(
|
||||||
"attn_mask's dimension {} is not supported".format(
|
"attn_mask's dimension {} is not supported".format(attn_mask.dim())
|
||||||
attn_mask.dim()
|
|
||||||
)
|
|
||||||
)
|
)
|
||||||
# attn_mask's dim is 3 now.
|
# attn_mask's dim is 3 now.
|
||||||
|
|
||||||
# convert ByteTensor key_padding_mask to bool
|
# convert ByteTensor key_padding_mask to bool
|
||||||
if (
|
if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
|
||||||
key_padding_mask is not None
|
|
||||||
and key_padding_mask.dtype == torch.uint8
|
|
||||||
):
|
|
||||||
warnings.warn(
|
warnings.warn(
|
||||||
"Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
|
"Byte tensor for key_padding_mask is deprecated. Use bool tensor"
|
||||||
|
" instead."
|
||||||
)
|
)
|
||||||
key_padding_mask = key_padding_mask.to(torch.bool)
|
key_padding_mask = key_padding_mask.to(torch.bool)
|
||||||
|
|
||||||
@ -766,9 +746,7 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
# first compute matrix a and matrix c
|
# first compute matrix a and matrix c
|
||||||
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||||
k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2)
|
k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2)
|
||||||
matrix_ac = torch.matmul(
|
matrix_ac = torch.matmul(q_with_bias_u, k) # (batch, head, time1, time2)
|
||||||
q_with_bias_u, k
|
|
||||||
) # (batch, head, time1, time2)
|
|
||||||
|
|
||||||
# compute matrix b and matrix d
|
# compute matrix b and matrix d
|
||||||
matrix_bd = torch.matmul(
|
matrix_bd = torch.matmul(
|
||||||
@ -780,9 +758,7 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
matrix_ac + matrix_bd
|
matrix_ac + matrix_bd
|
||||||
) * scaling # (batch, head, time1, time2)
|
) * scaling # (batch, head, time1, time2)
|
||||||
|
|
||||||
attn_output_weights = attn_output_weights.view(
|
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1)
|
||||||
bsz * num_heads, tgt_len, -1
|
|
||||||
)
|
|
||||||
|
|
||||||
assert list(attn_output_weights.size()) == [
|
assert list(attn_output_weights.size()) == [
|
||||||
bsz * num_heads,
|
bsz * num_heads,
|
||||||
@ -816,13 +792,9 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
attn_output = torch.bmm(attn_output_weights, v)
|
attn_output = torch.bmm(attn_output_weights, v)
|
||||||
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
|
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
|
||||||
attn_output = (
|
attn_output = (
|
||||||
attn_output.transpose(0, 1)
|
attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
||||||
.contiguous()
|
|
||||||
.view(tgt_len, bsz, embed_dim)
|
|
||||||
)
|
|
||||||
attn_output = nn.functional.linear(
|
|
||||||
attn_output, out_proj_weight, out_proj_bias
|
|
||||||
)
|
)
|
||||||
|
attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias)
|
||||||
|
|
||||||
if need_weights:
|
if need_weights:
|
||||||
# average attention weights over heads
|
# average attention weights over heads
|
||||||
@ -845,9 +817,7 @@ class ConvolutionModule(nn.Module):
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(
|
def __init__(self, channels: int, kernel_size: int, bias: bool = True) -> None:
|
||||||
self, channels: int, kernel_size: int, bias: bool = True
|
|
||||||
) -> None:
|
|
||||||
"""Construct an ConvolutionModule object."""
|
"""Construct an ConvolutionModule object."""
|
||||||
super(ConvolutionModule, self).__init__()
|
super(ConvolutionModule, self).__init__()
|
||||||
# kernerl_size should be a odd number for 'SAME' padding
|
# kernerl_size should be a odd number for 'SAME' padding
|
||||||
|
@ -58,16 +58,19 @@ def get_parser():
|
|||||||
"--epoch",
|
"--epoch",
|
||||||
type=int,
|
type=int,
|
||||||
default=49,
|
default=49,
|
||||||
help="It specifies the checkpoint to use for decoding."
|
help=(
|
||||||
"Note: Epoch counts from 0.",
|
"It specifies the checkpoint to use for decoding.Note: Epoch counts from 0."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=20,
|
default=20,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help=(
|
||||||
|
"Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch'. ",
|
"'--epoch'. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -401,9 +404,7 @@ def decode_dataset(
|
|||||||
if batch_idx % 100 == 0:
|
if batch_idx % 100 == 0:
|
||||||
batch_str = f"{batch_idx}/{num_batches}"
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
logging.info(
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
|
||||||
)
|
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
@ -431,9 +432,7 @@ def save_results(
|
|||||||
# we compute CER for aishell dataset.
|
# we compute CER for aishell dataset.
|
||||||
results_char = []
|
results_char = []
|
||||||
for res in results:
|
for res in results:
|
||||||
results_char.append(
|
results_char.append((res[0], list("".join(res[1])), list("".join(res[2]))))
|
||||||
(res[0], list("".join(res[1])), list("".join(res[2])))
|
|
||||||
)
|
|
||||||
with open(errs_filename, "w") as f:
|
with open(errs_filename, "w") as f:
|
||||||
wer = write_error_stats(
|
wer = write_error_stats(
|
||||||
f, f"{test_set_name}-{key}", results_char, enable_log=enable_log
|
f, f"{test_set_name}-{key}", results_char, enable_log=enable_log
|
||||||
@ -441,9 +440,7 @@ def save_results(
|
|||||||
test_set_wers[key] = wer
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
if enable_log:
|
if enable_log:
|
||||||
logging.info(
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
"Wrote detailed error stats to {}".format(errs_filename)
|
|
||||||
)
|
|
||||||
|
|
||||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
errs_info = params.exp_dir / f"cer-summary-{test_set_name}.txt"
|
errs_info = params.exp_dir / f"cer-summary-{test_set_name}.txt"
|
||||||
@ -562,9 +559,7 @@ def main():
|
|||||||
eos_id=eos_id,
|
eos_id=eos_id,
|
||||||
)
|
)
|
||||||
|
|
||||||
save_results(
|
save_results(params=params, test_set_name=test_set, results_dict=results_dict)
|
||||||
params=params, test_set_name=test_set, results_dict=results_dict
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.info("Done!")
|
logging.info("Done!")
|
||||||
|
|
||||||
|
@ -40,17 +40,20 @@ def get_parser():
|
|||||||
"--epoch",
|
"--epoch",
|
||||||
type=int,
|
type=int,
|
||||||
default=84,
|
default=84,
|
||||||
help="It specifies the checkpoint to use for decoding."
|
help=(
|
||||||
"Note: Epoch counts from 0.",
|
"It specifies the checkpoint to use for decoding.Note: Epoch counts from 0."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=25,
|
default=25,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help=(
|
||||||
|
"Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch'. ",
|
"'--epoch'. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -157,9 +160,7 @@ def main():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
main()
|
main()
|
||||||
|
@ -46,27 +46,29 @@ def get_parser():
|
|||||||
"--checkpoint",
|
"--checkpoint",
|
||||||
type=str,
|
type=str,
|
||||||
required=True,
|
required=True,
|
||||||
help="Path to the checkpoint. "
|
help=(
|
||||||
|
"Path to the checkpoint. "
|
||||||
"The checkpoint is assumed to be saved by "
|
"The checkpoint is assumed to be saved by "
|
||||||
"icefall.checkpoint.save_checkpoint().",
|
"icefall.checkpoint.save_checkpoint()."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--tokens-file",
|
"--tokens-file",
|
||||||
type=str,
|
type=str,
|
||||||
help="Path to tokens.txt" "Used only when method is ctc-decoding",
|
help="Path to tokens.txtUsed only when method is ctc-decoding",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--words-file",
|
"--words-file",
|
||||||
type=str,
|
type=str,
|
||||||
help="Path to words.txt" "Used when method is NOT ctc-decoding",
|
help="Path to words.txtUsed when method is NOT ctc-decoding",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--HLG",
|
"--HLG",
|
||||||
type=str,
|
type=str,
|
||||||
help="Path to HLG.pt." "Used when method is NOT ctc-decoding",
|
help="Path to HLG.pt.Used when method is NOT ctc-decoding",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -163,10 +165,12 @@ def get_parser():
|
|||||||
"sound_files",
|
"sound_files",
|
||||||
type=str,
|
type=str,
|
||||||
nargs="+",
|
nargs="+",
|
||||||
help="The input sound file(s) to transcribe. "
|
help=(
|
||||||
|
"The input sound file(s) to transcribe. "
|
||||||
"Supported formats are those supported by torchaudio.load(). "
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
"For example, wav and flac are supported. "
|
"For example, wav and flac are supported. "
|
||||||
"The sample rate has to be 16kHz.",
|
"The sample rate has to be 16kHz."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
@ -210,10 +214,9 @@ def read_sound_files(
|
|||||||
ans = []
|
ans = []
|
||||||
for f in filenames:
|
for f in filenames:
|
||||||
wave, sample_rate = torchaudio.load(f)
|
wave, sample_rate = torchaudio.load(f)
|
||||||
assert sample_rate == expected_sample_rate, (
|
assert (
|
||||||
f"expected sample rate: {expected_sample_rate}. "
|
sample_rate == expected_sample_rate
|
||||||
f"Given: {sample_rate}"
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||||
)
|
|
||||||
# We use only the first channel
|
# We use only the first channel
|
||||||
ans.append(wave[0])
|
ans.append(wave[0])
|
||||||
return ans
|
return ans
|
||||||
@ -274,9 +277,7 @@ def main():
|
|||||||
logging.info("Decoding started")
|
logging.info("Decoding started")
|
||||||
features = fbank(waves)
|
features = fbank(waves)
|
||||||
|
|
||||||
features = pad_sequence(
|
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||||
features, batch_first=True, padding_value=math.log(1e-10)
|
|
||||||
)
|
|
||||||
|
|
||||||
# Note: We don't use key padding mask for attention during decoding
|
# Note: We don't use key padding mask for attention during decoding
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
@ -371,9 +372,7 @@ def main():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
main()
|
main()
|
||||||
|
@ -42,13 +42,9 @@ class Conv2dSubsampling(nn.Module):
|
|||||||
assert idim >= 7
|
assert idim >= 7
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.conv = nn.Sequential(
|
self.conv = nn.Sequential(
|
||||||
nn.Conv2d(
|
nn.Conv2d(in_channels=1, out_channels=odim, kernel_size=3, stride=2),
|
||||||
in_channels=1, out_channels=odim, kernel_size=3, stride=2
|
|
||||||
),
|
|
||||||
nn.ReLU(),
|
nn.ReLU(),
|
||||||
nn.Conv2d(
|
nn.Conv2d(in_channels=odim, out_channels=odim, kernel_size=3, stride=2),
|
||||||
in_channels=odim, out_channels=odim, kernel_size=3, stride=2
|
|
||||||
),
|
|
||||||
nn.ReLU(),
|
nn.ReLU(),
|
||||||
)
|
)
|
||||||
self.out = nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim)
|
self.out = nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim)
|
||||||
@ -132,17 +128,13 @@ class VggSubsampling(nn.Module):
|
|||||||
)
|
)
|
||||||
)
|
)
|
||||||
layers.append(
|
layers.append(
|
||||||
torch.nn.MaxPool2d(
|
torch.nn.MaxPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
||||||
kernel_size=2, stride=2, padding=0, ceil_mode=True
|
|
||||||
)
|
|
||||||
)
|
)
|
||||||
cur_channels = block_dim
|
cur_channels = block_dim
|
||||||
|
|
||||||
self.layers = nn.Sequential(*layers)
|
self.layers = nn.Sequential(*layers)
|
||||||
|
|
||||||
self.out = nn.Linear(
|
self.out = nn.Linear(block_dims[-1] * (((idim - 1) // 2 - 1) // 2), odim)
|
||||||
block_dims[-1] * (((idim - 1) // 2 - 1) // 2), odim
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
"""Subsample x.
|
"""Subsample x.
|
||||||
|
@ -16,9 +16,8 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
from subsampling import Conv2dSubsampling
|
|
||||||
from subsampling import VggSubsampling
|
|
||||||
import torch
|
import torch
|
||||||
|
from subsampling import Conv2dSubsampling, VggSubsampling
|
||||||
|
|
||||||
|
|
||||||
def test_conv2d_subsampling():
|
def test_conv2d_subsampling():
|
||||||
|
@ -382,9 +382,7 @@ def compute_loss(
|
|||||||
#
|
#
|
||||||
# See https://github.com/k2-fsa/icefall/issues/97
|
# See https://github.com/k2-fsa/icefall/issues/97
|
||||||
# for more details
|
# for more details
|
||||||
unsorted_token_ids = graph_compiler.texts_to_ids(
|
unsorted_token_ids = graph_compiler.texts_to_ids(supervisions["text"])
|
||||||
supervisions["text"]
|
|
||||||
)
|
|
||||||
att_loss = mmodel.decoder_forward(
|
att_loss = mmodel.decoder_forward(
|
||||||
encoder_memory,
|
encoder_memory,
|
||||||
memory_mask,
|
memory_mask,
|
||||||
@ -520,9 +518,7 @@ def train_one_epoch(
|
|||||||
loss_info.write_summary(
|
loss_info.write_summary(
|
||||||
tb_writer, "train/current_", params.batch_idx_train
|
tb_writer, "train/current_", params.batch_idx_train
|
||||||
)
|
)
|
||||||
tot_loss.write_summary(
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||||
tb_writer, "train/tot_", params.batch_idx_train
|
|
||||||
)
|
|
||||||
|
|
||||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||||
logging.info("Computing validation loss")
|
logging.info("Computing validation loss")
|
||||||
@ -630,9 +626,7 @@ def run(rank, world_size, args):
|
|||||||
|
|
||||||
cur_lr = optimizer._rate
|
cur_lr = optimizer._rate
|
||||||
if tb_writer is not None:
|
if tb_writer is not None:
|
||||||
tb_writer.add_scalar(
|
tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train)
|
||||||
"train/learning_rate", cur_lr, params.batch_idx_train
|
|
||||||
)
|
|
||||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||||
|
|
||||||
if rank == 0:
|
if rank == 0:
|
||||||
|
@ -149,9 +149,7 @@ class Transformer(nn.Module):
|
|||||||
norm=decoder_norm,
|
norm=decoder_norm,
|
||||||
)
|
)
|
||||||
|
|
||||||
self.decoder_output_layer = torch.nn.Linear(
|
self.decoder_output_layer = torch.nn.Linear(d_model, self.decoder_num_class)
|
||||||
d_model, self.decoder_num_class
|
|
||||||
)
|
|
||||||
|
|
||||||
self.decoder_criterion = LabelSmoothingLoss()
|
self.decoder_criterion = LabelSmoothingLoss()
|
||||||
else:
|
else:
|
||||||
@ -183,9 +181,7 @@ class Transformer(nn.Module):
|
|||||||
x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T)
|
x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T)
|
||||||
x = self.feat_batchnorm(x)
|
x = self.feat_batchnorm(x)
|
||||||
x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C)
|
x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C)
|
||||||
encoder_memory, memory_key_padding_mask = self.run_encoder(
|
encoder_memory, memory_key_padding_mask = self.run_encoder(x, supervision)
|
||||||
x, supervision
|
|
||||||
)
|
|
||||||
x = self.ctc_output(encoder_memory)
|
x = self.ctc_output(encoder_memory)
|
||||||
return x, encoder_memory, memory_key_padding_mask
|
return x, encoder_memory, memory_key_padding_mask
|
||||||
|
|
||||||
@ -266,23 +262,17 @@ class Transformer(nn.Module):
|
|||||||
"""
|
"""
|
||||||
ys_in = add_sos(token_ids, sos_id=sos_id)
|
ys_in = add_sos(token_ids, sos_id=sos_id)
|
||||||
ys_in = [torch.tensor(y) for y in ys_in]
|
ys_in = [torch.tensor(y) for y in ys_in]
|
||||||
ys_in_pad = pad_sequence(
|
ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id))
|
||||||
ys_in, batch_first=True, padding_value=float(eos_id)
|
|
||||||
)
|
|
||||||
|
|
||||||
ys_out = add_eos(token_ids, eos_id=eos_id)
|
ys_out = add_eos(token_ids, eos_id=eos_id)
|
||||||
ys_out = [torch.tensor(y) for y in ys_out]
|
ys_out = [torch.tensor(y) for y in ys_out]
|
||||||
ys_out_pad = pad_sequence(
|
ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1))
|
||||||
ys_out, batch_first=True, padding_value=float(-1)
|
|
||||||
)
|
|
||||||
|
|
||||||
device = memory.device
|
device = memory.device
|
||||||
ys_in_pad = ys_in_pad.to(device)
|
ys_in_pad = ys_in_pad.to(device)
|
||||||
ys_out_pad = ys_out_pad.to(device)
|
ys_out_pad = ys_out_pad.to(device)
|
||||||
|
|
||||||
tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(
|
tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device)
|
||||||
device
|
|
||||||
)
|
|
||||||
|
|
||||||
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
||||||
# TODO: Use length information to create the decoder padding mask
|
# TODO: Use length information to create the decoder padding mask
|
||||||
@ -343,23 +333,17 @@ class Transformer(nn.Module):
|
|||||||
|
|
||||||
ys_in = add_sos(token_ids, sos_id=sos_id)
|
ys_in = add_sos(token_ids, sos_id=sos_id)
|
||||||
ys_in = [torch.tensor(y) for y in ys_in]
|
ys_in = [torch.tensor(y) for y in ys_in]
|
||||||
ys_in_pad = pad_sequence(
|
ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id))
|
||||||
ys_in, batch_first=True, padding_value=float(eos_id)
|
|
||||||
)
|
|
||||||
|
|
||||||
ys_out = add_eos(token_ids, eos_id=eos_id)
|
ys_out = add_eos(token_ids, eos_id=eos_id)
|
||||||
ys_out = [torch.tensor(y) for y in ys_out]
|
ys_out = [torch.tensor(y) for y in ys_out]
|
||||||
ys_out_pad = pad_sequence(
|
ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1))
|
||||||
ys_out, batch_first=True, padding_value=float(-1)
|
|
||||||
)
|
|
||||||
|
|
||||||
device = memory.device
|
device = memory.device
|
||||||
ys_in_pad = ys_in_pad.to(device, dtype=torch.int64)
|
ys_in_pad = ys_in_pad.to(device, dtype=torch.int64)
|
||||||
ys_out_pad = ys_out_pad.to(device, dtype=torch.int64)
|
ys_out_pad = ys_out_pad.to(device, dtype=torch.int64)
|
||||||
|
|
||||||
tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(
|
tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device)
|
||||||
device
|
|
||||||
)
|
|
||||||
|
|
||||||
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
||||||
# TODO: Use length information to create the decoder padding mask
|
# TODO: Use length information to create the decoder padding mask
|
||||||
@ -632,9 +616,7 @@ def _get_activation_fn(activation: str):
|
|||||||
elif activation == "gelu":
|
elif activation == "gelu":
|
||||||
return nn.functional.gelu
|
return nn.functional.gelu
|
||||||
|
|
||||||
raise RuntimeError(
|
raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
|
||||||
"activation should be relu/gelu, not {}".format(activation)
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class PositionalEncoding(nn.Module):
|
class PositionalEncoding(nn.Module):
|
||||||
@ -836,9 +818,7 @@ def encoder_padding_mask(
|
|||||||
1,
|
1,
|
||||||
).to(torch.int32)
|
).to(torch.int32)
|
||||||
|
|
||||||
lengths = [
|
lengths = [0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1)]
|
||||||
0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1)
|
|
||||||
]
|
|
||||||
for idx in range(supervision_segments.size(0)):
|
for idx in range(supervision_segments.size(0)):
|
||||||
# Note: TorchScript doesn't allow to unpack tensors as tuples
|
# Note: TorchScript doesn't allow to unpack tensors as tuples
|
||||||
sequence_idx = supervision_segments[idx, 0].item()
|
sequence_idx = supervision_segments[idx, 0].item()
|
||||||
@ -859,9 +839,7 @@ def encoder_padding_mask(
|
|||||||
return mask
|
return mask
|
||||||
|
|
||||||
|
|
||||||
def decoder_padding_mask(
|
def decoder_padding_mask(ys_pad: torch.Tensor, ignore_id: int = -1) -> torch.Tensor:
|
||||||
ys_pad: torch.Tensor, ignore_id: int = -1
|
|
||||||
) -> torch.Tensor:
|
|
||||||
"""Generate a length mask for input.
|
"""Generate a length mask for input.
|
||||||
|
|
||||||
The masked position are filled with True,
|
The masked position are filled with True,
|
||||||
|
@ -157,9 +157,7 @@ class ConformerEncoderLayer(nn.Module):
|
|||||||
normalize_before: bool = True,
|
normalize_before: bool = True,
|
||||||
) -> None:
|
) -> None:
|
||||||
super(ConformerEncoderLayer, self).__init__()
|
super(ConformerEncoderLayer, self).__init__()
|
||||||
self.self_attn = RelPositionMultiheadAttention(
|
self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0)
|
||||||
d_model, nhead, dropout=0.0
|
|
||||||
)
|
|
||||||
|
|
||||||
self.feed_forward = nn.Sequential(
|
self.feed_forward = nn.Sequential(
|
||||||
nn.Linear(d_model, dim_feedforward),
|
nn.Linear(d_model, dim_feedforward),
|
||||||
@ -177,18 +175,14 @@ class ConformerEncoderLayer(nn.Module):
|
|||||||
|
|
||||||
self.conv_module = ConvolutionModule(d_model, cnn_module_kernel)
|
self.conv_module = ConvolutionModule(d_model, cnn_module_kernel)
|
||||||
|
|
||||||
self.norm_ff_macaron = nn.LayerNorm(
|
self.norm_ff_macaron = nn.LayerNorm(d_model) # for the macaron style FNN module
|
||||||
d_model
|
|
||||||
) # for the macaron style FNN module
|
|
||||||
self.norm_ff = nn.LayerNorm(d_model) # for the FNN module
|
self.norm_ff = nn.LayerNorm(d_model) # for the FNN module
|
||||||
self.norm_mha = nn.LayerNorm(d_model) # for the MHA module
|
self.norm_mha = nn.LayerNorm(d_model) # for the MHA module
|
||||||
|
|
||||||
self.ff_scale = 0.5
|
self.ff_scale = 0.5
|
||||||
|
|
||||||
self.norm_conv = nn.LayerNorm(d_model) # for the CNN module
|
self.norm_conv = nn.LayerNorm(d_model) # for the CNN module
|
||||||
self.norm_final = nn.LayerNorm(
|
self.norm_final = nn.LayerNorm(d_model) # for the final output of the block
|
||||||
d_model
|
|
||||||
) # for the final output of the block
|
|
||||||
|
|
||||||
self.dropout = nn.Dropout(dropout)
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
|
||||||
@ -222,9 +216,7 @@ class ConformerEncoderLayer(nn.Module):
|
|||||||
residual = src
|
residual = src
|
||||||
if self.normalize_before:
|
if self.normalize_before:
|
||||||
src = self.norm_ff_macaron(src)
|
src = self.norm_ff_macaron(src)
|
||||||
src = residual + self.ff_scale * self.dropout(
|
src = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(src))
|
||||||
self.feed_forward_macaron(src)
|
|
||||||
)
|
|
||||||
if not self.normalize_before:
|
if not self.normalize_before:
|
||||||
src = self.norm_ff_macaron(src)
|
src = self.norm_ff_macaron(src)
|
||||||
|
|
||||||
@ -343,9 +335,7 @@ class RelPositionalEncoding(torch.nn.Module):
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(
|
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None:
|
||||||
self, d_model: int, dropout_rate: float, max_len: int = 5000
|
|
||||||
) -> None:
|
|
||||||
"""Construct an PositionalEncoding object."""
|
"""Construct an PositionalEncoding object."""
|
||||||
super(RelPositionalEncoding, self).__init__()
|
super(RelPositionalEncoding, self).__init__()
|
||||||
self.d_model = d_model
|
self.d_model = d_model
|
||||||
@ -361,9 +351,7 @@ class RelPositionalEncoding(torch.nn.Module):
|
|||||||
# the length of self.pe is 2 * input_len - 1
|
# the length of self.pe is 2 * input_len - 1
|
||||||
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
||||||
# Note: TorchScript doesn't implement operator== for torch.Device
|
# Note: TorchScript doesn't implement operator== for torch.Device
|
||||||
if self.pe.dtype != x.dtype or str(self.pe.device) != str(
|
if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device):
|
||||||
x.device
|
|
||||||
):
|
|
||||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||||
return
|
return
|
||||||
# Suppose `i` means to the position of query vector and `j` means the
|
# Suppose `i` means to the position of query vector and `j` means the
|
||||||
@ -633,9 +621,9 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
|
|
||||||
if torch.equal(query, key) and torch.equal(key, value):
|
if torch.equal(query, key) and torch.equal(key, value):
|
||||||
# self-attention
|
# self-attention
|
||||||
q, k, v = nn.functional.linear(
|
q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk(
|
||||||
query, in_proj_weight, in_proj_bias
|
3, dim=-1
|
||||||
).chunk(3, dim=-1)
|
)
|
||||||
|
|
||||||
elif torch.equal(key, value):
|
elif torch.equal(key, value):
|
||||||
# encoder-decoder attention
|
# encoder-decoder attention
|
||||||
@ -703,33 +691,25 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
if attn_mask.dim() == 2:
|
if attn_mask.dim() == 2:
|
||||||
attn_mask = attn_mask.unsqueeze(0)
|
attn_mask = attn_mask.unsqueeze(0)
|
||||||
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
||||||
raise RuntimeError(
|
raise RuntimeError("The size of the 2D attn_mask is not correct.")
|
||||||
"The size of the 2D attn_mask is not correct."
|
|
||||||
)
|
|
||||||
elif attn_mask.dim() == 3:
|
elif attn_mask.dim() == 3:
|
||||||
if list(attn_mask.size()) != [
|
if list(attn_mask.size()) != [
|
||||||
bsz * num_heads,
|
bsz * num_heads,
|
||||||
query.size(0),
|
query.size(0),
|
||||||
key.size(0),
|
key.size(0),
|
||||||
]:
|
]:
|
||||||
raise RuntimeError(
|
raise RuntimeError("The size of the 3D attn_mask is not correct.")
|
||||||
"The size of the 3D attn_mask is not correct."
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
raise RuntimeError(
|
raise RuntimeError(
|
||||||
"attn_mask's dimension {} is not supported".format(
|
"attn_mask's dimension {} is not supported".format(attn_mask.dim())
|
||||||
attn_mask.dim()
|
|
||||||
)
|
|
||||||
)
|
)
|
||||||
# attn_mask's dim is 3 now.
|
# attn_mask's dim is 3 now.
|
||||||
|
|
||||||
# convert ByteTensor key_padding_mask to bool
|
# convert ByteTensor key_padding_mask to bool
|
||||||
if (
|
if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
|
||||||
key_padding_mask is not None
|
|
||||||
and key_padding_mask.dtype == torch.uint8
|
|
||||||
):
|
|
||||||
warnings.warn(
|
warnings.warn(
|
||||||
"Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
|
"Byte tensor for key_padding_mask is deprecated. Use bool tensor"
|
||||||
|
" instead."
|
||||||
)
|
)
|
||||||
key_padding_mask = key_padding_mask.to(torch.bool)
|
key_padding_mask = key_padding_mask.to(torch.bool)
|
||||||
|
|
||||||
@ -766,9 +746,7 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
# first compute matrix a and matrix c
|
# first compute matrix a and matrix c
|
||||||
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||||
k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2)
|
k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2)
|
||||||
matrix_ac = torch.matmul(
|
matrix_ac = torch.matmul(q_with_bias_u, k) # (batch, head, time1, time2)
|
||||||
q_with_bias_u, k
|
|
||||||
) # (batch, head, time1, time2)
|
|
||||||
|
|
||||||
# compute matrix b and matrix d
|
# compute matrix b and matrix d
|
||||||
matrix_bd = torch.matmul(
|
matrix_bd = torch.matmul(
|
||||||
@ -780,9 +758,7 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
matrix_ac + matrix_bd
|
matrix_ac + matrix_bd
|
||||||
) * scaling # (batch, head, time1, time2)
|
) * scaling # (batch, head, time1, time2)
|
||||||
|
|
||||||
attn_output_weights = attn_output_weights.view(
|
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1)
|
||||||
bsz * num_heads, tgt_len, -1
|
|
||||||
)
|
|
||||||
|
|
||||||
assert list(attn_output_weights.size()) == [
|
assert list(attn_output_weights.size()) == [
|
||||||
bsz * num_heads,
|
bsz * num_heads,
|
||||||
@ -816,13 +792,9 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
attn_output = torch.bmm(attn_output_weights, v)
|
attn_output = torch.bmm(attn_output_weights, v)
|
||||||
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
|
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
|
||||||
attn_output = (
|
attn_output = (
|
||||||
attn_output.transpose(0, 1)
|
attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
||||||
.contiguous()
|
|
||||||
.view(tgt_len, bsz, embed_dim)
|
|
||||||
)
|
|
||||||
attn_output = nn.functional.linear(
|
|
||||||
attn_output, out_proj_weight, out_proj_bias
|
|
||||||
)
|
)
|
||||||
|
attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias)
|
||||||
|
|
||||||
if need_weights:
|
if need_weights:
|
||||||
# average attention weights over heads
|
# average attention weights over heads
|
||||||
@ -845,9 +817,7 @@ class ConvolutionModule(nn.Module):
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(
|
def __init__(self, channels: int, kernel_size: int, bias: bool = True) -> None:
|
||||||
self, channels: int, kernel_size: int, bias: bool = True
|
|
||||||
) -> None:
|
|
||||||
"""Construct an ConvolutionModule object."""
|
"""Construct an ConvolutionModule object."""
|
||||||
super(ConvolutionModule, self).__init__()
|
super(ConvolutionModule, self).__init__()
|
||||||
# kernerl_size should be a odd number for 'SAME' padding
|
# kernerl_size should be a odd number for 'SAME' padding
|
||||||
|
@ -59,16 +59,19 @@ def get_parser():
|
|||||||
"--epoch",
|
"--epoch",
|
||||||
type=int,
|
type=int,
|
||||||
default=49,
|
default=49,
|
||||||
help="It specifies the checkpoint to use for decoding."
|
help=(
|
||||||
"Note: Epoch counts from 0.",
|
"It specifies the checkpoint to use for decoding.Note: Epoch counts from 0."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=20,
|
default=20,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help=(
|
||||||
|
"Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch'. ",
|
"'--epoch'. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -413,9 +416,7 @@ def decode_dataset(
|
|||||||
if batch_idx % 100 == 0:
|
if batch_idx % 100 == 0:
|
||||||
batch_str = f"{batch_idx}/{num_batches}"
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
logging.info(
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
|
||||||
)
|
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
@ -443,9 +444,7 @@ def save_results(
|
|||||||
# we compute CER for aishell dataset.
|
# we compute CER for aishell dataset.
|
||||||
results_char = []
|
results_char = []
|
||||||
for res in results:
|
for res in results:
|
||||||
results_char.append(
|
results_char.append((res[0], list("".join(res[1])), list("".join(res[2]))))
|
||||||
(res[0], list("".join(res[1])), list("".join(res[2])))
|
|
||||||
)
|
|
||||||
with open(errs_filename, "w") as f:
|
with open(errs_filename, "w") as f:
|
||||||
wer = write_error_stats(
|
wer = write_error_stats(
|
||||||
f, f"{test_set_name}-{key}", results_char, enable_log=enable_log
|
f, f"{test_set_name}-{key}", results_char, enable_log=enable_log
|
||||||
@ -453,9 +452,7 @@ def save_results(
|
|||||||
test_set_wers[key] = wer
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
if enable_log:
|
if enable_log:
|
||||||
logging.info(
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
"Wrote detailed error stats to {}".format(errs_filename)
|
|
||||||
)
|
|
||||||
|
|
||||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
errs_info = params.exp_dir / f"cer-summary-{test_set_name}.txt"
|
errs_info = params.exp_dir / f"cer-summary-{test_set_name}.txt"
|
||||||
@ -550,9 +547,7 @@ def main():
|
|||||||
|
|
||||||
if params.export:
|
if params.export:
|
||||||
logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
|
logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
|
||||||
torch.save(
|
torch.save({"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt")
|
||||||
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
|
|
||||||
)
|
|
||||||
return
|
return
|
||||||
|
|
||||||
model.to(device)
|
model.to(device)
|
||||||
@ -581,9 +576,7 @@ def main():
|
|||||||
eos_id=eos_id,
|
eos_id=eos_id,
|
||||||
)
|
)
|
||||||
|
|
||||||
save_results(
|
save_results(params=params, test_set_name=test_set, results_dict=results_dict)
|
||||||
params=params, test_set_name=test_set, results_dict=results_dict
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.info("Done!")
|
logging.info("Done!")
|
||||||
|
|
||||||
|
@ -42,13 +42,9 @@ class Conv2dSubsampling(nn.Module):
|
|||||||
assert idim >= 7
|
assert idim >= 7
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.conv = nn.Sequential(
|
self.conv = nn.Sequential(
|
||||||
nn.Conv2d(
|
nn.Conv2d(in_channels=1, out_channels=odim, kernel_size=3, stride=2),
|
||||||
in_channels=1, out_channels=odim, kernel_size=3, stride=2
|
|
||||||
),
|
|
||||||
nn.ReLU(),
|
nn.ReLU(),
|
||||||
nn.Conv2d(
|
nn.Conv2d(in_channels=odim, out_channels=odim, kernel_size=3, stride=2),
|
||||||
in_channels=odim, out_channels=odim, kernel_size=3, stride=2
|
|
||||||
),
|
|
||||||
nn.ReLU(),
|
nn.ReLU(),
|
||||||
)
|
)
|
||||||
self.out = nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim)
|
self.out = nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim)
|
||||||
@ -132,17 +128,13 @@ class VggSubsampling(nn.Module):
|
|||||||
)
|
)
|
||||||
)
|
)
|
||||||
layers.append(
|
layers.append(
|
||||||
torch.nn.MaxPool2d(
|
torch.nn.MaxPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
||||||
kernel_size=2, stride=2, padding=0, ceil_mode=True
|
|
||||||
)
|
|
||||||
)
|
)
|
||||||
cur_channels = block_dim
|
cur_channels = block_dim
|
||||||
|
|
||||||
self.layers = nn.Sequential(*layers)
|
self.layers = nn.Sequential(*layers)
|
||||||
|
|
||||||
self.out = nn.Linear(
|
self.out = nn.Linear(block_dims[-1] * (((idim - 1) // 2 - 1) // 2), odim)
|
||||||
block_dims[-1] * (((idim - 1) // 2 - 1) // 2), odim
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
"""Subsample x.
|
"""Subsample x.
|
||||||
|
@ -511,9 +511,7 @@ def train_one_epoch(
|
|||||||
loss_info.write_summary(
|
loss_info.write_summary(
|
||||||
tb_writer, "train/current_", params.batch_idx_train
|
tb_writer, "train/current_", params.batch_idx_train
|
||||||
)
|
)
|
||||||
tot_loss.write_summary(
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||||
tb_writer, "train/tot_", params.batch_idx_train
|
|
||||||
)
|
|
||||||
|
|
||||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||||
logging.info("Computing validation loss")
|
logging.info("Computing validation loss")
|
||||||
@ -625,9 +623,7 @@ def run(rank, world_size, args):
|
|||||||
|
|
||||||
cur_lr = optimizer._rate
|
cur_lr = optimizer._rate
|
||||||
if tb_writer is not None:
|
if tb_writer is not None:
|
||||||
tb_writer.add_scalar(
|
tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train)
|
||||||
"train/learning_rate", cur_lr, params.batch_idx_train
|
|
||||||
)
|
|
||||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||||
|
|
||||||
if rank == 0:
|
if rank == 0:
|
||||||
|
@ -149,9 +149,7 @@ class Transformer(nn.Module):
|
|||||||
norm=decoder_norm,
|
norm=decoder_norm,
|
||||||
)
|
)
|
||||||
|
|
||||||
self.decoder_output_layer = torch.nn.Linear(
|
self.decoder_output_layer = torch.nn.Linear(d_model, self.decoder_num_class)
|
||||||
d_model, self.decoder_num_class
|
|
||||||
)
|
|
||||||
|
|
||||||
self.decoder_criterion = LabelSmoothingLoss()
|
self.decoder_criterion = LabelSmoothingLoss()
|
||||||
else:
|
else:
|
||||||
@ -183,9 +181,7 @@ class Transformer(nn.Module):
|
|||||||
x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T)
|
x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T)
|
||||||
x = self.feat_batchnorm(x)
|
x = self.feat_batchnorm(x)
|
||||||
x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C)
|
x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C)
|
||||||
encoder_memory, memory_key_padding_mask = self.run_encoder(
|
encoder_memory, memory_key_padding_mask = self.run_encoder(x, supervision)
|
||||||
x, supervision
|
|
||||||
)
|
|
||||||
x = self.ctc_output(encoder_memory)
|
x = self.ctc_output(encoder_memory)
|
||||||
return x, encoder_memory, memory_key_padding_mask
|
return x, encoder_memory, memory_key_padding_mask
|
||||||
|
|
||||||
@ -266,23 +262,17 @@ class Transformer(nn.Module):
|
|||||||
"""
|
"""
|
||||||
ys_in = add_sos(token_ids, sos_id=sos_id)
|
ys_in = add_sos(token_ids, sos_id=sos_id)
|
||||||
ys_in = [torch.tensor(y) for y in ys_in]
|
ys_in = [torch.tensor(y) for y in ys_in]
|
||||||
ys_in_pad = pad_sequence(
|
ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id))
|
||||||
ys_in, batch_first=True, padding_value=float(eos_id)
|
|
||||||
)
|
|
||||||
|
|
||||||
ys_out = add_eos(token_ids, eos_id=eos_id)
|
ys_out = add_eos(token_ids, eos_id=eos_id)
|
||||||
ys_out = [torch.tensor(y) for y in ys_out]
|
ys_out = [torch.tensor(y) for y in ys_out]
|
||||||
ys_out_pad = pad_sequence(
|
ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1))
|
||||||
ys_out, batch_first=True, padding_value=float(-1)
|
|
||||||
)
|
|
||||||
|
|
||||||
device = memory.device
|
device = memory.device
|
||||||
ys_in_pad = ys_in_pad.to(device)
|
ys_in_pad = ys_in_pad.to(device)
|
||||||
ys_out_pad = ys_out_pad.to(device)
|
ys_out_pad = ys_out_pad.to(device)
|
||||||
|
|
||||||
tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(
|
tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device)
|
||||||
device
|
|
||||||
)
|
|
||||||
|
|
||||||
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
||||||
# TODO: Use length information to create the decoder padding mask
|
# TODO: Use length information to create the decoder padding mask
|
||||||
@ -343,23 +333,17 @@ class Transformer(nn.Module):
|
|||||||
|
|
||||||
ys_in = add_sos(token_ids, sos_id=sos_id)
|
ys_in = add_sos(token_ids, sos_id=sos_id)
|
||||||
ys_in = [torch.tensor(y) for y in ys_in]
|
ys_in = [torch.tensor(y) for y in ys_in]
|
||||||
ys_in_pad = pad_sequence(
|
ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id))
|
||||||
ys_in, batch_first=True, padding_value=float(eos_id)
|
|
||||||
)
|
|
||||||
|
|
||||||
ys_out = add_eos(token_ids, eos_id=eos_id)
|
ys_out = add_eos(token_ids, eos_id=eos_id)
|
||||||
ys_out = [torch.tensor(y) for y in ys_out]
|
ys_out = [torch.tensor(y) for y in ys_out]
|
||||||
ys_out_pad = pad_sequence(
|
ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1))
|
||||||
ys_out, batch_first=True, padding_value=float(-1)
|
|
||||||
)
|
|
||||||
|
|
||||||
device = memory.device
|
device = memory.device
|
||||||
ys_in_pad = ys_in_pad.to(device, dtype=torch.int64)
|
ys_in_pad = ys_in_pad.to(device, dtype=torch.int64)
|
||||||
ys_out_pad = ys_out_pad.to(device, dtype=torch.int64)
|
ys_out_pad = ys_out_pad.to(device, dtype=torch.int64)
|
||||||
|
|
||||||
tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(
|
tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device)
|
||||||
device
|
|
||||||
)
|
|
||||||
|
|
||||||
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
||||||
# TODO: Use length information to create the decoder padding mask
|
# TODO: Use length information to create the decoder padding mask
|
||||||
@ -632,9 +616,7 @@ def _get_activation_fn(activation: str):
|
|||||||
elif activation == "gelu":
|
elif activation == "gelu":
|
||||||
return nn.functional.gelu
|
return nn.functional.gelu
|
||||||
|
|
||||||
raise RuntimeError(
|
raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
|
||||||
"activation should be relu/gelu, not {}".format(activation)
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class PositionalEncoding(nn.Module):
|
class PositionalEncoding(nn.Module):
|
||||||
@ -836,9 +818,7 @@ def encoder_padding_mask(
|
|||||||
1,
|
1,
|
||||||
).to(torch.int32)
|
).to(torch.int32)
|
||||||
|
|
||||||
lengths = [
|
lengths = [0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1)]
|
||||||
0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1)
|
|
||||||
]
|
|
||||||
for idx in range(supervision_segments.size(0)):
|
for idx in range(supervision_segments.size(0)):
|
||||||
# Note: TorchScript doesn't allow to unpack tensors as tuples
|
# Note: TorchScript doesn't allow to unpack tensors as tuples
|
||||||
sequence_idx = supervision_segments[idx, 0].item()
|
sequence_idx = supervision_segments[idx, 0].item()
|
||||||
@ -859,9 +839,7 @@ def encoder_padding_mask(
|
|||||||
return mask
|
return mask
|
||||||
|
|
||||||
|
|
||||||
def decoder_padding_mask(
|
def decoder_padding_mask(ys_pad: torch.Tensor, ignore_id: int = -1) -> torch.Tensor:
|
||||||
ys_pad: torch.Tensor, ignore_id: int = -1
|
|
||||||
) -> torch.Tensor:
|
|
||||||
"""Generate a length mask for input.
|
"""Generate a length mask for input.
|
||||||
|
|
||||||
The masked position are filled with True,
|
The masked position are filled with True,
|
||||||
|
@ -87,9 +87,7 @@ def compute_fbank_aidatatang_200zh(num_mel_bins: int = 80):
|
|||||||
)
|
)
|
||||||
if "train" in partition:
|
if "train" in partition:
|
||||||
cut_set = (
|
cut_set = (
|
||||||
cut_set
|
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||||
+ cut_set.perturb_speed(0.9)
|
|
||||||
+ cut_set.perturb_speed(1.1)
|
|
||||||
)
|
)
|
||||||
cut_set = cut_set.compute_and_store_features(
|
cut_set = cut_set.compute_and_store_features(
|
||||||
extractor=extractor,
|
extractor=extractor,
|
||||||
@ -116,9 +114,7 @@ def get_args():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
@ -83,9 +83,7 @@ def compute_fbank_aishell(num_mel_bins: int = 80):
|
|||||||
)
|
)
|
||||||
if "train" in partition:
|
if "train" in partition:
|
||||||
cut_set = (
|
cut_set = (
|
||||||
cut_set
|
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||||
+ cut_set.perturb_speed(0.9)
|
|
||||||
+ cut_set.perturb_speed(1.1)
|
|
||||||
)
|
)
|
||||||
cut_set = cut_set.compute_and_store_features(
|
cut_set = cut_set.compute_and_store_features(
|
||||||
extractor=extractor,
|
extractor=extractor,
|
||||||
@ -111,9 +109,7 @@ def get_args():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
@ -86,9 +86,7 @@ def lexicon_to_fst_no_sil(
|
|||||||
cur_state = loop_state
|
cur_state = loop_state
|
||||||
|
|
||||||
word = word2id[word]
|
word = word2id[word]
|
||||||
pieces = [
|
pieces = [token2id[i] if i in token2id else token2id["<unk>"] for i in pieces]
|
||||||
token2id[i] if i in token2id else token2id["<unk>"] for i in pieces
|
|
||||||
]
|
|
||||||
|
|
||||||
for i in range(len(pieces) - 1):
|
for i in range(len(pieces) - 1):
|
||||||
w = word if i == 0 else eps
|
w = word if i == 0 else eps
|
||||||
@ -142,9 +140,7 @@ def contain_oov(token_sym_table: Dict[str, int], tokens: List[str]) -> bool:
|
|||||||
return False
|
return False
|
||||||
|
|
||||||
|
|
||||||
def generate_lexicon(
|
def generate_lexicon(token_sym_table: Dict[str, int], words: List[str]) -> Lexicon:
|
||||||
token_sym_table: Dict[str, int], words: List[str]
|
|
||||||
) -> Lexicon:
|
|
||||||
"""Generate a lexicon from a word list and token_sym_table.
|
"""Generate a lexicon from a word list and token_sym_table.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
|
@ -317,9 +317,7 @@ def lexicon_to_fst(
|
|||||||
|
|
||||||
def get_args():
|
def get_args():
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument(
|
parser.add_argument("--lang-dir", type=str, help="The lang dir, data/lang_phone")
|
||||||
"--lang-dir", type=str, help="The lang dir, data/lang_phone"
|
|
||||||
)
|
|
||||||
return parser.parse_args()
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
@ -88,9 +88,7 @@ def test_read_lexicon(filename: str):
|
|||||||
fsa.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
fsa.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
||||||
fsa.draw("L.pdf", title="L")
|
fsa.draw("L.pdf", title="L")
|
||||||
|
|
||||||
fsa_disambig = lexicon_to_fst(
|
fsa_disambig = lexicon_to_fst(lexicon_disambig, phone2id=phone2id, word2id=word2id)
|
||||||
lexicon_disambig, phone2id=phone2id, word2id=word2id
|
|
||||||
)
|
|
||||||
fsa_disambig.labels_sym = k2.SymbolTable.from_file("phones.txt")
|
fsa_disambig.labels_sym = k2.SymbolTable.from_file("phones.txt")
|
||||||
fsa_disambig.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
fsa_disambig.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
||||||
fsa_disambig.draw("L_disambig.pdf", title="L_disambig")
|
fsa_disambig.draw("L_disambig.pdf", title="L_disambig")
|
||||||
|
@ -76,11 +76,7 @@ from beam_search import (
|
|||||||
)
|
)
|
||||||
from train import add_model_arguments, get_params, get_transducer_model
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
from icefall.checkpoint import (
|
from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint
|
||||||
average_checkpoints,
|
|
||||||
find_checkpoints,
|
|
||||||
load_checkpoint,
|
|
||||||
)
|
|
||||||
from icefall.lexicon import Lexicon
|
from icefall.lexicon import Lexicon
|
||||||
from icefall.utils import (
|
from icefall.utils import (
|
||||||
AttributeDict,
|
AttributeDict,
|
||||||
@ -118,9 +114,11 @@ def get_parser():
|
|||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=15,
|
default=15,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help=(
|
||||||
|
"Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch' and '--iter'",
|
"'--epoch' and '--iter'"
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -188,8 +186,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=1,
|
default=1,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
@ -249,9 +246,7 @@ def decode_one_batch(
|
|||||||
supervisions = batch["supervisions"]
|
supervisions = batch["supervisions"]
|
||||||
feature_lens = supervisions["num_frames"].to(device)
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
encoder_out, encoder_out_lens = model.encoder(
|
encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
|
||||||
x=feature, x_lens=feature_lens
|
|
||||||
)
|
|
||||||
|
|
||||||
if params.decoding_method == "fast_beam_search":
|
if params.decoding_method == "fast_beam_search":
|
||||||
hyp_tokens = fast_beam_search_one_best(
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
@ -263,10 +258,7 @@ def decode_one_batch(
|
|||||||
max_contexts=params.max_contexts,
|
max_contexts=params.max_contexts,
|
||||||
max_states=params.max_states,
|
max_states=params.max_states,
|
||||||
)
|
)
|
||||||
elif (
|
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
params.decoding_method == "greedy_search"
|
|
||||||
and params.max_sym_per_frame == 1
|
|
||||||
):
|
|
||||||
hyp_tokens = greedy_search_batch(
|
hyp_tokens = greedy_search_batch(
|
||||||
model=model,
|
model=model,
|
||||||
encoder_out=encoder_out,
|
encoder_out=encoder_out,
|
||||||
@ -310,11 +302,7 @@ def decode_one_batch(
|
|||||||
return {"greedy_search": hyps}
|
return {"greedy_search": hyps}
|
||||||
elif params.decoding_method == "fast_beam_search":
|
elif params.decoding_method == "fast_beam_search":
|
||||||
return {
|
return {
|
||||||
(
|
f"beam_{params.beam}_max_contexts_{params.max_contexts}_max_states_{params.max_states}": hyps
|
||||||
f"beam_{params.beam}_"
|
|
||||||
f"max_contexts_{params.max_contexts}_"
|
|
||||||
f"max_states_{params.max_states}"
|
|
||||||
): hyps
|
|
||||||
}
|
}
|
||||||
else:
|
else:
|
||||||
return {f"beam_size_{params.beam_size}": hyps}
|
return {f"beam_size_{params.beam_size}": hyps}
|
||||||
@ -387,9 +375,7 @@ def decode_dataset(
|
|||||||
if batch_idx % log_interval == 0:
|
if batch_idx % log_interval == 0:
|
||||||
batch_str = f"{batch_idx}/{num_batches}"
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
logging.info(
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
|
||||||
)
|
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
@ -415,9 +401,7 @@ def save_results(
|
|||||||
# we compute CER for aishell dataset.
|
# we compute CER for aishell dataset.
|
||||||
results_char = []
|
results_char = []
|
||||||
for res in results:
|
for res in results:
|
||||||
results_char.append(
|
results_char.append((res[0], list("".join(res[1])), list("".join(res[2]))))
|
||||||
(res[0], list("".join(res[1])), list("".join(res[2])))
|
|
||||||
)
|
|
||||||
with open(errs_filename, "w") as f:
|
with open(errs_filename, "w") as f:
|
||||||
wer = write_error_stats(
|
wer = write_error_stats(
|
||||||
f, f"{test_set_name}-{key}", results_char, enable_log=True
|
f, f"{test_set_name}-{key}", results_char, enable_log=True
|
||||||
@ -428,8 +412,7 @@ def save_results(
|
|||||||
|
|
||||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
errs_info = (
|
errs_info = (
|
||||||
params.res_dir
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
)
|
||||||
with open(errs_info, "w") as f:
|
with open(errs_info, "w") as f:
|
||||||
print("settings\tWER", file=f)
|
print("settings\tWER", file=f)
|
||||||
@ -473,9 +456,7 @@ def main():
|
|||||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
params.suffix += f"-max-states-{params.max_states}"
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
elif "beam_search" in params.decoding_method:
|
elif "beam_search" in params.decoding_method:
|
||||||
params.suffix += (
|
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||||
f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
params.suffix += f"-context-{params.context_size}"
|
params.suffix += f"-context-{params.context_size}"
|
||||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
@ -504,8 +485,7 @@ def main():
|
|||||||
]
|
]
|
||||||
if len(filenames) == 0:
|
if len(filenames) == 0:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"No checkpoints found for"
|
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
)
|
||||||
elif len(filenames) < params.avg:
|
elif len(filenames) < params.avg:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
|
@ -50,11 +50,7 @@ from pathlib import Path
|
|||||||
import torch
|
import torch
|
||||||
from train import add_model_arguments, get_params, get_transducer_model
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
from icefall.checkpoint import (
|
from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint
|
||||||
average_checkpoints,
|
|
||||||
find_checkpoints,
|
|
||||||
load_checkpoint,
|
|
||||||
)
|
|
||||||
from icefall.lexicon import Lexicon
|
from icefall.lexicon import Lexicon
|
||||||
from icefall.utils import str2bool
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
@ -87,9 +83,11 @@ def get_parser():
|
|||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=15,
|
default=15,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help=(
|
||||||
|
"Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch' and '--iter'",
|
"'--epoch' and '--iter'"
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -120,8 +118,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=1,
|
default=1,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
add_model_arguments(parser)
|
add_model_arguments(parser)
|
||||||
@ -157,8 +154,7 @@ def main():
|
|||||||
]
|
]
|
||||||
if len(filenames) == 0:
|
if len(filenames) == 0:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"No checkpoints found for"
|
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
)
|
||||||
elif len(filenames) < params.avg:
|
elif len(filenames) < params.avg:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
@ -191,9 +187,7 @@ def main():
|
|||||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||||
logging.info("Using torch.jit.script")
|
logging.info("Using torch.jit.script")
|
||||||
model = torch.jit.script(model)
|
model = torch.jit.script(model)
|
||||||
filename = (
|
filename = params.exp_dir / f"cpu_jit-epoch-{params.epoch}-avg-{params.avg}.pt"
|
||||||
params.exp_dir / f"cpu_jit-epoch-{params.epoch}-avg-{params.avg}.pt"
|
|
||||||
)
|
|
||||||
model.save(str(filename))
|
model.save(str(filename))
|
||||||
logging.info(f"Saved to {filename}")
|
logging.info(f"Saved to {filename}")
|
||||||
else:
|
else:
|
||||||
@ -201,17 +195,14 @@ def main():
|
|||||||
# Save it using a format so that it can be loaded
|
# Save it using a format so that it can be loaded
|
||||||
# by :func:`load_checkpoint`
|
# by :func:`load_checkpoint`
|
||||||
filename = (
|
filename = (
|
||||||
params.exp_dir
|
params.exp_dir / f"pretrained-epoch-{params.epoch}-avg-{params.avg}.pt"
|
||||||
/ f"pretrained-epoch-{params.epoch}-avg-{params.avg}.pt"
|
|
||||||
)
|
)
|
||||||
torch.save({"model": model.state_dict()}, str(filename))
|
torch.save({"model": model.state_dict()}, str(filename))
|
||||||
logging.info(f"Saved to {filename}")
|
logging.info(f"Saved to {filename}")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
main()
|
main()
|
||||||
|
@ -87,9 +87,11 @@ def get_parser():
|
|||||||
"--checkpoint",
|
"--checkpoint",
|
||||||
type=str,
|
type=str,
|
||||||
required=True,
|
required=True,
|
||||||
help="Path to the checkpoint. "
|
help=(
|
||||||
|
"Path to the checkpoint. "
|
||||||
"The checkpoint is assumed to be saved by "
|
"The checkpoint is assumed to be saved by "
|
||||||
"icefall.checkpoint.save_checkpoint().",
|
"icefall.checkpoint.save_checkpoint()."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -115,10 +117,12 @@ def get_parser():
|
|||||||
"sound_files",
|
"sound_files",
|
||||||
type=str,
|
type=str,
|
||||||
nargs="+",
|
nargs="+",
|
||||||
help="The input sound file(s) to transcribe. "
|
help=(
|
||||||
|
"The input sound file(s) to transcribe. "
|
||||||
"Supported formats are those supported by torchaudio.load(). "
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
"For example, wav and flac are supported. "
|
"For example, wav and flac are supported. "
|
||||||
"The sample rate has to be 16kHz.",
|
"The sample rate has to be 16kHz."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -165,15 +169,16 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=1,
|
default=1,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
type=int,
|
type=int,
|
||||||
default=1,
|
default=1,
|
||||||
help="Maximum number of symbols per frame. "
|
help=(
|
||||||
"Use only when --method is greedy_search",
|
"Maximum number of symbols per frame. "
|
||||||
|
"Use only when --method is greedy_search"
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
add_model_arguments(parser)
|
add_model_arguments(parser)
|
||||||
@ -196,10 +201,9 @@ def read_sound_files(
|
|||||||
ans = []
|
ans = []
|
||||||
for f in filenames:
|
for f in filenames:
|
||||||
wave, sample_rate = torchaudio.load(f)
|
wave, sample_rate = torchaudio.load(f)
|
||||||
assert sample_rate == expected_sample_rate, (
|
assert (
|
||||||
f"expected sample rate: {expected_sample_rate}. "
|
sample_rate == expected_sample_rate
|
||||||
f"Given: {sample_rate}"
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||||
)
|
|
||||||
# We use only the first channel
|
# We use only the first channel
|
||||||
ans.append(wave[0])
|
ans.append(wave[0])
|
||||||
return ans
|
return ans
|
||||||
@ -256,13 +260,9 @@ def main():
|
|||||||
feature_lens = [f.size(0) for f in features]
|
feature_lens = [f.size(0) for f in features]
|
||||||
feature_lens = torch.tensor(feature_lens, device=device)
|
feature_lens = torch.tensor(feature_lens, device=device)
|
||||||
|
|
||||||
features = pad_sequence(
|
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||||
features, batch_first=True, padding_value=math.log(1e-10)
|
|
||||||
)
|
|
||||||
|
|
||||||
encoder_out, encoder_out_lens = model.encoder(
|
encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lens)
|
||||||
x=features, x_lens=feature_lens
|
|
||||||
)
|
|
||||||
|
|
||||||
num_waves = encoder_out.size(0)
|
num_waves = encoder_out.size(0)
|
||||||
hyp_list = []
|
hyp_list = []
|
||||||
@ -310,9 +310,7 @@ def main():
|
|||||||
beam=params.beam_size,
|
beam=params.beam_size,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
raise ValueError(
|
raise ValueError(f"Unsupported decoding method: {params.method}")
|
||||||
f"Unsupported decoding method: {params.method}"
|
|
||||||
)
|
|
||||||
hyp_list.append(hyp)
|
hyp_list.append(hyp)
|
||||||
|
|
||||||
hyps = []
|
hyps = []
|
||||||
@ -329,9 +327,7 @@ def main():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
main()
|
main()
|
||||||
|
@ -49,7 +49,6 @@ import optim
|
|||||||
import torch
|
import torch
|
||||||
import torch.multiprocessing as mp
|
import torch.multiprocessing as mp
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
|
||||||
from asr_datamodule import AishellAsrDataModule
|
from asr_datamodule import AishellAsrDataModule
|
||||||
from conformer import Conformer
|
from conformer import Conformer
|
||||||
from decoder import Decoder
|
from decoder import Decoder
|
||||||
@ -75,9 +74,7 @@ from icefall.env import get_env_info
|
|||||||
from icefall.lexicon import Lexicon
|
from icefall.lexicon import Lexicon
|
||||||
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
||||||
|
|
||||||
LRSchedulerType = Union[
|
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
|
||||||
torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
def add_model_arguments(parser: argparse.ArgumentParser):
|
def add_model_arguments(parser: argparse.ArgumentParser):
|
||||||
@ -203,8 +200,7 @@ def get_parser():
|
|||||||
"--initial-lr",
|
"--initial-lr",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.003,
|
default=0.003,
|
||||||
help="The initial learning rate. This value should not need "
|
help="The initial learning rate. This value should not need to be changed.",
|
||||||
"to be changed.",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -227,42 +223,45 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=1,
|
default=1,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--prune-range",
|
"--prune-range",
|
||||||
type=int,
|
type=int,
|
||||||
default=5,
|
default=5,
|
||||||
help="The prune range for rnnt loss, it means how many symbols(context)"
|
help=(
|
||||||
"we are using to compute the loss",
|
"The prune range for rnnt loss, it means how many symbols(context)"
|
||||||
|
"we are using to compute the loss"
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--lm-scale",
|
"--lm-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.25,
|
default=0.25,
|
||||||
help="The scale to smooth the loss with lm "
|
help=(
|
||||||
"(output of prediction network) part.",
|
"The scale to smooth the loss with lm (output of prediction network) part."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--am-scale",
|
"--am-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.0,
|
default=0.0,
|
||||||
help="The scale to smooth the loss with am (output of encoder network)"
|
help="The scale to smooth the loss with am (output of encoder network)part.",
|
||||||
"part.",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--simple-loss-scale",
|
"--simple-loss-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.5,
|
default=0.5,
|
||||||
help="To get pruning ranges, we will calculate a simple version"
|
help=(
|
||||||
|
"To get pruning ranges, we will calculate a simple version"
|
||||||
"loss(joiner is just addition), this simple loss also uses for"
|
"loss(joiner is just addition), this simple loss also uses for"
|
||||||
"training (as a regularization item). We will scale the simple loss"
|
"training (as a regularization item). We will scale the simple loss"
|
||||||
"with this parameter before adding to the final loss.",
|
"with this parameter before adding to the final loss."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -561,11 +560,7 @@ def compute_loss(
|
|||||||
warmup: a floating point value which increases throughout training;
|
warmup: a floating point value which increases throughout training;
|
||||||
values >= 1.0 are fully warmed up and have all modules present.
|
values >= 1.0 are fully warmed up and have all modules present.
|
||||||
"""
|
"""
|
||||||
device = (
|
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
|
||||||
model.device
|
|
||||||
if isinstance(model, DDP)
|
|
||||||
else next(model.parameters()).device
|
|
||||||
)
|
|
||||||
feature = batch["inputs"]
|
feature = batch["inputs"]
|
||||||
# at entry, feature is (N, T, C)
|
# at entry, feature is (N, T, C)
|
||||||
assert feature.ndim == 3
|
assert feature.ndim == 3
|
||||||
@ -593,23 +588,16 @@ def compute_loss(
|
|||||||
# overwhelming the simple_loss and causing it to diverge,
|
# overwhelming the simple_loss and causing it to diverge,
|
||||||
# in case it had not fully learned the alignment yet.
|
# in case it had not fully learned the alignment yet.
|
||||||
pruned_loss_scale = (
|
pruned_loss_scale = (
|
||||||
0.0
|
0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
|
||||||
if warmup < 1.0
|
|
||||||
else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
|
|
||||||
)
|
|
||||||
loss = (
|
|
||||||
params.simple_loss_scale * simple_loss
|
|
||||||
+ pruned_loss_scale * pruned_loss
|
|
||||||
)
|
)
|
||||||
|
loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
|
||||||
|
|
||||||
assert loss.requires_grad == is_training
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
info = MetricsTracker()
|
info = MetricsTracker()
|
||||||
with warnings.catch_warnings():
|
with warnings.catch_warnings():
|
||||||
warnings.simplefilter("ignore")
|
warnings.simplefilter("ignore")
|
||||||
info["frames"] = (
|
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
||||||
(feature_lens // params.subsampling_factor).sum().item()
|
|
||||||
)
|
|
||||||
|
|
||||||
# Note: We use reduction=sum while computing the loss.
|
# Note: We use reduction=sum while computing the loss.
|
||||||
info["loss"] = loss.detach().cpu().item()
|
info["loss"] = loss.detach().cpu().item()
|
||||||
@ -725,9 +713,7 @@ def train_one_epoch(
|
|||||||
scaler.update()
|
scaler.update()
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
except: # noqa
|
except: # noqa
|
||||||
display_and_save_batch(
|
display_and_save_batch(batch, params=params, graph_compiler=graph_compiler)
|
||||||
batch, params=params, graph_compiler=graph_compiler
|
|
||||||
)
|
|
||||||
raise
|
raise
|
||||||
|
|
||||||
if params.print_diagnostics and batch_idx == 5:
|
if params.print_diagnostics and batch_idx == 5:
|
||||||
@ -891,7 +877,7 @@ def run(rank, world_size, args):
|
|||||||
|
|
||||||
if params.print_diagnostics:
|
if params.print_diagnostics:
|
||||||
opts = diagnostics.TensorDiagnosticOptions(
|
opts = diagnostics.TensorDiagnosticOptions(
|
||||||
2 ** 22
|
2**22
|
||||||
) # allow 4 megabytes per sub-module
|
) # allow 4 megabytes per sub-module
|
||||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||||
|
|
||||||
@ -1029,9 +1015,7 @@ def scan_pessimistic_batches_for_oom(
|
|||||||
f"Failing criterion: {criterion} "
|
f"Failing criterion: {criterion} "
|
||||||
f"(={crit_values[criterion]}) ..."
|
f"(={crit_values[criterion]}) ..."
|
||||||
)
|
)
|
||||||
display_and_save_batch(
|
display_and_save_batch(batch, params=params, graph_compiler=graph_compiler)
|
||||||
batch, params=params, graph_compiler=graph_compiler
|
|
||||||
)
|
|
||||||
raise
|
raise
|
||||||
|
|
||||||
|
|
||||||
|
@ -121,20 +121,24 @@ def get_parser():
|
|||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=15,
|
default=15,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help=(
|
||||||
|
"Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch' and '--iter'",
|
"'--epoch' and '--iter'"
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--use-averaged-model",
|
"--use-averaged-model",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=False,
|
default=False,
|
||||||
help="Whether to load averaged model. Currently it only supports "
|
help=(
|
||||||
|
"Whether to load averaged model. Currently it only supports "
|
||||||
"using --epoch. If True, it would decode with the averaged model "
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
"Actually only the models with epoch number of `epoch-avg` and "
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
"`epoch` are loaded for averaging. ",
|
"`epoch` are loaded for averaging. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -202,8 +206,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=1,
|
default=1,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
@ -263,9 +266,7 @@ def decode_one_batch(
|
|||||||
supervisions = batch["supervisions"]
|
supervisions = batch["supervisions"]
|
||||||
feature_lens = supervisions["num_frames"].to(device)
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
encoder_out, encoder_out_lens = model.encoder(
|
encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
|
||||||
x=feature, x_lens=feature_lens
|
|
||||||
)
|
|
||||||
|
|
||||||
if params.decoding_method == "fast_beam_search":
|
if params.decoding_method == "fast_beam_search":
|
||||||
hyp_tokens = fast_beam_search_one_best(
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
@ -277,10 +278,7 @@ def decode_one_batch(
|
|||||||
max_contexts=params.max_contexts,
|
max_contexts=params.max_contexts,
|
||||||
max_states=params.max_states,
|
max_states=params.max_states,
|
||||||
)
|
)
|
||||||
elif (
|
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
params.decoding_method == "greedy_search"
|
|
||||||
and params.max_sym_per_frame == 1
|
|
||||||
):
|
|
||||||
hyp_tokens = greedy_search_batch(
|
hyp_tokens = greedy_search_batch(
|
||||||
model=model,
|
model=model,
|
||||||
encoder_out=encoder_out,
|
encoder_out=encoder_out,
|
||||||
@ -324,11 +322,7 @@ def decode_one_batch(
|
|||||||
return {"greedy_search": hyps}
|
return {"greedy_search": hyps}
|
||||||
elif params.decoding_method == "fast_beam_search":
|
elif params.decoding_method == "fast_beam_search":
|
||||||
return {
|
return {
|
||||||
(
|
f"beam_{params.beam}_max_contexts_{params.max_contexts}_max_states_{params.max_states}": hyps
|
||||||
f"beam_{params.beam}_"
|
|
||||||
f"max_contexts_{params.max_contexts}_"
|
|
||||||
f"max_states_{params.max_states}"
|
|
||||||
): hyps
|
|
||||||
}
|
}
|
||||||
else:
|
else:
|
||||||
return {f"beam_size_{params.beam_size}": hyps}
|
return {f"beam_size_{params.beam_size}": hyps}
|
||||||
@ -401,9 +395,7 @@ def decode_dataset(
|
|||||||
if batch_idx % log_interval == 0:
|
if batch_idx % log_interval == 0:
|
||||||
batch_str = f"{batch_idx}/{num_batches}"
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
logging.info(
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
|
||||||
)
|
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
@ -429,9 +421,7 @@ def save_results(
|
|||||||
# we compute CER for aishell dataset.
|
# we compute CER for aishell dataset.
|
||||||
results_char = []
|
results_char = []
|
||||||
for res in results:
|
for res in results:
|
||||||
results_char.append(
|
results_char.append((res[0], list("".join(res[1])), list("".join(res[2]))))
|
||||||
(res[0], list("".join(res[1])), list("".join(res[2])))
|
|
||||||
)
|
|
||||||
with open(errs_filename, "w") as f:
|
with open(errs_filename, "w") as f:
|
||||||
wer = write_error_stats(
|
wer = write_error_stats(
|
||||||
f, f"{test_set_name}-{key}", results_char, enable_log=True
|
f, f"{test_set_name}-{key}", results_char, enable_log=True
|
||||||
@ -442,8 +432,7 @@ def save_results(
|
|||||||
|
|
||||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
errs_info = (
|
errs_info = (
|
||||||
params.res_dir
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
)
|
||||||
with open(errs_info, "w") as f:
|
with open(errs_info, "w") as f:
|
||||||
print("settings\tCER", file=f)
|
print("settings\tCER", file=f)
|
||||||
@ -488,9 +477,7 @@ def main():
|
|||||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
params.suffix += f"-max-states-{params.max_states}"
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
elif "beam_search" in params.decoding_method:
|
elif "beam_search" in params.decoding_method:
|
||||||
params.suffix += (
|
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||||
f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
params.suffix += f"-context-{params.context_size}"
|
params.suffix += f"-context-{params.context_size}"
|
||||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
@ -518,13 +505,12 @@ def main():
|
|||||||
|
|
||||||
if not params.use_averaged_model:
|
if not params.use_averaged_model:
|
||||||
if params.iter > 0:
|
if params.iter > 0:
|
||||||
filenames = find_checkpoints(
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
params.exp_dir, iteration=-params.iter
|
: params.avg
|
||||||
)[: params.avg]
|
]
|
||||||
if len(filenames) == 0:
|
if len(filenames) == 0:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"No checkpoints found for"
|
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
)
|
||||||
elif len(filenames) < params.avg:
|
elif len(filenames) < params.avg:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
@ -551,13 +537,12 @@ def main():
|
|||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
if params.iter > 0:
|
if params.iter > 0:
|
||||||
filenames = find_checkpoints(
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
params.exp_dir, iteration=-params.iter
|
: params.avg + 1
|
||||||
)[: params.avg + 1]
|
]
|
||||||
if len(filenames) == 0:
|
if len(filenames) == 0:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"No checkpoints found for"
|
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
)
|
||||||
elif len(filenames) < params.avg + 1:
|
elif len(filenames) < params.avg + 1:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
@ -586,7 +571,7 @@ def main():
|
|||||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
logging.info(
|
logging.info(
|
||||||
f"Calculating the averaged model over epoch range from "
|
"Calculating the averaged model over epoch range from "
|
||||||
f"{start} (excluded) to {params.epoch}"
|
f"{start} (excluded) to {params.epoch}"
|
||||||
)
|
)
|
||||||
model.to(device)
|
model.to(device)
|
||||||
|
@ -88,20 +88,24 @@ def get_parser():
|
|||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=15,
|
default=15,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help=(
|
||||||
|
"Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch' and '--iter'",
|
"'--epoch' and '--iter'"
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--use-averaged-model",
|
"--use-averaged-model",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="Whether to load averaged model. Currently it only supports "
|
help=(
|
||||||
|
"Whether to load averaged model. Currently it only supports "
|
||||||
"using --epoch. If True, it would decode with the averaged model "
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
"Actually only the models with epoch number of `epoch-avg` and "
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
"`epoch` are loaded for averaging. ",
|
"`epoch` are loaded for averaging. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -132,8 +136,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=1,
|
default=1,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
add_model_arguments(parser)
|
add_model_arguments(parser)
|
||||||
@ -166,13 +169,12 @@ def main():
|
|||||||
|
|
||||||
if not params.use_averaged_model:
|
if not params.use_averaged_model:
|
||||||
if params.iter > 0:
|
if params.iter > 0:
|
||||||
filenames = find_checkpoints(
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
params.exp_dir, iteration=-params.iter
|
: params.avg
|
||||||
)[: params.avg]
|
]
|
||||||
if len(filenames) == 0:
|
if len(filenames) == 0:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"No checkpoints found for"
|
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
)
|
||||||
elif len(filenames) < params.avg:
|
elif len(filenames) < params.avg:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
@ -195,13 +197,12 @@ def main():
|
|||||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
else:
|
else:
|
||||||
if params.iter > 0:
|
if params.iter > 0:
|
||||||
filenames = find_checkpoints(
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
params.exp_dir, iteration=-params.iter
|
: params.avg + 1
|
||||||
)[: params.avg + 1]
|
]
|
||||||
if len(filenames) == 0:
|
if len(filenames) == 0:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"No checkpoints found for"
|
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
)
|
||||||
elif len(filenames) < params.avg + 1:
|
elif len(filenames) < params.avg + 1:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
@ -229,7 +230,7 @@ def main():
|
|||||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
logging.info(
|
logging.info(
|
||||||
f"Calculating the averaged model over epoch range from "
|
"Calculating the averaged model over epoch range from "
|
||||||
f"{start} (excluded) to {params.epoch}"
|
f"{start} (excluded) to {params.epoch}"
|
||||||
)
|
)
|
||||||
model.to(device)
|
model.to(device)
|
||||||
@ -252,9 +253,7 @@ def main():
|
|||||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||||
logging.info("Using torch.jit.script")
|
logging.info("Using torch.jit.script")
|
||||||
model = torch.jit.script(model)
|
model = torch.jit.script(model)
|
||||||
filename = (
|
filename = params.exp_dir / f"cpu_jit-epoch-{params.epoch}-avg-{params.avg}.pt"
|
||||||
params.exp_dir / f"cpu_jit-epoch-{params.epoch}-avg-{params.avg}.pt"
|
|
||||||
)
|
|
||||||
model.save(str(filename))
|
model.save(str(filename))
|
||||||
logging.info(f"Saved to {filename}")
|
logging.info(f"Saved to {filename}")
|
||||||
else:
|
else:
|
||||||
@ -262,17 +261,14 @@ def main():
|
|||||||
# Save it using a format so that it can be loaded
|
# Save it using a format so that it can be loaded
|
||||||
# by :func:`load_checkpoint`
|
# by :func:`load_checkpoint`
|
||||||
filename = (
|
filename = (
|
||||||
params.exp_dir
|
params.exp_dir / f"pretrained-epoch-{params.epoch}-avg-{params.avg}.pt"
|
||||||
/ f"pretrained-epoch-{params.epoch}-avg-{params.avg}.pt"
|
|
||||||
)
|
)
|
||||||
torch.save({"model": model.state_dict()}, str(filename))
|
torch.save({"model": model.state_dict()}, str(filename))
|
||||||
logging.info(f"Saved to {filename}")
|
logging.info(f"Saved to {filename}")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
main()
|
main()
|
||||||
|
@ -84,9 +84,7 @@ class Transducer(nn.Module):
|
|||||||
self.decoder_datatang = decoder_datatang
|
self.decoder_datatang = decoder_datatang
|
||||||
self.joiner_datatang = joiner_datatang
|
self.joiner_datatang = joiner_datatang
|
||||||
|
|
||||||
self.simple_am_proj = ScaledLinear(
|
self.simple_am_proj = ScaledLinear(encoder_dim, vocab_size, initial_speed=0.5)
|
||||||
encoder_dim, vocab_size, initial_speed=0.5
|
|
||||||
)
|
|
||||||
self.simple_lm_proj = ScaledLinear(decoder_dim, vocab_size)
|
self.simple_lm_proj = ScaledLinear(decoder_dim, vocab_size)
|
||||||
|
|
||||||
if decoder_datatang is not None:
|
if decoder_datatang is not None:
|
||||||
@ -179,9 +177,7 @@ class Transducer(nn.Module):
|
|||||||
y_padded = y.pad(mode="constant", padding_value=0)
|
y_padded = y.pad(mode="constant", padding_value=0)
|
||||||
|
|
||||||
y_padded = y_padded.to(torch.int64)
|
y_padded = y_padded.to(torch.int64)
|
||||||
boundary = torch.zeros(
|
boundary = torch.zeros((x.size(0), 4), dtype=torch.int64, device=x.device)
|
||||||
(x.size(0), 4), dtype=torch.int64, device=x.device
|
|
||||||
)
|
|
||||||
boundary[:, 2] = y_lens
|
boundary[:, 2] = y_lens
|
||||||
boundary[:, 3] = encoder_out_lens
|
boundary[:, 3] = encoder_out_lens
|
||||||
|
|
||||||
|
@ -87,9 +87,11 @@ def get_parser():
|
|||||||
"--checkpoint",
|
"--checkpoint",
|
||||||
type=str,
|
type=str,
|
||||||
required=True,
|
required=True,
|
||||||
help="Path to the checkpoint. "
|
help=(
|
||||||
|
"Path to the checkpoint. "
|
||||||
"The checkpoint is assumed to be saved by "
|
"The checkpoint is assumed to be saved by "
|
||||||
"icefall.checkpoint.save_checkpoint().",
|
"icefall.checkpoint.save_checkpoint()."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -115,10 +117,12 @@ def get_parser():
|
|||||||
"sound_files",
|
"sound_files",
|
||||||
type=str,
|
type=str,
|
||||||
nargs="+",
|
nargs="+",
|
||||||
help="The input sound file(s) to transcribe. "
|
help=(
|
||||||
|
"The input sound file(s) to transcribe. "
|
||||||
"Supported formats are those supported by torchaudio.load(). "
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
"For example, wav and flac are supported. "
|
"For example, wav and flac are supported. "
|
||||||
"The sample rate has to be 16kHz.",
|
"The sample rate has to be 16kHz."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -165,15 +169,16 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=1,
|
default=1,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
type=int,
|
type=int,
|
||||||
default=1,
|
default=1,
|
||||||
help="Maximum number of symbols per frame. "
|
help=(
|
||||||
"Use only when --method is greedy_search",
|
"Maximum number of symbols per frame. "
|
||||||
|
"Use only when --method is greedy_search"
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
add_model_arguments(parser)
|
add_model_arguments(parser)
|
||||||
@ -196,10 +201,9 @@ def read_sound_files(
|
|||||||
ans = []
|
ans = []
|
||||||
for f in filenames:
|
for f in filenames:
|
||||||
wave, sample_rate = torchaudio.load(f)
|
wave, sample_rate = torchaudio.load(f)
|
||||||
assert sample_rate == expected_sample_rate, (
|
assert (
|
||||||
f"expected sample rate: {expected_sample_rate}. "
|
sample_rate == expected_sample_rate
|
||||||
f"Given: {sample_rate}"
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||||
)
|
|
||||||
# We use only the first channel
|
# We use only the first channel
|
||||||
ans.append(wave[0])
|
ans.append(wave[0])
|
||||||
return ans
|
return ans
|
||||||
@ -257,13 +261,9 @@ def main():
|
|||||||
feature_lens = [f.size(0) for f in features]
|
feature_lens = [f.size(0) for f in features]
|
||||||
feature_lens = torch.tensor(feature_lens, device=device)
|
feature_lens = torch.tensor(feature_lens, device=device)
|
||||||
|
|
||||||
features = pad_sequence(
|
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||||
features, batch_first=True, padding_value=math.log(1e-10)
|
|
||||||
)
|
|
||||||
|
|
||||||
encoder_out, encoder_out_lens = model.encoder(
|
encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lens)
|
||||||
x=features, x_lens=feature_lens
|
|
||||||
)
|
|
||||||
|
|
||||||
num_waves = encoder_out.size(0)
|
num_waves = encoder_out.size(0)
|
||||||
hyp_list = []
|
hyp_list = []
|
||||||
@ -311,9 +311,7 @@ def main():
|
|||||||
beam=params.beam_size,
|
beam=params.beam_size,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
raise ValueError(
|
raise ValueError(f"Unsupported decoding method: {params.method}")
|
||||||
f"Unsupported decoding method: {params.method}"
|
|
||||||
)
|
|
||||||
hyp_list.append(hyp)
|
hyp_list.append(hyp)
|
||||||
|
|
||||||
hyps = []
|
hyps = []
|
||||||
@ -330,9 +328,7 @@ def main():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
main()
|
main()
|
||||||
|
@ -96,9 +96,7 @@ from icefall.env import get_env_info
|
|||||||
from icefall.lexicon import Lexicon
|
from icefall.lexicon import Lexicon
|
||||||
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
||||||
|
|
||||||
LRSchedulerType = Union[
|
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
|
||||||
torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
def add_model_arguments(parser: argparse.ArgumentParser):
|
def add_model_arguments(parser: argparse.ArgumentParser):
|
||||||
@ -224,8 +222,7 @@ def get_parser():
|
|||||||
"--initial-lr",
|
"--initial-lr",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.003,
|
default=0.003,
|
||||||
help="The initial learning rate. This value should not need "
|
help="The initial learning rate. This value should not need to be changed.",
|
||||||
"to be changed.",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -248,42 +245,45 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=1,
|
default=1,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--prune-range",
|
"--prune-range",
|
||||||
type=int,
|
type=int,
|
||||||
default=5,
|
default=5,
|
||||||
help="The prune range for rnnt loss, it means how many symbols(context)"
|
help=(
|
||||||
"we are using to compute the loss",
|
"The prune range for rnnt loss, it means how many symbols(context)"
|
||||||
|
"we are using to compute the loss"
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--lm-scale",
|
"--lm-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.25,
|
default=0.25,
|
||||||
help="The scale to smooth the loss with lm "
|
help=(
|
||||||
"(output of prediction network) part.",
|
"The scale to smooth the loss with lm (output of prediction network) part."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--am-scale",
|
"--am-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.0,
|
default=0.0,
|
||||||
help="The scale to smooth the loss with am (output of encoder network)"
|
help="The scale to smooth the loss with am (output of encoder network)part.",
|
||||||
"part.",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--simple-loss-scale",
|
"--simple-loss-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.5,
|
default=0.5,
|
||||||
help="To get pruning ranges, we will calculate a simple version"
|
help=(
|
||||||
|
"To get pruning ranges, we will calculate a simple version"
|
||||||
"loss(joiner is just addition), this simple loss also uses for"
|
"loss(joiner is just addition), this simple loss also uses for"
|
||||||
"training (as a regularization item). We will scale the simple loss"
|
"training (as a regularization item). We will scale the simple loss"
|
||||||
"with this parameter before adding to the final loss.",
|
"with this parameter before adding to the final loss."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -635,11 +635,7 @@ def compute_loss(
|
|||||||
warmup: a floating point value which increases throughout training;
|
warmup: a floating point value which increases throughout training;
|
||||||
values >= 1.0 are fully warmed up and have all modules present.
|
values >= 1.0 are fully warmed up and have all modules present.
|
||||||
"""
|
"""
|
||||||
device = (
|
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
|
||||||
model.device
|
|
||||||
if isinstance(model, DDP)
|
|
||||||
else next(model.parameters()).device
|
|
||||||
)
|
|
||||||
feature = batch["inputs"]
|
feature = batch["inputs"]
|
||||||
# at entry, feature is (N, T, C)
|
# at entry, feature is (N, T, C)
|
||||||
assert feature.ndim == 3
|
assert feature.ndim == 3
|
||||||
@ -670,23 +666,16 @@ def compute_loss(
|
|||||||
# overwhelming the simple_loss and causing it to diverge,
|
# overwhelming the simple_loss and causing it to diverge,
|
||||||
# in case it had not fully learned the alignment yet.
|
# in case it had not fully learned the alignment yet.
|
||||||
pruned_loss_scale = (
|
pruned_loss_scale = (
|
||||||
0.0
|
0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
|
||||||
if warmup < 1.0
|
|
||||||
else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
|
|
||||||
)
|
|
||||||
loss = (
|
|
||||||
params.simple_loss_scale * simple_loss
|
|
||||||
+ pruned_loss_scale * pruned_loss
|
|
||||||
)
|
)
|
||||||
|
loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
|
||||||
|
|
||||||
assert loss.requires_grad == is_training
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
info = MetricsTracker()
|
info = MetricsTracker()
|
||||||
with warnings.catch_warnings():
|
with warnings.catch_warnings():
|
||||||
warnings.simplefilter("ignore")
|
warnings.simplefilter("ignore")
|
||||||
info["frames"] = (
|
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
||||||
(feature_lens // params.subsampling_factor).sum().item()
|
|
||||||
)
|
|
||||||
|
|
||||||
# Note: We use reduction=sum while computing the loss.
|
# Note: We use reduction=sum while computing the loss.
|
||||||
info["loss"] = loss.detach().cpu().item()
|
info["loss"] = loss.detach().cpu().item()
|
||||||
@ -824,9 +813,7 @@ def train_one_epoch(
|
|||||||
)
|
)
|
||||||
# summary stats
|
# summary stats
|
||||||
if datatang_train_dl is not None:
|
if datatang_train_dl is not None:
|
||||||
tot_loss = (
|
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||||
tot_loss * (1 - 1 / params.reset_interval)
|
|
||||||
) + loss_info
|
|
||||||
|
|
||||||
if aishell:
|
if aishell:
|
||||||
aishell_tot_loss = (
|
aishell_tot_loss = (
|
||||||
@ -847,9 +834,7 @@ def train_one_epoch(
|
|||||||
scaler.update()
|
scaler.update()
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
except: # noqa
|
except: # noqa
|
||||||
display_and_save_batch(
|
display_and_save_batch(batch, params=params, graph_compiler=graph_compiler)
|
||||||
batch, params=params, graph_compiler=graph_compiler
|
|
||||||
)
|
|
||||||
raise
|
raise
|
||||||
|
|
||||||
if params.print_diagnostics and batch_idx == 5:
|
if params.print_diagnostics and batch_idx == 5:
|
||||||
@ -892,9 +877,7 @@ def train_one_epoch(
|
|||||||
cur_lr = scheduler.get_last_lr()[0]
|
cur_lr = scheduler.get_last_lr()[0]
|
||||||
if datatang_train_dl is not None:
|
if datatang_train_dl is not None:
|
||||||
datatang_str = f"datatang_tot_loss[{datatang_tot_loss}], "
|
datatang_str = f"datatang_tot_loss[{datatang_tot_loss}], "
|
||||||
tot_loss_str = (
|
tot_loss_str = f"tot_loss[{tot_loss}], batch size: {batch_size}, "
|
||||||
f"tot_loss[{tot_loss}], batch size: {batch_size}, "
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
tot_loss_str = ""
|
tot_loss_str = ""
|
||||||
datatang_str = ""
|
datatang_str = ""
|
||||||
@ -1067,7 +1050,7 @@ def run(rank, world_size, args):
|
|||||||
|
|
||||||
if params.print_diagnostics:
|
if params.print_diagnostics:
|
||||||
opts = diagnostics.TensorDiagnosticOptions(
|
opts = diagnostics.TensorDiagnosticOptions(
|
||||||
2 ** 22
|
2**22
|
||||||
) # allow 4 megabytes per sub-module
|
) # allow 4 megabytes per sub-module
|
||||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||||
|
|
||||||
@ -1076,9 +1059,7 @@ def run(rank, world_size, args):
|
|||||||
train_cuts = filter_short_and_long_utterances(train_cuts)
|
train_cuts = filter_short_and_long_utterances(train_cuts)
|
||||||
|
|
||||||
if args.enable_musan:
|
if args.enable_musan:
|
||||||
cuts_musan = load_manifest(
|
cuts_musan = load_manifest(Path(args.manifest_dir) / "musan_cuts.jsonl.gz")
|
||||||
Path(args.manifest_dir) / "musan_cuts.jsonl.gz"
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
cuts_musan = None
|
cuts_musan = None
|
||||||
|
|
||||||
@ -1093,9 +1074,7 @@ def run(rank, world_size, args):
|
|||||||
if params.datatang_prob > 0:
|
if params.datatang_prob > 0:
|
||||||
datatang = AIDatatang200zh(manifest_dir=args.manifest_dir)
|
datatang = AIDatatang200zh(manifest_dir=args.manifest_dir)
|
||||||
train_datatang_cuts = datatang.train_cuts()
|
train_datatang_cuts = datatang.train_cuts()
|
||||||
train_datatang_cuts = filter_short_and_long_utterances(
|
train_datatang_cuts = filter_short_and_long_utterances(train_datatang_cuts)
|
||||||
train_datatang_cuts
|
|
||||||
)
|
|
||||||
train_datatang_cuts = train_datatang_cuts.repeat(times=None)
|
train_datatang_cuts = train_datatang_cuts.repeat(times=None)
|
||||||
datatang_train_dl = asr_datamodule.train_dataloaders(
|
datatang_train_dl = asr_datamodule.train_dataloaders(
|
||||||
train_datatang_cuts,
|
train_datatang_cuts,
|
||||||
@ -1249,9 +1228,7 @@ def scan_pessimistic_batches_for_oom(
|
|||||||
f"Failing criterion: {criterion} "
|
f"Failing criterion: {criterion} "
|
||||||
f"(={crit_values[criterion]}) ..."
|
f"(={crit_values[criterion]}) ..."
|
||||||
)
|
)
|
||||||
display_and_save_batch(
|
display_and_save_batch(batch, params=params, graph_compiler=graph_compiler)
|
||||||
batch, params=params, graph_compiler=graph_compiler
|
|
||||||
)
|
|
||||||
raise
|
raise
|
||||||
|
|
||||||
|
|
||||||
|
@ -64,10 +64,12 @@ class AishellAsrDataModule:
|
|||||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
group = parser.add_argument_group(
|
group = parser.add_argument_group(
|
||||||
title="ASR data related options",
|
title="ASR data related options",
|
||||||
description="These options are used for the preparation of "
|
description=(
|
||||||
|
"These options are used for the preparation of "
|
||||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
"effective batch sizes, sampling strategies, applied data "
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
"augmentations, etc.",
|
"augmentations, etc."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--manifest-dir",
|
"--manifest-dir",
|
||||||
@ -79,59 +81,74 @@ class AishellAsrDataModule:
|
|||||||
"--max-duration",
|
"--max-duration",
|
||||||
type=int,
|
type=int,
|
||||||
default=200.0,
|
default=200.0,
|
||||||
help="Maximum pooled recordings duration (seconds) in a "
|
help=(
|
||||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
"Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--bucketing-sampler",
|
"--bucketing-sampler",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled, the batches will come from buckets of "
|
help=(
|
||||||
"similar duration (saves padding frames).",
|
"When enabled, the batches will come from buckets of "
|
||||||
|
"similar duration (saves padding frames)."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--num-buckets",
|
"--num-buckets",
|
||||||
type=int,
|
type=int,
|
||||||
default=30,
|
default=30,
|
||||||
help="The number of buckets for the DynamicBucketingSampler"
|
help=(
|
||||||
"(you might want to increase it for larger datasets).",
|
"The number of buckets for the DynamicBucketingSampler"
|
||||||
|
"(you might want to increase it for larger datasets)."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--concatenate-cuts",
|
"--concatenate-cuts",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=False,
|
default=False,
|
||||||
help="When enabled, utterances (cuts) will be concatenated "
|
help=(
|
||||||
"to minimize the amount of padding.",
|
"When enabled, utterances (cuts) will be concatenated "
|
||||||
|
"to minimize the amount of padding."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--duration-factor",
|
"--duration-factor",
|
||||||
type=float,
|
type=float,
|
||||||
default=1.0,
|
default=1.0,
|
||||||
help="Determines the maximum duration of a concatenated cut "
|
help=(
|
||||||
"relative to the duration of the longest cut in a batch.",
|
"Determines the maximum duration of a concatenated cut "
|
||||||
|
"relative to the duration of the longest cut in a batch."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--gap",
|
"--gap",
|
||||||
type=float,
|
type=float,
|
||||||
default=1.0,
|
default=1.0,
|
||||||
help="The amount of padding (in seconds) inserted between "
|
help=(
|
||||||
|
"The amount of padding (in seconds) inserted between "
|
||||||
"concatenated cuts. This padding is filled with noise when "
|
"concatenated cuts. This padding is filled with noise when "
|
||||||
"noise augmentation is used.",
|
"noise augmentation is used."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--on-the-fly-feats",
|
"--on-the-fly-feats",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=False,
|
default=False,
|
||||||
help="When enabled, use on-the-fly cut mixing and feature "
|
help=(
|
||||||
|
"When enabled, use on-the-fly cut mixing and feature "
|
||||||
"extraction. Will drop existing precomputed feature manifests "
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
"if available.",
|
"if available."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--shuffle",
|
"--shuffle",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled (=default), the examples will be "
|
help=(
|
||||||
"shuffled for each epoch.",
|
"When enabled (=default), the examples will be shuffled for each epoch."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--drop-last",
|
"--drop-last",
|
||||||
@ -143,17 +160,18 @@ class AishellAsrDataModule:
|
|||||||
"--return-cuts",
|
"--return-cuts",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled, each batch will have the "
|
help=(
|
||||||
|
"When enabled, each batch will have the "
|
||||||
"field: batch['supervisions']['cut'] with the cuts that "
|
"field: batch['supervisions']['cut'] with the cuts that "
|
||||||
"were used to construct it.",
|
"were used to construct it."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--num-workers",
|
"--num-workers",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The number of training dataloader workers that "
|
help="The number of training dataloader workers that collect the batches.",
|
||||||
"collect the batches.",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
@ -167,40 +185,40 @@ class AishellAsrDataModule:
|
|||||||
"--spec-aug-time-warp-factor",
|
"--spec-aug-time-warp-factor",
|
||||||
type=int,
|
type=int,
|
||||||
default=80,
|
default=80,
|
||||||
help="Used only when --enable-spec-aug is True. "
|
help=(
|
||||||
|
"Used only when --enable-spec-aug is True. "
|
||||||
"It specifies the factor for time warping in SpecAugment. "
|
"It specifies the factor for time warping in SpecAugment. "
|
||||||
"Larger values mean more warping. "
|
"Larger values mean more warping. "
|
||||||
"A value less than 1 means to disable time warp.",
|
"A value less than 1 means to disable time warp."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--enable-musan",
|
"--enable-musan",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled, select noise from MUSAN and mix it"
|
help=(
|
||||||
"with training dataset. ",
|
"When enabled, select noise from MUSAN and mix it"
|
||||||
|
"with training dataset. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
def train_dataloaders(self, cuts_train: CutSet) -> DataLoader:
|
def train_dataloaders(self, cuts_train: CutSet) -> DataLoader:
|
||||||
logging.info("About to get Musan cuts")
|
logging.info("About to get Musan cuts")
|
||||||
cuts_musan = load_manifest(
|
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||||
self.args.manifest_dir / "musan_cuts.jsonl.gz"
|
|
||||||
)
|
|
||||||
|
|
||||||
transforms = []
|
transforms = []
|
||||||
if self.args.enable_musan:
|
if self.args.enable_musan:
|
||||||
logging.info("Enable MUSAN")
|
logging.info("Enable MUSAN")
|
||||||
transforms.append(
|
transforms.append(
|
||||||
CutMix(
|
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||||
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
|
|
||||||
)
|
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Disable MUSAN")
|
logging.info("Disable MUSAN")
|
||||||
|
|
||||||
if self.args.concatenate_cuts:
|
if self.args.concatenate_cuts:
|
||||||
logging.info(
|
logging.info(
|
||||||
f"Using cut concatenation with duration factor "
|
"Using cut concatenation with duration factor "
|
||||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||||
)
|
)
|
||||||
# Cut concatenation should be the first transform in the list,
|
# Cut concatenation should be the first transform in the list,
|
||||||
@ -215,9 +233,7 @@ class AishellAsrDataModule:
|
|||||||
input_transforms = []
|
input_transforms = []
|
||||||
if self.args.enable_spec_aug:
|
if self.args.enable_spec_aug:
|
||||||
logging.info("Enable SpecAugment")
|
logging.info("Enable SpecAugment")
|
||||||
logging.info(
|
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||||
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
|
||||||
)
|
|
||||||
# Set the value of num_frame_masks according to Lhotse's version.
|
# Set the value of num_frame_masks according to Lhotse's version.
|
||||||
# In different Lhotse's versions, the default of num_frame_masks is
|
# In different Lhotse's versions, the default of num_frame_masks is
|
||||||
# different.
|
# different.
|
||||||
@ -260,9 +276,7 @@ class AishellAsrDataModule:
|
|||||||
# Drop feats to be on the safe side.
|
# Drop feats to be on the safe side.
|
||||||
train = K2SpeechRecognitionDataset(
|
train = K2SpeechRecognitionDataset(
|
||||||
cut_transforms=transforms,
|
cut_transforms=transforms,
|
||||||
input_strategy=OnTheFlyFeatures(
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
|
||||||
),
|
|
||||||
input_transforms=input_transforms,
|
input_transforms=input_transforms,
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
@ -308,9 +322,7 @@ class AishellAsrDataModule:
|
|||||||
if self.args.on_the_fly_feats:
|
if self.args.on_the_fly_feats:
|
||||||
validate = K2SpeechRecognitionDataset(
|
validate = K2SpeechRecognitionDataset(
|
||||||
cut_transforms=transforms,
|
cut_transforms=transforms,
|
||||||
input_strategy=OnTheFlyFeatures(
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
|
||||||
),
|
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
@ -366,13 +378,9 @@ class AishellAsrDataModule:
|
|||||||
@lru_cache()
|
@lru_cache()
|
||||||
def valid_cuts(self) -> CutSet:
|
def valid_cuts(self) -> CutSet:
|
||||||
logging.info("About to get dev cuts")
|
logging.info("About to get dev cuts")
|
||||||
return load_manifest_lazy(
|
return load_manifest_lazy(self.args.manifest_dir / "aishell_cuts_dev.jsonl.gz")
|
||||||
self.args.manifest_dir / "aishell_cuts_dev.jsonl.gz"
|
|
||||||
)
|
|
||||||
|
|
||||||
@lru_cache()
|
@lru_cache()
|
||||||
def test_cuts(self) -> List[CutSet]:
|
def test_cuts(self) -> List[CutSet]:
|
||||||
logging.info("About to get test cuts")
|
logging.info("About to get test cuts")
|
||||||
return load_manifest_lazy(
|
return load_manifest_lazy(self.args.manifest_dir / "aishell_cuts_test.jsonl.gz")
|
||||||
self.args.manifest_dir / "aishell_cuts_test.jsonl.gz"
|
|
||||||
)
|
|
||||||
|
@ -49,16 +49,19 @@ def get_parser():
|
|||||||
"--epoch",
|
"--epoch",
|
||||||
type=int,
|
type=int,
|
||||||
default=19,
|
default=19,
|
||||||
help="It specifies the checkpoint to use for decoding."
|
help=(
|
||||||
"Note: Epoch counts from 0.",
|
"It specifies the checkpoint to use for decoding.Note: Epoch counts from 0."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=5,
|
default=5,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help=(
|
||||||
|
"Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch'. ",
|
"'--epoch'. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--method",
|
"--method",
|
||||||
@ -265,9 +268,7 @@ def decode_dataset(
|
|||||||
if batch_idx % 100 == 0:
|
if batch_idx % 100 == 0:
|
||||||
batch_str = f"{batch_idx}/{num_batches}"
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
logging.info(
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
|
||||||
)
|
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
@ -289,9 +290,7 @@ def save_results(
|
|||||||
# We compute CER for aishell dataset.
|
# We compute CER for aishell dataset.
|
||||||
results_char = []
|
results_char = []
|
||||||
for res in results:
|
for res in results:
|
||||||
results_char.append(
|
results_char.append((res[0], list("".join(res[1])), list("".join(res[2]))))
|
||||||
(res[0], list("".join(res[1])), list("".join(res[2])))
|
|
||||||
)
|
|
||||||
with open(errs_filename, "w") as f:
|
with open(errs_filename, "w") as f:
|
||||||
wer = write_error_stats(f, f"{test_set_name}-{key}", results_char)
|
wer = write_error_stats(f, f"{test_set_name}-{key}", results_char)
|
||||||
test_set_wers[key] = wer
|
test_set_wers[key] = wer
|
||||||
@ -335,9 +334,7 @@ def main():
|
|||||||
|
|
||||||
logging.info(f"device: {device}")
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
HLG = k2.Fsa.from_dict(
|
HLG = k2.Fsa.from_dict(torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu"))
|
||||||
torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
|
|
||||||
)
|
|
||||||
HLG = HLG.to(device)
|
HLG = HLG.to(device)
|
||||||
assert HLG.requires_grad is False
|
assert HLG.requires_grad is False
|
||||||
|
|
||||||
@ -362,9 +359,7 @@ def main():
|
|||||||
|
|
||||||
if params.export:
|
if params.export:
|
||||||
logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
|
logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
|
||||||
torch.save(
|
torch.save({"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt")
|
||||||
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
|
|
||||||
)
|
|
||||||
|
|
||||||
model.to(device)
|
model.to(device)
|
||||||
model.eval()
|
model.eval()
|
||||||
@ -392,9 +387,7 @@ def main():
|
|||||||
lexicon=lexicon,
|
lexicon=lexicon,
|
||||||
)
|
)
|
||||||
|
|
||||||
save_results(
|
save_results(params=params, test_set_name=test_set, results_dict=results_dict)
|
||||||
params=params, test_set_name=test_set, results_dict=results_dict
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.info("Done!")
|
logging.info("Done!")
|
||||||
|
|
||||||
|
@ -66,10 +66,7 @@ class TdnnLstm(nn.Module):
|
|||||||
nn.BatchNorm1d(num_features=500, affine=False),
|
nn.BatchNorm1d(num_features=500, affine=False),
|
||||||
)
|
)
|
||||||
self.lstms = nn.ModuleList(
|
self.lstms = nn.ModuleList(
|
||||||
[
|
[nn.LSTM(input_size=500, hidden_size=500, num_layers=1) for _ in range(5)]
|
||||||
nn.LSTM(input_size=500, hidden_size=500, num_layers=1)
|
|
||||||
for _ in range(5)
|
|
||||||
]
|
|
||||||
)
|
)
|
||||||
self.lstm_bnorms = nn.ModuleList(
|
self.lstm_bnorms = nn.ModuleList(
|
||||||
[nn.BatchNorm1d(num_features=500, affine=False) for _ in range(5)]
|
[nn.BatchNorm1d(num_features=500, affine=False) for _ in range(5)]
|
||||||
|
@ -41,9 +41,11 @@ def get_parser():
|
|||||||
"--checkpoint",
|
"--checkpoint",
|
||||||
type=str,
|
type=str,
|
||||||
required=True,
|
required=True,
|
||||||
help="Path to the checkpoint. "
|
help=(
|
||||||
|
"Path to the checkpoint. "
|
||||||
"The checkpoint is assumed to be saved by "
|
"The checkpoint is assumed to be saved by "
|
||||||
"icefall.checkpoint.save_checkpoint().",
|
"icefall.checkpoint.save_checkpoint()."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -53,9 +55,7 @@ def get_parser():
|
|||||||
help="Path to words.txt",
|
help="Path to words.txt",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument("--HLG", type=str, required=True, help="Path to HLG.pt.")
|
||||||
"--HLG", type=str, required=True, help="Path to HLG.pt."
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--method",
|
"--method",
|
||||||
@ -71,10 +71,12 @@ def get_parser():
|
|||||||
"sound_files",
|
"sound_files",
|
||||||
type=str,
|
type=str,
|
||||||
nargs="+",
|
nargs="+",
|
||||||
help="The input sound file(s) to transcribe. "
|
help=(
|
||||||
|
"The input sound file(s) to transcribe. "
|
||||||
"Supported formats are those supported by torchaudio.load(). "
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
"For example, wav and flac are supported. "
|
"For example, wav and flac are supported. "
|
||||||
"The sample rate has to be 16kHz.",
|
"The sample rate has to be 16kHz."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
@ -112,10 +114,9 @@ def read_sound_files(
|
|||||||
ans = []
|
ans = []
|
||||||
for f in filenames:
|
for f in filenames:
|
||||||
wave, sample_rate = torchaudio.load(f)
|
wave, sample_rate = torchaudio.load(f)
|
||||||
assert sample_rate == expected_sample_rate, (
|
assert (
|
||||||
f"expected sample rate: {expected_sample_rate}. "
|
sample_rate == expected_sample_rate
|
||||||
f"Given: {sample_rate}"
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||||
)
|
|
||||||
# We use only the first channel
|
# We use only the first channel
|
||||||
ans.append(wave[0])
|
ans.append(wave[0])
|
||||||
return ans
|
return ans
|
||||||
@ -173,9 +174,7 @@ def main():
|
|||||||
logging.info("Decoding started")
|
logging.info("Decoding started")
|
||||||
features = fbank(waves)
|
features = fbank(waves)
|
||||||
|
|
||||||
features = pad_sequence(
|
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||||
features, batch_first=True, padding_value=math.log(1e-10)
|
|
||||||
)
|
|
||||||
features = features.permute(0, 2, 1) # now features is [N, C, T]
|
features = features.permute(0, 2, 1) # now features is [N, C, T]
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
@ -219,9 +218,7 @@ def main():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
main()
|
main()
|
||||||
|
@ -49,12 +49,7 @@ from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
|||||||
from icefall.dist import cleanup_dist, setup_dist
|
from icefall.dist import cleanup_dist, setup_dist
|
||||||
from icefall.graph_compiler import CtcTrainingGraphCompiler
|
from icefall.graph_compiler import CtcTrainingGraphCompiler
|
||||||
from icefall.lexicon import Lexicon
|
from icefall.lexicon import Lexicon
|
||||||
from icefall.utils import (
|
from icefall.utils import AttributeDict, encode_supervisions, setup_logger, str2bool
|
||||||
AttributeDict,
|
|
||||||
encode_supervisions,
|
|
||||||
setup_logger,
|
|
||||||
str2bool,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
def get_parser():
|
||||||
|
@ -47,9 +47,9 @@ def greedy_search(
|
|||||||
|
|
||||||
device = model.device
|
device = model.device
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
decoder_input = torch.tensor([blank_id] * context_size, device=device).reshape(
|
||||||
[blank_id] * context_size, device=device
|
1, context_size
|
||||||
).reshape(1, context_size)
|
)
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
|
||||||
@ -81,9 +81,9 @@ def greedy_search(
|
|||||||
y = logits.argmax().item()
|
y = logits.argmax().item()
|
||||||
if y != blank_id:
|
if y != blank_id:
|
||||||
hyp.append(y)
|
hyp.append(y)
|
||||||
decoder_input = torch.tensor(
|
decoder_input = torch.tensor([hyp[-context_size:]], device=device).reshape(
|
||||||
[hyp[-context_size:]], device=device
|
1, context_size
|
||||||
).reshape(1, context_size)
|
)
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
|
||||||
@ -157,9 +157,7 @@ class HypothesisList(object):
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
if length_norm:
|
if length_norm:
|
||||||
return max(
|
return max(self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys))
|
||||||
self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys)
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
return max(self._data.values(), key=lambda hyp: hyp.log_prob)
|
return max(self._data.values(), key=lambda hyp: hyp.log_prob)
|
||||||
|
|
||||||
@ -246,9 +244,9 @@ def beam_search(
|
|||||||
|
|
||||||
device = model.device
|
device = model.device
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
decoder_input = torch.tensor([blank_id] * context_size, device=device).reshape(
|
||||||
[blank_id] * context_size, device=device
|
1, context_size
|
||||||
).reshape(1, context_size)
|
)
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
|
||||||
|
@ -155,9 +155,7 @@ class ConformerEncoderLayer(nn.Module):
|
|||||||
normalize_before: bool = True,
|
normalize_before: bool = True,
|
||||||
) -> None:
|
) -> None:
|
||||||
super(ConformerEncoderLayer, self).__init__()
|
super(ConformerEncoderLayer, self).__init__()
|
||||||
self.self_attn = RelPositionMultiheadAttention(
|
self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0)
|
||||||
d_model, nhead, dropout=0.0
|
|
||||||
)
|
|
||||||
|
|
||||||
self.feed_forward = nn.Sequential(
|
self.feed_forward = nn.Sequential(
|
||||||
nn.Linear(d_model, dim_feedforward),
|
nn.Linear(d_model, dim_feedforward),
|
||||||
@ -175,18 +173,14 @@ class ConformerEncoderLayer(nn.Module):
|
|||||||
|
|
||||||
self.conv_module = ConvolutionModule(d_model, cnn_module_kernel)
|
self.conv_module = ConvolutionModule(d_model, cnn_module_kernel)
|
||||||
|
|
||||||
self.norm_ff_macaron = nn.LayerNorm(
|
self.norm_ff_macaron = nn.LayerNorm(d_model) # for the macaron style FNN module
|
||||||
d_model
|
|
||||||
) # for the macaron style FNN module
|
|
||||||
self.norm_ff = nn.LayerNorm(d_model) # for the FNN module
|
self.norm_ff = nn.LayerNorm(d_model) # for the FNN module
|
||||||
self.norm_mha = nn.LayerNorm(d_model) # for the MHA module
|
self.norm_mha = nn.LayerNorm(d_model) # for the MHA module
|
||||||
|
|
||||||
self.ff_scale = 0.5
|
self.ff_scale = 0.5
|
||||||
|
|
||||||
self.norm_conv = nn.LayerNorm(d_model) # for the CNN module
|
self.norm_conv = nn.LayerNorm(d_model) # for the CNN module
|
||||||
self.norm_final = nn.LayerNorm(
|
self.norm_final = nn.LayerNorm(d_model) # for the final output of the block
|
||||||
d_model
|
|
||||||
) # for the final output of the block
|
|
||||||
|
|
||||||
self.dropout = nn.Dropout(dropout)
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
|
||||||
@ -220,9 +214,7 @@ class ConformerEncoderLayer(nn.Module):
|
|||||||
residual = src
|
residual = src
|
||||||
if self.normalize_before:
|
if self.normalize_before:
|
||||||
src = self.norm_ff_macaron(src)
|
src = self.norm_ff_macaron(src)
|
||||||
src = residual + self.ff_scale * self.dropout(
|
src = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(src))
|
||||||
self.feed_forward_macaron(src)
|
|
||||||
)
|
|
||||||
if not self.normalize_before:
|
if not self.normalize_before:
|
||||||
src = self.norm_ff_macaron(src)
|
src = self.norm_ff_macaron(src)
|
||||||
|
|
||||||
@ -341,9 +333,7 @@ class RelPositionalEncoding(torch.nn.Module):
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(
|
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None:
|
||||||
self, d_model: int, dropout_rate: float, max_len: int = 5000
|
|
||||||
) -> None:
|
|
||||||
"""Construct an PositionalEncoding object."""
|
"""Construct an PositionalEncoding object."""
|
||||||
super(RelPositionalEncoding, self).__init__()
|
super(RelPositionalEncoding, self).__init__()
|
||||||
self.d_model = d_model
|
self.d_model = d_model
|
||||||
@ -359,9 +349,7 @@ class RelPositionalEncoding(torch.nn.Module):
|
|||||||
# the length of self.pe is 2 * input_len - 1
|
# the length of self.pe is 2 * input_len - 1
|
||||||
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
||||||
# Note: TorchScript doesn't implement operator== for torch.Device
|
# Note: TorchScript doesn't implement operator== for torch.Device
|
||||||
if self.pe.dtype != x.dtype or str(self.pe.device) != str(
|
if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device):
|
||||||
x.device
|
|
||||||
):
|
|
||||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||||
return
|
return
|
||||||
# Suppose `i` means to the position of query vector and `j` means the
|
# Suppose `i` means to the position of query vector and `j` means the
|
||||||
@ -631,9 +619,9 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
|
|
||||||
if torch.equal(query, key) and torch.equal(key, value):
|
if torch.equal(query, key) and torch.equal(key, value):
|
||||||
# self-attention
|
# self-attention
|
||||||
q, k, v = nn.functional.linear(
|
q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk(
|
||||||
query, in_proj_weight, in_proj_bias
|
3, dim=-1
|
||||||
).chunk(3, dim=-1)
|
)
|
||||||
|
|
||||||
elif torch.equal(key, value):
|
elif torch.equal(key, value):
|
||||||
# encoder-decoder attention
|
# encoder-decoder attention
|
||||||
@ -701,33 +689,25 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
if attn_mask.dim() == 2:
|
if attn_mask.dim() == 2:
|
||||||
attn_mask = attn_mask.unsqueeze(0)
|
attn_mask = attn_mask.unsqueeze(0)
|
||||||
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
||||||
raise RuntimeError(
|
raise RuntimeError("The size of the 2D attn_mask is not correct.")
|
||||||
"The size of the 2D attn_mask is not correct."
|
|
||||||
)
|
|
||||||
elif attn_mask.dim() == 3:
|
elif attn_mask.dim() == 3:
|
||||||
if list(attn_mask.size()) != [
|
if list(attn_mask.size()) != [
|
||||||
bsz * num_heads,
|
bsz * num_heads,
|
||||||
query.size(0),
|
query.size(0),
|
||||||
key.size(0),
|
key.size(0),
|
||||||
]:
|
]:
|
||||||
raise RuntimeError(
|
raise RuntimeError("The size of the 3D attn_mask is not correct.")
|
||||||
"The size of the 3D attn_mask is not correct."
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
raise RuntimeError(
|
raise RuntimeError(
|
||||||
"attn_mask's dimension {} is not supported".format(
|
"attn_mask's dimension {} is not supported".format(attn_mask.dim())
|
||||||
attn_mask.dim()
|
|
||||||
)
|
|
||||||
)
|
)
|
||||||
# attn_mask's dim is 3 now.
|
# attn_mask's dim is 3 now.
|
||||||
|
|
||||||
# convert ByteTensor key_padding_mask to bool
|
# convert ByteTensor key_padding_mask to bool
|
||||||
if (
|
if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
|
||||||
key_padding_mask is not None
|
|
||||||
and key_padding_mask.dtype == torch.uint8
|
|
||||||
):
|
|
||||||
warnings.warn(
|
warnings.warn(
|
||||||
"Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
|
"Byte tensor for key_padding_mask is deprecated. Use bool tensor"
|
||||||
|
" instead."
|
||||||
)
|
)
|
||||||
key_padding_mask = key_padding_mask.to(torch.bool)
|
key_padding_mask = key_padding_mask.to(torch.bool)
|
||||||
|
|
||||||
@ -764,9 +744,7 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
# first compute matrix a and matrix c
|
# first compute matrix a and matrix c
|
||||||
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||||
k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2)
|
k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2)
|
||||||
matrix_ac = torch.matmul(
|
matrix_ac = torch.matmul(q_with_bias_u, k) # (batch, head, time1, time2)
|
||||||
q_with_bias_u, k
|
|
||||||
) # (batch, head, time1, time2)
|
|
||||||
|
|
||||||
# compute matrix b and matrix d
|
# compute matrix b and matrix d
|
||||||
matrix_bd = torch.matmul(
|
matrix_bd = torch.matmul(
|
||||||
@ -778,9 +756,7 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
matrix_ac + matrix_bd
|
matrix_ac + matrix_bd
|
||||||
) * scaling # (batch, head, time1, time2)
|
) * scaling # (batch, head, time1, time2)
|
||||||
|
|
||||||
attn_output_weights = attn_output_weights.view(
|
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1)
|
||||||
bsz * num_heads, tgt_len, -1
|
|
||||||
)
|
|
||||||
|
|
||||||
assert list(attn_output_weights.size()) == [
|
assert list(attn_output_weights.size()) == [
|
||||||
bsz * num_heads,
|
bsz * num_heads,
|
||||||
@ -814,13 +790,9 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
attn_output = torch.bmm(attn_output_weights, v)
|
attn_output = torch.bmm(attn_output_weights, v)
|
||||||
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
|
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
|
||||||
attn_output = (
|
attn_output = (
|
||||||
attn_output.transpose(0, 1)
|
attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
||||||
.contiguous()
|
|
||||||
.view(tgt_len, bsz, embed_dim)
|
|
||||||
)
|
|
||||||
attn_output = nn.functional.linear(
|
|
||||||
attn_output, out_proj_weight, out_proj_bias
|
|
||||||
)
|
)
|
||||||
|
attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias)
|
||||||
|
|
||||||
if need_weights:
|
if need_weights:
|
||||||
# average attention weights over heads
|
# average attention weights over heads
|
||||||
@ -843,9 +815,7 @@ class ConvolutionModule(nn.Module):
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(
|
def __init__(self, channels: int, kernel_size: int, bias: bool = True) -> None:
|
||||||
self, channels: int, kernel_size: int, bias: bool = True
|
|
||||||
) -> None:
|
|
||||||
"""Construct an ConvolutionModule object."""
|
"""Construct an ConvolutionModule object."""
|
||||||
super(ConvolutionModule, self).__init__()
|
super(ConvolutionModule, self).__init__()
|
||||||
# kernerl_size should be a odd number for 'SAME' padding
|
# kernerl_size should be a odd number for 'SAME' padding
|
||||||
|
@ -52,16 +52,19 @@ def get_parser():
|
|||||||
"--epoch",
|
"--epoch",
|
||||||
type=int,
|
type=int,
|
||||||
default=30,
|
default=30,
|
||||||
help="It specifies the checkpoint to use for decoding."
|
help=(
|
||||||
"Note: Epoch counts from 0.",
|
"It specifies the checkpoint to use for decoding.Note: Epoch counts from 0."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=10,
|
default=10,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help=(
|
||||||
|
"Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch'. ",
|
"'--epoch'. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -99,8 +102,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
@ -227,9 +229,7 @@ def decode_one_batch(
|
|||||||
supervisions = batch["supervisions"]
|
supervisions = batch["supervisions"]
|
||||||
feature_lens = supervisions["num_frames"].to(device)
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
encoder_out, encoder_out_lens = model.encoder(
|
encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
|
||||||
x=feature, x_lens=feature_lens
|
|
||||||
)
|
|
||||||
hyps = []
|
hyps = []
|
||||||
batch_size = encoder_out.size(0)
|
batch_size = encoder_out.size(0)
|
||||||
|
|
||||||
@ -248,9 +248,7 @@ def decode_one_batch(
|
|||||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
raise ValueError(
|
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||||
f"Unsupported decoding method: {params.decoding_method}"
|
|
||||||
)
|
|
||||||
hyps.append([lexicon.token_table[i] for i in hyp])
|
hyps.append([lexicon.token_table[i] for i in hyp])
|
||||||
|
|
||||||
if params.decoding_method == "greedy_search":
|
if params.decoding_method == "greedy_search":
|
||||||
@ -319,9 +317,7 @@ def decode_dataset(
|
|||||||
if batch_idx % log_interval == 0:
|
if batch_idx % log_interval == 0:
|
||||||
batch_str = f"{batch_idx}/{num_batches}"
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
logging.info(
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
|
||||||
)
|
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
@ -346,9 +342,7 @@ def save_results(
|
|||||||
# we compute CER for aishell dataset.
|
# we compute CER for aishell dataset.
|
||||||
results_char = []
|
results_char = []
|
||||||
for res in results:
|
for res in results:
|
||||||
results_char.append(
|
results_char.append((res[0], list("".join(res[1])), list("".join(res[2]))))
|
||||||
(res[0], list("".join(res[1])), list("".join(res[2])))
|
|
||||||
)
|
|
||||||
with open(errs_filename, "w") as f:
|
with open(errs_filename, "w") as f:
|
||||||
wer = write_error_stats(
|
wer = write_error_stats(
|
||||||
f, f"{test_set_name}-{key}", results_char, enable_log=True
|
f, f"{test_set_name}-{key}", results_char, enable_log=True
|
||||||
@ -359,8 +353,7 @@ def save_results(
|
|||||||
|
|
||||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
errs_info = (
|
errs_info = (
|
||||||
params.res_dir
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
)
|
||||||
with open(errs_info, "w") as f:
|
with open(errs_info, "w") as f:
|
||||||
print("settings\tCER", file=f)
|
print("settings\tCER", file=f)
|
||||||
@ -430,9 +423,7 @@ def main():
|
|||||||
|
|
||||||
if params.export:
|
if params.export:
|
||||||
logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
|
logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
|
||||||
torch.save(
|
torch.save({"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt")
|
||||||
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
|
|
||||||
)
|
|
||||||
return
|
return
|
||||||
|
|
||||||
model.to(device)
|
model.to(device)
|
||||||
|
@ -86,9 +86,7 @@ class Decoder(nn.Module):
|
|||||||
if self.context_size > 1:
|
if self.context_size > 1:
|
||||||
embedding_out = embedding_out.permute(0, 2, 1)
|
embedding_out = embedding_out.permute(0, 2, 1)
|
||||||
if need_pad is True:
|
if need_pad is True:
|
||||||
embedding_out = F.pad(
|
embedding_out = F.pad(embedding_out, pad=(self.context_size - 1, 0))
|
||||||
embedding_out, pad=(self.context_size - 1, 0)
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
# During inference time, there is no need to do extra padding
|
# During inference time, there is no need to do extra padding
|
||||||
# as we only need one output
|
# as we only need one output
|
||||||
|
@ -69,17 +69,20 @@ def get_parser():
|
|||||||
"--epoch",
|
"--epoch",
|
||||||
type=int,
|
type=int,
|
||||||
default=20,
|
default=20,
|
||||||
help="It specifies the checkpoint to use for decoding."
|
help=(
|
||||||
"Note: Epoch counts from 0.",
|
"It specifies the checkpoint to use for decoding.Note: Epoch counts from 0."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=10,
|
default=10,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help=(
|
||||||
|
"Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch'. ",
|
"'--epoch'. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -110,8 +113,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
@ -243,9 +245,7 @@ def main():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
main()
|
main()
|
||||||
|
@ -103,9 +103,7 @@ class Transducer(nn.Module):
|
|||||||
y_padded = y.pad(mode="constant", padding_value=0)
|
y_padded = y.pad(mode="constant", padding_value=0)
|
||||||
|
|
||||||
y_padded = y_padded.to(torch.int64)
|
y_padded = y_padded.to(torch.int64)
|
||||||
boundary = torch.zeros(
|
boundary = torch.zeros((x.size(0), 4), dtype=torch.int64, device=x.device)
|
||||||
(x.size(0), 4), dtype=torch.int64, device=x.device
|
|
||||||
)
|
|
||||||
boundary[:, 2] = y_lens
|
boundary[:, 2] = y_lens
|
||||||
boundary[:, 3] = x_lens
|
boundary[:, 3] = x_lens
|
||||||
|
|
||||||
|
@ -73,9 +73,11 @@ def get_parser():
|
|||||||
"--checkpoint",
|
"--checkpoint",
|
||||||
type=str,
|
type=str,
|
||||||
required=True,
|
required=True,
|
||||||
help="Path to the checkpoint. "
|
help=(
|
||||||
|
"Path to the checkpoint. "
|
||||||
"The checkpoint is assumed to be saved by "
|
"The checkpoint is assumed to be saved by "
|
||||||
"icefall.checkpoint.save_checkpoint().",
|
"icefall.checkpoint.save_checkpoint()."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -100,10 +102,12 @@ def get_parser():
|
|||||||
"sound_files",
|
"sound_files",
|
||||||
type=str,
|
type=str,
|
||||||
nargs="+",
|
nargs="+",
|
||||||
help="The input sound file(s) to transcribe. "
|
help=(
|
||||||
|
"The input sound file(s) to transcribe. "
|
||||||
"Supported formats are those supported by torchaudio.load(). "
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
"For example, wav and flac are supported. "
|
"For example, wav and flac are supported. "
|
||||||
"The sample rate has to be 16kHz.",
|
"The sample rate has to be 16kHz."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -117,8 +121,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
@ -211,10 +214,9 @@ def read_sound_files(
|
|||||||
ans = []
|
ans = []
|
||||||
for f in filenames:
|
for f in filenames:
|
||||||
wave, sample_rate = torchaudio.load(f)
|
wave, sample_rate = torchaudio.load(f)
|
||||||
assert sample_rate == expected_sample_rate, (
|
assert (
|
||||||
f"expected sample rate: {expected_sample_rate}. "
|
sample_rate == expected_sample_rate
|
||||||
f"Given: {sample_rate}"
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||||
)
|
|
||||||
# We use only the first channel
|
# We use only the first channel
|
||||||
ans.append(wave[0])
|
ans.append(wave[0])
|
||||||
return ans
|
return ans
|
||||||
@ -273,9 +275,7 @@ def main():
|
|||||||
features = fbank(waves)
|
features = fbank(waves)
|
||||||
feature_lengths = [f.size(0) for f in features]
|
feature_lengths = [f.size(0) for f in features]
|
||||||
|
|
||||||
features = pad_sequence(
|
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||||
features, batch_first=True, padding_value=math.log(1e-10)
|
|
||||||
)
|
|
||||||
|
|
||||||
feature_lengths = torch.tensor(feature_lengths, device=device)
|
feature_lengths = torch.tensor(feature_lengths, device=device)
|
||||||
|
|
||||||
@ -319,9 +319,7 @@ def main():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
main()
|
main()
|
||||||
|
@ -126,8 +126,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -389,9 +388,7 @@ def compute_loss(
|
|||||||
info = MetricsTracker()
|
info = MetricsTracker()
|
||||||
with warnings.catch_warnings():
|
with warnings.catch_warnings():
|
||||||
warnings.simplefilter("ignore")
|
warnings.simplefilter("ignore")
|
||||||
info["frames"] = (
|
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
||||||
(feature_lens // params.subsampling_factor).sum().item()
|
|
||||||
)
|
|
||||||
|
|
||||||
# Note: We use reduction=sum while computing the loss.
|
# Note: We use reduction=sum while computing the loss.
|
||||||
info["loss"] = loss.detach().cpu().item()
|
info["loss"] = loss.detach().cpu().item()
|
||||||
@ -504,9 +501,7 @@ def train_one_epoch(
|
|||||||
loss_info.write_summary(
|
loss_info.write_summary(
|
||||||
tb_writer, "train/current_", params.batch_idx_train
|
tb_writer, "train/current_", params.batch_idx_train
|
||||||
)
|
)
|
||||||
tot_loss.write_summary(
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||||
tb_writer, "train/tot_", params.batch_idx_train
|
|
||||||
)
|
|
||||||
|
|
||||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||||
logging.info("Computing validation loss")
|
logging.info("Computing validation loss")
|
||||||
@ -625,9 +620,7 @@ def run(rank, world_size, args):
|
|||||||
|
|
||||||
cur_lr = optimizer._rate
|
cur_lr = optimizer._rate
|
||||||
if tb_writer is not None:
|
if tb_writer is not None:
|
||||||
tb_writer.add_scalar(
|
tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train)
|
||||||
"train/learning_rate", cur_lr, params.batch_idx_train
|
|
||||||
)
|
|
||||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||||
|
|
||||||
if rank == 0:
|
if rank == 0:
|
||||||
|
@ -250,9 +250,7 @@ def _get_activation_fn(activation: str):
|
|||||||
elif activation == "gelu":
|
elif activation == "gelu":
|
||||||
return nn.functional.gelu
|
return nn.functional.gelu
|
||||||
|
|
||||||
raise RuntimeError(
|
raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
|
||||||
"activation should be relu/gelu, not {}".format(activation)
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class PositionalEncoding(nn.Module):
|
class PositionalEncoding(nn.Module):
|
||||||
|
@ -29,10 +29,7 @@ from lhotse.dataset import (
|
|||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import (
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures, PrecomputedFeatures
|
||||||
OnTheFlyFeatures,
|
|
||||||
PrecomputedFeatures,
|
|
||||||
)
|
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
from icefall.utils import str2bool
|
from icefall.utils import str2bool
|
||||||
@ -46,59 +43,69 @@ class AsrDataModule:
|
|||||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
group = parser.add_argument_group(
|
group = parser.add_argument_group(
|
||||||
title="ASR data related options",
|
title="ASR data related options",
|
||||||
description="These options are used for the preparation of "
|
description=(
|
||||||
|
"These options are used for the preparation of "
|
||||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
"effective batch sizes, sampling strategies, applied data "
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
"augmentations, etc.",
|
"augmentations, etc."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--max-duration",
|
"--max-duration",
|
||||||
type=int,
|
type=int,
|
||||||
default=200.0,
|
default=200.0,
|
||||||
help="Maximum pooled recordings duration (seconds) in a "
|
help=(
|
||||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
"Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--bucketing-sampler",
|
"--bucketing-sampler",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled, the batches will come from buckets of "
|
help=(
|
||||||
"similar duration (saves padding frames).",
|
"When enabled, the batches will come from buckets of "
|
||||||
|
"similar duration (saves padding frames)."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--num-buckets",
|
"--num-buckets",
|
||||||
type=int,
|
type=int,
|
||||||
default=30,
|
default=30,
|
||||||
help="The number of buckets for the DynamicBucketingSampler "
|
help=(
|
||||||
"(you might want to increase it for larger datasets).",
|
"The number of buckets for the DynamicBucketingSampler "
|
||||||
|
"(you might want to increase it for larger datasets)."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--shuffle",
|
"--shuffle",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled (=default), the examples will be "
|
help=(
|
||||||
"shuffled for each epoch.",
|
"When enabled (=default), the examples will be shuffled for each epoch."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--return-cuts",
|
"--return-cuts",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled, each batch will have the "
|
help=(
|
||||||
|
"When enabled, each batch will have the "
|
||||||
"field: batch['supervisions']['cut'] with the cuts that "
|
"field: batch['supervisions']['cut'] with the cuts that "
|
||||||
"were used to construct it.",
|
"were used to construct it."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--num-workers",
|
"--num-workers",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The number of training dataloader workers that "
|
help="The number of training dataloader workers that collect the batches.",
|
||||||
"collect the batches.",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
@ -112,18 +119,22 @@ class AsrDataModule:
|
|||||||
"--spec-aug-time-warp-factor",
|
"--spec-aug-time-warp-factor",
|
||||||
type=int,
|
type=int,
|
||||||
default=80,
|
default=80,
|
||||||
help="Used only when --enable-spec-aug is True. "
|
help=(
|
||||||
|
"Used only when --enable-spec-aug is True. "
|
||||||
"It specifies the factor for time warping in SpecAugment. "
|
"It specifies the factor for time warping in SpecAugment. "
|
||||||
"Larger values mean more warping. "
|
"Larger values mean more warping. "
|
||||||
"A value less than 1 means to disable time warp.",
|
"A value less than 1 means to disable time warp."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--enable-musan",
|
"--enable-musan",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled, select noise from MUSAN and mix it"
|
help=(
|
||||||
"with training dataset. ",
|
"When enabled, select noise from MUSAN and mix it"
|
||||||
|
"with training dataset. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
@ -137,9 +148,11 @@ class AsrDataModule:
|
|||||||
"--on-the-fly-feats",
|
"--on-the-fly-feats",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=False,
|
default=False,
|
||||||
help="When enabled, use on-the-fly cut mixing and feature "
|
help=(
|
||||||
|
"When enabled, use on-the-fly cut mixing and feature "
|
||||||
"extraction. Will drop existing precomputed feature manifests "
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
"if available. Used only in dev/test CutSet",
|
"if available. Used only in dev/test CutSet"
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
def train_dataloaders(
|
def train_dataloaders(
|
||||||
@ -162,9 +175,7 @@ class AsrDataModule:
|
|||||||
if cuts_musan is not None:
|
if cuts_musan is not None:
|
||||||
logging.info("Enable MUSAN")
|
logging.info("Enable MUSAN")
|
||||||
transforms.append(
|
transforms.append(
|
||||||
CutMix(
|
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||||
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
|
|
||||||
)
|
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Disable MUSAN")
|
logging.info("Disable MUSAN")
|
||||||
@ -173,9 +184,7 @@ class AsrDataModule:
|
|||||||
|
|
||||||
if self.args.enable_spec_aug:
|
if self.args.enable_spec_aug:
|
||||||
logging.info("Enable SpecAugment")
|
logging.info("Enable SpecAugment")
|
||||||
logging.info(
|
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||||
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
|
||||||
)
|
|
||||||
# Set the value of num_frame_masks according to Lhotse's version.
|
# Set the value of num_frame_masks according to Lhotse's version.
|
||||||
# In different Lhotse's versions, the default of num_frame_masks is
|
# In different Lhotse's versions, the default of num_frame_masks is
|
||||||
# different.
|
# different.
|
||||||
@ -252,9 +261,7 @@ class AsrDataModule:
|
|||||||
if self.args.on_the_fly_feats:
|
if self.args.on_the_fly_feats:
|
||||||
validate = K2SpeechRecognitionDataset(
|
validate = K2SpeechRecognitionDataset(
|
||||||
cut_transforms=transforms,
|
cut_transforms=transforms,
|
||||||
input_strategy=OnTheFlyFeatures(
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
|
||||||
),
|
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
|
@ -93,16 +93,19 @@ def get_parser():
|
|||||||
"--epoch",
|
"--epoch",
|
||||||
type=int,
|
type=int,
|
||||||
default=30,
|
default=30,
|
||||||
help="It specifies the checkpoint to use for decoding."
|
help=(
|
||||||
"Note: Epoch counts from 0.",
|
"It specifies the checkpoint to use for decoding.Note: Epoch counts from 0."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=10,
|
default=10,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help=(
|
||||||
|
"Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch'. ",
|
"'--epoch'. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -170,8 +173,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -227,9 +229,7 @@ def decode_one_batch(
|
|||||||
supervisions = batch["supervisions"]
|
supervisions = batch["supervisions"]
|
||||||
feature_lens = supervisions["num_frames"].to(device)
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
encoder_out, encoder_out_lens = model.encoder(
|
encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
|
||||||
x=feature, x_lens=feature_lens
|
|
||||||
)
|
|
||||||
|
|
||||||
if params.decoding_method == "fast_beam_search":
|
if params.decoding_method == "fast_beam_search":
|
||||||
hyp_tokens = fast_beam_search_one_best(
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
@ -241,10 +241,7 @@ def decode_one_batch(
|
|||||||
max_contexts=params.max_contexts,
|
max_contexts=params.max_contexts,
|
||||||
max_states=params.max_states,
|
max_states=params.max_states,
|
||||||
)
|
)
|
||||||
elif (
|
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
params.decoding_method == "greedy_search"
|
|
||||||
and params.max_sym_per_frame == 1
|
|
||||||
):
|
|
||||||
hyp_tokens = greedy_search_batch(
|
hyp_tokens = greedy_search_batch(
|
||||||
model=model,
|
model=model,
|
||||||
encoder_out=encoder_out,
|
encoder_out=encoder_out,
|
||||||
@ -288,11 +285,7 @@ def decode_one_batch(
|
|||||||
return {"greedy_search": hyps}
|
return {"greedy_search": hyps}
|
||||||
elif params.decoding_method == "fast_beam_search":
|
elif params.decoding_method == "fast_beam_search":
|
||||||
return {
|
return {
|
||||||
(
|
f"beam_{params.beam}_max_contexts_{params.max_contexts}_max_states_{params.max_states}": hyps
|
||||||
f"beam_{params.beam}_"
|
|
||||||
f"max_contexts_{params.max_contexts}_"
|
|
||||||
f"max_states_{params.max_states}"
|
|
||||||
): hyps
|
|
||||||
}
|
}
|
||||||
else:
|
else:
|
||||||
return {f"beam_size_{params.beam_size}": hyps}
|
return {f"beam_size_{params.beam_size}": hyps}
|
||||||
@ -365,9 +358,7 @@ def decode_dataset(
|
|||||||
if batch_idx % log_interval == 0:
|
if batch_idx % log_interval == 0:
|
||||||
batch_str = f"{batch_idx}/{num_batches}"
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
logging.info(
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
|
||||||
)
|
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
@ -393,9 +384,7 @@ def save_results(
|
|||||||
# we compute CER for aishell dataset.
|
# we compute CER for aishell dataset.
|
||||||
results_char = []
|
results_char = []
|
||||||
for res in results:
|
for res in results:
|
||||||
results_char.append(
|
results_char.append((res[0], list("".join(res[1])), list("".join(res[2]))))
|
||||||
(res[0], list("".join(res[1])), list("".join(res[2])))
|
|
||||||
)
|
|
||||||
with open(errs_filename, "w") as f:
|
with open(errs_filename, "w") as f:
|
||||||
wer = write_error_stats(
|
wer = write_error_stats(
|
||||||
f, f"{test_set_name}-{key}", results_char, enable_log=True
|
f, f"{test_set_name}-{key}", results_char, enable_log=True
|
||||||
@ -406,8 +395,7 @@ def save_results(
|
|||||||
|
|
||||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
errs_info = (
|
errs_info = (
|
||||||
params.res_dir
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
)
|
||||||
with open(errs_info, "w") as f:
|
with open(errs_info, "w") as f:
|
||||||
print("settings\tCER", file=f)
|
print("settings\tCER", file=f)
|
||||||
@ -448,9 +436,7 @@ def main():
|
|||||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
params.suffix += f"-max-states-{params.max_states}"
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
elif "beam_search" in params.decoding_method:
|
elif "beam_search" in params.decoding_method:
|
||||||
params.suffix += (
|
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||||
f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
params.suffix += f"-context-{params.context_size}"
|
params.suffix += f"-context-{params.context_size}"
|
||||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
|
@ -68,17 +68,20 @@ def get_parser():
|
|||||||
"--epoch",
|
"--epoch",
|
||||||
type=int,
|
type=int,
|
||||||
default=20,
|
default=20,
|
||||||
help="It specifies the checkpoint to use for decoding."
|
help=(
|
||||||
"Note: Epoch counts from 0.",
|
"It specifies the checkpoint to use for decoding.Note: Epoch counts from 0."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=10,
|
default=10,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help=(
|
||||||
|
"Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch'. ",
|
"'--epoch'. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -109,8 +112,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
@ -241,9 +243,7 @@ def main():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
main()
|
main()
|
||||||
|
@ -87,9 +87,11 @@ def get_parser():
|
|||||||
"--checkpoint",
|
"--checkpoint",
|
||||||
type=str,
|
type=str,
|
||||||
required=True,
|
required=True,
|
||||||
help="Path to the checkpoint. "
|
help=(
|
||||||
|
"Path to the checkpoint. "
|
||||||
"The checkpoint is assumed to be saved by "
|
"The checkpoint is assumed to be saved by "
|
||||||
"icefall.checkpoint.save_checkpoint().",
|
"icefall.checkpoint.save_checkpoint()."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -115,10 +117,12 @@ def get_parser():
|
|||||||
"sound_files",
|
"sound_files",
|
||||||
type=str,
|
type=str,
|
||||||
nargs="+",
|
nargs="+",
|
||||||
help="The input sound file(s) to transcribe. "
|
help=(
|
||||||
|
"The input sound file(s) to transcribe. "
|
||||||
"Supported formats are those supported by torchaudio.load(). "
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
"For example, wav and flac are supported. "
|
"For example, wav and flac are supported. "
|
||||||
"The sample rate has to be 16kHz.",
|
"The sample rate has to be 16kHz."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -165,15 +169,16 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
type=int,
|
type=int,
|
||||||
default=1,
|
default=1,
|
||||||
help="Maximum number of symbols per frame. "
|
help=(
|
||||||
"Use only when --method is greedy_search",
|
"Maximum number of symbols per frame. "
|
||||||
|
"Use only when --method is greedy_search"
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
@ -194,10 +199,9 @@ def read_sound_files(
|
|||||||
ans = []
|
ans = []
|
||||||
for f in filenames:
|
for f in filenames:
|
||||||
wave, sample_rate = torchaudio.load(f)
|
wave, sample_rate = torchaudio.load(f)
|
||||||
assert sample_rate == expected_sample_rate, (
|
assert (
|
||||||
f"expected sample rate: {expected_sample_rate}. "
|
sample_rate == expected_sample_rate
|
||||||
f"Given: {sample_rate}"
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||||
)
|
|
||||||
# We use only the first channel
|
# We use only the first channel
|
||||||
ans.append(wave[0])
|
ans.append(wave[0])
|
||||||
return ans
|
return ans
|
||||||
@ -254,13 +258,9 @@ def main():
|
|||||||
feature_lens = [f.size(0) for f in features]
|
feature_lens = [f.size(0) for f in features]
|
||||||
feature_lens = torch.tensor(feature_lens, device=device)
|
feature_lens = torch.tensor(feature_lens, device=device)
|
||||||
|
|
||||||
features = pad_sequence(
|
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||||
features, batch_first=True, padding_value=math.log(1e-10)
|
|
||||||
)
|
|
||||||
|
|
||||||
encoder_out, encoder_out_lens = model.encoder(
|
encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lens)
|
||||||
x=features, x_lens=feature_lens
|
|
||||||
)
|
|
||||||
|
|
||||||
num_waves = encoder_out.size(0)
|
num_waves = encoder_out.size(0)
|
||||||
hyp_list = []
|
hyp_list = []
|
||||||
@ -308,9 +308,7 @@ def main():
|
|||||||
beam=params.beam_size,
|
beam=params.beam_size,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
raise ValueError(
|
raise ValueError(f"Unsupported decoding method: {params.method}")
|
||||||
f"Unsupported decoding method: {params.method}"
|
|
||||||
)
|
|
||||||
hyp_list.append(hyp)
|
hyp_list.append(hyp)
|
||||||
|
|
||||||
hyps = []
|
hyps = []
|
||||||
@ -327,9 +325,7 @@ def main():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
main()
|
main()
|
||||||
|
@ -149,8 +149,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -168,8 +167,7 @@ def get_parser():
|
|||||||
"--datatang-prob",
|
"--datatang-prob",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.2,
|
default=0.2,
|
||||||
help="The probability to select a batch from the "
|
help="The probability to select a batch from the aidatatang_200zh dataset",
|
||||||
"aidatatang_200zh dataset",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
@ -449,9 +447,7 @@ def compute_loss(
|
|||||||
info = MetricsTracker()
|
info = MetricsTracker()
|
||||||
with warnings.catch_warnings():
|
with warnings.catch_warnings():
|
||||||
warnings.simplefilter("ignore")
|
warnings.simplefilter("ignore")
|
||||||
info["frames"] = (
|
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
||||||
(feature_lens // params.subsampling_factor).sum().item()
|
|
||||||
)
|
|
||||||
|
|
||||||
# Note: We use reduction=sum while computing the loss.
|
# Note: We use reduction=sum while computing the loss.
|
||||||
info["loss"] = loss.detach().cpu().item()
|
info["loss"] = loss.detach().cpu().item()
|
||||||
@ -605,9 +601,7 @@ def train_one_epoch(
|
|||||||
f"train/current_{prefix}_",
|
f"train/current_{prefix}_",
|
||||||
params.batch_idx_train,
|
params.batch_idx_train,
|
||||||
)
|
)
|
||||||
tot_loss.write_summary(
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||||
tb_writer, "train/tot_", params.batch_idx_train
|
|
||||||
)
|
|
||||||
aishell_tot_loss.write_summary(
|
aishell_tot_loss.write_summary(
|
||||||
tb_writer, "train/aishell_tot_", params.batch_idx_train
|
tb_writer, "train/aishell_tot_", params.batch_idx_train
|
||||||
)
|
)
|
||||||
@ -735,9 +729,7 @@ def run(rank, world_size, args):
|
|||||||
train_datatang_cuts = train_datatang_cuts.repeat(times=None)
|
train_datatang_cuts = train_datatang_cuts.repeat(times=None)
|
||||||
|
|
||||||
if args.enable_musan:
|
if args.enable_musan:
|
||||||
cuts_musan = load_manifest(
|
cuts_musan = load_manifest(Path(args.manifest_dir) / "musan_cuts.jsonl.gz")
|
||||||
Path(args.manifest_dir) / "musan_cuts.jsonl.gz"
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
cuts_musan = None
|
cuts_musan = None
|
||||||
|
|
||||||
@ -776,9 +768,7 @@ def run(rank, world_size, args):
|
|||||||
|
|
||||||
cur_lr = optimizer._rate
|
cur_lr = optimizer._rate
|
||||||
if tb_writer is not None:
|
if tb_writer is not None:
|
||||||
tb_writer.add_scalar(
|
tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train)
|
||||||
"train/learning_rate", cur_lr, params.batch_idx_train
|
|
||||||
)
|
|
||||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||||
|
|
||||||
if rank == 0:
|
if rank == 0:
|
||||||
|
@ -94,16 +94,19 @@ def get_parser():
|
|||||||
"--epoch",
|
"--epoch",
|
||||||
type=int,
|
type=int,
|
||||||
default=30,
|
default=30,
|
||||||
help="It specifies the checkpoint to use for decoding."
|
help=(
|
||||||
"Note: Epoch counts from 0.",
|
"It specifies the checkpoint to use for decoding.Note: Epoch counts from 0."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=10,
|
default=10,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help=(
|
||||||
|
"Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch'. ",
|
"'--epoch'. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -171,8 +174,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -231,9 +233,7 @@ def decode_one_batch(
|
|||||||
supervisions = batch["supervisions"]
|
supervisions = batch["supervisions"]
|
||||||
feature_lens = supervisions["num_frames"].to(device)
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
encoder_out, encoder_out_lens = model.encoder(
|
encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
|
||||||
x=feature, x_lens=feature_lens
|
|
||||||
)
|
|
||||||
|
|
||||||
if params.decoding_method == "fast_beam_search":
|
if params.decoding_method == "fast_beam_search":
|
||||||
hyp_tokens = fast_beam_search_one_best(
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
@ -245,10 +245,7 @@ def decode_one_batch(
|
|||||||
max_contexts=params.max_contexts,
|
max_contexts=params.max_contexts,
|
||||||
max_states=params.max_states,
|
max_states=params.max_states,
|
||||||
)
|
)
|
||||||
elif (
|
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
params.decoding_method == "greedy_search"
|
|
||||||
and params.max_sym_per_frame == 1
|
|
||||||
):
|
|
||||||
hyp_tokens = greedy_search_batch(
|
hyp_tokens = greedy_search_batch(
|
||||||
model=model,
|
model=model,
|
||||||
encoder_out=encoder_out,
|
encoder_out=encoder_out,
|
||||||
@ -292,11 +289,7 @@ def decode_one_batch(
|
|||||||
return {"greedy_search": hyps}
|
return {"greedy_search": hyps}
|
||||||
elif params.decoding_method == "fast_beam_search":
|
elif params.decoding_method == "fast_beam_search":
|
||||||
return {
|
return {
|
||||||
(
|
f"beam_{params.beam}_max_contexts_{params.max_contexts}_max_states_{params.max_states}": hyps
|
||||||
f"beam_{params.beam}_"
|
|
||||||
f"max_contexts_{params.max_contexts}_"
|
|
||||||
f"max_states_{params.max_states}"
|
|
||||||
): hyps
|
|
||||||
}
|
}
|
||||||
else:
|
else:
|
||||||
return {f"beam_size_{params.beam_size}": hyps}
|
return {f"beam_size_{params.beam_size}": hyps}
|
||||||
@ -369,9 +362,7 @@ def decode_dataset(
|
|||||||
if batch_idx % log_interval == 0:
|
if batch_idx % log_interval == 0:
|
||||||
batch_str = f"{batch_idx}/{num_batches}"
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
logging.info(
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
|
||||||
)
|
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
@ -397,9 +388,7 @@ def save_results(
|
|||||||
# we compute CER for aishell dataset.
|
# we compute CER for aishell dataset.
|
||||||
results_char = []
|
results_char = []
|
||||||
for res in results:
|
for res in results:
|
||||||
results_char.append(
|
results_char.append((res[0], list("".join(res[1])), list("".join(res[2]))))
|
||||||
(res[0], list("".join(res[1])), list("".join(res[2])))
|
|
||||||
)
|
|
||||||
with open(errs_filename, "w") as f:
|
with open(errs_filename, "w") as f:
|
||||||
wer = write_error_stats(
|
wer = write_error_stats(
|
||||||
f, f"{test_set_name}-{key}", results_char, enable_log=True
|
f, f"{test_set_name}-{key}", results_char, enable_log=True
|
||||||
@ -410,8 +399,7 @@ def save_results(
|
|||||||
|
|
||||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
errs_info = (
|
errs_info = (
|
||||||
params.res_dir
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
)
|
||||||
with open(errs_info, "w") as f:
|
with open(errs_info, "w") as f:
|
||||||
print("settings\tCER", file=f)
|
print("settings\tCER", file=f)
|
||||||
@ -452,9 +440,7 @@ def main():
|
|||||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
params.suffix += f"-max-states-{params.max_states}"
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
elif "beam_search" in params.decoding_method:
|
elif "beam_search" in params.decoding_method:
|
||||||
params.suffix += (
|
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||||
f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
params.suffix += f"-context-{params.context_size}"
|
params.suffix += f"-context-{params.context_size}"
|
||||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
|
@ -68,17 +68,20 @@ def get_parser():
|
|||||||
"--epoch",
|
"--epoch",
|
||||||
type=int,
|
type=int,
|
||||||
default=20,
|
default=20,
|
||||||
help="It specifies the checkpoint to use for decoding."
|
help=(
|
||||||
"Note: Epoch counts from 0.",
|
"It specifies the checkpoint to use for decoding.Note: Epoch counts from 0."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=10,
|
default=10,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help=(
|
||||||
|
"Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch'. ",
|
"'--epoch'. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -109,8 +112,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
@ -241,9 +243,7 @@ def main():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
main()
|
main()
|
||||||
|
@ -87,9 +87,11 @@ def get_parser():
|
|||||||
"--checkpoint",
|
"--checkpoint",
|
||||||
type=str,
|
type=str,
|
||||||
required=True,
|
required=True,
|
||||||
help="Path to the checkpoint. "
|
help=(
|
||||||
|
"Path to the checkpoint. "
|
||||||
"The checkpoint is assumed to be saved by "
|
"The checkpoint is assumed to be saved by "
|
||||||
"icefall.checkpoint.save_checkpoint().",
|
"icefall.checkpoint.save_checkpoint()."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -115,10 +117,12 @@ def get_parser():
|
|||||||
"sound_files",
|
"sound_files",
|
||||||
type=str,
|
type=str,
|
||||||
nargs="+",
|
nargs="+",
|
||||||
help="The input sound file(s) to transcribe. "
|
help=(
|
||||||
|
"The input sound file(s) to transcribe. "
|
||||||
"Supported formats are those supported by torchaudio.load(). "
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
"For example, wav and flac are supported. "
|
"For example, wav and flac are supported. "
|
||||||
"The sample rate has to be 16kHz.",
|
"The sample rate has to be 16kHz."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -165,15 +169,16 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
type=int,
|
type=int,
|
||||||
default=1,
|
default=1,
|
||||||
help="Maximum number of symbols per frame. "
|
help=(
|
||||||
"Use only when --method is greedy_search",
|
"Maximum number of symbols per frame. "
|
||||||
|
"Use only when --method is greedy_search"
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
@ -194,10 +199,9 @@ def read_sound_files(
|
|||||||
ans = []
|
ans = []
|
||||||
for f in filenames:
|
for f in filenames:
|
||||||
wave, sample_rate = torchaudio.load(f)
|
wave, sample_rate = torchaudio.load(f)
|
||||||
assert sample_rate == expected_sample_rate, (
|
assert (
|
||||||
f"expected sample rate: {expected_sample_rate}. "
|
sample_rate == expected_sample_rate
|
||||||
f"Given: {sample_rate}"
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||||
)
|
|
||||||
# We use only the first channel
|
# We use only the first channel
|
||||||
ans.append(wave[0])
|
ans.append(wave[0])
|
||||||
return ans
|
return ans
|
||||||
@ -254,13 +258,9 @@ def main():
|
|||||||
feature_lens = [f.size(0) for f in features]
|
feature_lens = [f.size(0) for f in features]
|
||||||
feature_lens = torch.tensor(feature_lens, device=device)
|
feature_lens = torch.tensor(feature_lens, device=device)
|
||||||
|
|
||||||
features = pad_sequence(
|
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||||
features, batch_first=True, padding_value=math.log(1e-10)
|
|
||||||
)
|
|
||||||
|
|
||||||
encoder_out, encoder_out_lens = model.encoder(
|
encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lens)
|
||||||
x=features, x_lens=feature_lens
|
|
||||||
)
|
|
||||||
|
|
||||||
num_waves = encoder_out.size(0)
|
num_waves = encoder_out.size(0)
|
||||||
hyp_list = []
|
hyp_list = []
|
||||||
@ -308,9 +308,7 @@ def main():
|
|||||||
beam=params.beam_size,
|
beam=params.beam_size,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
raise ValueError(
|
raise ValueError(f"Unsupported decoding method: {params.method}")
|
||||||
f"Unsupported decoding method: {params.method}"
|
|
||||||
)
|
|
||||||
hyp_list.append(hyp)
|
hyp_list.append(hyp)
|
||||||
|
|
||||||
hyps = []
|
hyps = []
|
||||||
@ -327,9 +325,7 @@ def main():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
main()
|
main()
|
||||||
|
@ -142,8 +142,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -414,9 +413,7 @@ def compute_loss(
|
|||||||
info = MetricsTracker()
|
info = MetricsTracker()
|
||||||
with warnings.catch_warnings():
|
with warnings.catch_warnings():
|
||||||
warnings.simplefilter("ignore")
|
warnings.simplefilter("ignore")
|
||||||
info["frames"] = (
|
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
||||||
(feature_lens // params.subsampling_factor).sum().item()
|
|
||||||
)
|
|
||||||
|
|
||||||
# Note: We use reduction=sum while computing the loss.
|
# Note: We use reduction=sum while computing the loss.
|
||||||
info["loss"] = loss.detach().cpu().item()
|
info["loss"] = loss.detach().cpu().item()
|
||||||
@ -529,9 +526,7 @@ def train_one_epoch(
|
|||||||
loss_info.write_summary(
|
loss_info.write_summary(
|
||||||
tb_writer, "train/current_", params.batch_idx_train
|
tb_writer, "train/current_", params.batch_idx_train
|
||||||
)
|
)
|
||||||
tot_loss.write_summary(
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||||
tb_writer, "train/tot_", params.batch_idx_train
|
|
||||||
)
|
|
||||||
|
|
||||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||||
logging.info("Computing validation loss")
|
logging.info("Computing validation loss")
|
||||||
@ -657,9 +652,7 @@ def run(rank, world_size, args):
|
|||||||
|
|
||||||
cur_lr = optimizer._rate
|
cur_lr = optimizer._rate
|
||||||
if tb_writer is not None:
|
if tb_writer is not None:
|
||||||
tb_writer.add_scalar(
|
tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train)
|
||||||
"train/learning_rate", cur_lr, params.batch_idx_train
|
|
||||||
)
|
|
||||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||||
|
|
||||||
if rank == 0:
|
if rank == 0:
|
||||||
|
0
egs/aishell2/ASR/local/__init__.py
Executable file → Normal file
0
egs/aishell2/ASR/local/__init__.py
Executable file → Normal file
@ -83,9 +83,7 @@ def compute_fbank_aishell2(num_mel_bins: int = 80):
|
|||||||
)
|
)
|
||||||
if "train" in partition:
|
if "train" in partition:
|
||||||
cut_set = (
|
cut_set = (
|
||||||
cut_set
|
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||||
+ cut_set.perturb_speed(0.9)
|
|
||||||
+ cut_set.perturb_speed(1.1)
|
|
||||||
)
|
)
|
||||||
cut_set = cut_set.compute_and_store_features(
|
cut_set = cut_set.compute_and_store_features(
|
||||||
extractor=extractor,
|
extractor=extractor,
|
||||||
@ -111,9 +109,7 @@ def get_args():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
0
egs/aishell2/ASR/pruned_transducer_stateless5/__init__.py
Executable file → Normal file
0
egs/aishell2/ASR/pruned_transducer_stateless5/__init__.py
Executable file → Normal file
100
egs/aishell2/ASR/pruned_transducer_stateless5/asr_datamodule.py
Executable file → Normal file
100
egs/aishell2/ASR/pruned_transducer_stateless5/asr_datamodule.py
Executable file → Normal file
@ -76,10 +76,12 @@ class AiShell2AsrDataModule:
|
|||||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
group = parser.add_argument_group(
|
group = parser.add_argument_group(
|
||||||
title="ASR data related options",
|
title="ASR data related options",
|
||||||
description="These options are used for the preparation of "
|
description=(
|
||||||
|
"These options are used for the preparation of "
|
||||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
"effective batch sizes, sampling strategies, applied data "
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
"augmentations, etc.",
|
"augmentations, etc."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--manifest-dir",
|
"--manifest-dir",
|
||||||
@ -91,59 +93,74 @@ class AiShell2AsrDataModule:
|
|||||||
"--max-duration",
|
"--max-duration",
|
||||||
type=int,
|
type=int,
|
||||||
default=200.0,
|
default=200.0,
|
||||||
help="Maximum pooled recordings duration (seconds) in a "
|
help=(
|
||||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
"Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--bucketing-sampler",
|
"--bucketing-sampler",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled, the batches will come from buckets of "
|
help=(
|
||||||
"similar duration (saves padding frames).",
|
"When enabled, the batches will come from buckets of "
|
||||||
|
"similar duration (saves padding frames)."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--num-buckets",
|
"--num-buckets",
|
||||||
type=int,
|
type=int,
|
||||||
default=30,
|
default=30,
|
||||||
help="The number of buckets for the DynamicBucketingSampler"
|
help=(
|
||||||
"(you might want to increase it for larger datasets).",
|
"The number of buckets for the DynamicBucketingSampler"
|
||||||
|
"(you might want to increase it for larger datasets)."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--concatenate-cuts",
|
"--concatenate-cuts",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=False,
|
default=False,
|
||||||
help="When enabled, utterances (cuts) will be concatenated "
|
help=(
|
||||||
"to minimize the amount of padding.",
|
"When enabled, utterances (cuts) will be concatenated "
|
||||||
|
"to minimize the amount of padding."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--duration-factor",
|
"--duration-factor",
|
||||||
type=float,
|
type=float,
|
||||||
default=1.0,
|
default=1.0,
|
||||||
help="Determines the maximum duration of a concatenated cut "
|
help=(
|
||||||
"relative to the duration of the longest cut in a batch.",
|
"Determines the maximum duration of a concatenated cut "
|
||||||
|
"relative to the duration of the longest cut in a batch."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--gap",
|
"--gap",
|
||||||
type=float,
|
type=float,
|
||||||
default=1.0,
|
default=1.0,
|
||||||
help="The amount of padding (in seconds) inserted between "
|
help=(
|
||||||
|
"The amount of padding (in seconds) inserted between "
|
||||||
"concatenated cuts. This padding is filled with noise when "
|
"concatenated cuts. This padding is filled with noise when "
|
||||||
"noise augmentation is used.",
|
"noise augmentation is used."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--on-the-fly-feats",
|
"--on-the-fly-feats",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=False,
|
default=False,
|
||||||
help="When enabled, use on-the-fly cut mixing and feature "
|
help=(
|
||||||
|
"When enabled, use on-the-fly cut mixing and feature "
|
||||||
"extraction. Will drop existing precomputed feature manifests "
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
"if available.",
|
"if available."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--shuffle",
|
"--shuffle",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled (=default), the examples will be "
|
help=(
|
||||||
"shuffled for each epoch.",
|
"When enabled (=default), the examples will be shuffled for each epoch."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--drop-last",
|
"--drop-last",
|
||||||
@ -155,17 +172,18 @@ class AiShell2AsrDataModule:
|
|||||||
"--return-cuts",
|
"--return-cuts",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled, each batch will have the "
|
help=(
|
||||||
|
"When enabled, each batch will have the "
|
||||||
"field: batch['supervisions']['cut'] with the cuts that "
|
"field: batch['supervisions']['cut'] with the cuts that "
|
||||||
"were used to construct it.",
|
"were used to construct it."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--num-workers",
|
"--num-workers",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The number of training dataloader workers that "
|
help="The number of training dataloader workers that collect the batches.",
|
||||||
"collect the batches.",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
@ -179,18 +197,22 @@ class AiShell2AsrDataModule:
|
|||||||
"--spec-aug-time-warp-factor",
|
"--spec-aug-time-warp-factor",
|
||||||
type=int,
|
type=int,
|
||||||
default=80,
|
default=80,
|
||||||
help="Used only when --enable-spec-aug is True. "
|
help=(
|
||||||
|
"Used only when --enable-spec-aug is True. "
|
||||||
"It specifies the factor for time warping in SpecAugment. "
|
"It specifies the factor for time warping in SpecAugment. "
|
||||||
"Larger values mean more warping. "
|
"Larger values mean more warping. "
|
||||||
"A value less than 1 means to disable time warp.",
|
"A value less than 1 means to disable time warp."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--enable-musan",
|
"--enable-musan",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled, select noise from MUSAN and mix it"
|
help=(
|
||||||
"with training dataset. ",
|
"When enabled, select noise from MUSAN and mix it"
|
||||||
|
"with training dataset. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
@ -216,20 +238,16 @@ class AiShell2AsrDataModule:
|
|||||||
if self.args.enable_musan:
|
if self.args.enable_musan:
|
||||||
logging.info("Enable MUSAN")
|
logging.info("Enable MUSAN")
|
||||||
logging.info("About to get Musan cuts")
|
logging.info("About to get Musan cuts")
|
||||||
cuts_musan = load_manifest(
|
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||||
self.args.manifest_dir / "musan_cuts.jsonl.gz"
|
|
||||||
)
|
|
||||||
transforms.append(
|
transforms.append(
|
||||||
CutMix(
|
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||||
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
|
|
||||||
)
|
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Disable MUSAN")
|
logging.info("Disable MUSAN")
|
||||||
|
|
||||||
if self.args.concatenate_cuts:
|
if self.args.concatenate_cuts:
|
||||||
logging.info(
|
logging.info(
|
||||||
f"Using cut concatenation with duration factor "
|
"Using cut concatenation with duration factor "
|
||||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||||
)
|
)
|
||||||
# Cut concatenation should be the first transform in the list,
|
# Cut concatenation should be the first transform in the list,
|
||||||
@ -244,9 +262,7 @@ class AiShell2AsrDataModule:
|
|||||||
input_transforms = []
|
input_transforms = []
|
||||||
if self.args.enable_spec_aug:
|
if self.args.enable_spec_aug:
|
||||||
logging.info("Enable SpecAugment")
|
logging.info("Enable SpecAugment")
|
||||||
logging.info(
|
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||||
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
|
||||||
)
|
|
||||||
# Set the value of num_frame_masks according to Lhotse's version.
|
# Set the value of num_frame_masks according to Lhotse's version.
|
||||||
# In different Lhotse's versions, the default of num_frame_masks is
|
# In different Lhotse's versions, the default of num_frame_masks is
|
||||||
# different.
|
# different.
|
||||||
@ -290,9 +306,7 @@ class AiShell2AsrDataModule:
|
|||||||
# Drop feats to be on the safe side.
|
# Drop feats to be on the safe side.
|
||||||
train = K2SpeechRecognitionDataset(
|
train = K2SpeechRecognitionDataset(
|
||||||
cut_transforms=transforms,
|
cut_transforms=transforms,
|
||||||
input_strategy=OnTheFlyFeatures(
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
|
||||||
),
|
|
||||||
input_transforms=input_transforms,
|
input_transforms=input_transforms,
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
@ -348,9 +362,7 @@ class AiShell2AsrDataModule:
|
|||||||
if self.args.on_the_fly_feats:
|
if self.args.on_the_fly_feats:
|
||||||
validate = K2SpeechRecognitionDataset(
|
validate = K2SpeechRecognitionDataset(
|
||||||
cut_transforms=transforms,
|
cut_transforms=transforms,
|
||||||
input_strategy=OnTheFlyFeatures(
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
|
||||||
),
|
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
@ -406,9 +418,7 @@ class AiShell2AsrDataModule:
|
|||||||
@lru_cache()
|
@lru_cache()
|
||||||
def valid_cuts(self) -> CutSet:
|
def valid_cuts(self) -> CutSet:
|
||||||
logging.info("About to gen cuts from aishell2_cuts_dev.jsonl.gz")
|
logging.info("About to gen cuts from aishell2_cuts_dev.jsonl.gz")
|
||||||
return load_manifest_lazy(
|
return load_manifest_lazy(self.args.manifest_dir / "aishell2_cuts_dev.jsonl.gz")
|
||||||
self.args.manifest_dir / "aishell2_cuts_dev.jsonl.gz"
|
|
||||||
)
|
|
||||||
|
|
||||||
@lru_cache()
|
@lru_cache()
|
||||||
def test_cuts(self) -> CutSet:
|
def test_cuts(self) -> CutSet:
|
||||||
|
@ -168,20 +168,24 @@ def get_parser():
|
|||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=15,
|
default=15,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help=(
|
||||||
|
"Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch' and '--iter'",
|
"'--epoch' and '--iter'"
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--use-averaged-model",
|
"--use-averaged-model",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="Whether to load averaged model. Currently it only supports "
|
help=(
|
||||||
|
"Whether to load averaged model. Currently it only supports "
|
||||||
"using --epoch. If True, it would decode with the averaged model "
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
"Actually only the models with epoch number of `epoch-avg` and "
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
"`epoch` are loaded for averaging. ",
|
"`epoch` are loaded for averaging. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -269,8 +273,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
@ -348,9 +351,7 @@ def decode_one_batch(
|
|||||||
supervisions = batch["supervisions"]
|
supervisions = batch["supervisions"]
|
||||||
feature_lens = supervisions["num_frames"].to(device)
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
encoder_out, encoder_out_lens = model.encoder(
|
encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
|
||||||
x=feature, x_lens=feature_lens
|
|
||||||
)
|
|
||||||
hyps = []
|
hyps = []
|
||||||
|
|
||||||
if params.decoding_method == "fast_beam_search":
|
if params.decoding_method == "fast_beam_search":
|
||||||
@ -409,10 +410,7 @@ def decode_one_batch(
|
|||||||
)
|
)
|
||||||
for i in range(encoder_out.size(0)):
|
for i in range(encoder_out.size(0)):
|
||||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||||
elif (
|
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
params.decoding_method == "greedy_search"
|
|
||||||
and params.max_sym_per_frame == 1
|
|
||||||
):
|
|
||||||
hyp_tokens = greedy_search_batch(
|
hyp_tokens = greedy_search_batch(
|
||||||
model=model,
|
model=model,
|
||||||
encoder_out=encoder_out,
|
encoder_out=encoder_out,
|
||||||
@ -538,9 +536,7 @@ def decode_dataset(
|
|||||||
if batch_idx % log_interval == 0:
|
if batch_idx % log_interval == 0:
|
||||||
batch_str = f"{batch_idx}/{num_batches}"
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
logging.info(
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
|
||||||
)
|
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
@ -573,8 +569,7 @@ def save_results(
|
|||||||
|
|
||||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
errs_info = (
|
errs_info = (
|
||||||
params.res_dir
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
)
|
||||||
with open(errs_info, "w") as f:
|
with open(errs_info, "w") as f:
|
||||||
print("settings\tWER", file=f)
|
print("settings\tWER", file=f)
|
||||||
@ -625,9 +620,7 @@ def main():
|
|||||||
if "LG" in params.decoding_method:
|
if "LG" in params.decoding_method:
|
||||||
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
||||||
elif "beam_search" in params.decoding_method:
|
elif "beam_search" in params.decoding_method:
|
||||||
params.suffix += (
|
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||||
f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
params.suffix += f"-context-{params.context_size}"
|
params.suffix += f"-context-{params.context_size}"
|
||||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
@ -661,13 +654,12 @@ def main():
|
|||||||
|
|
||||||
if not params.use_averaged_model:
|
if not params.use_averaged_model:
|
||||||
if params.iter > 0:
|
if params.iter > 0:
|
||||||
filenames = find_checkpoints(
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
params.exp_dir, iteration=-params.iter
|
: params.avg
|
||||||
)[: params.avg]
|
]
|
||||||
if len(filenames) == 0:
|
if len(filenames) == 0:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"No checkpoints found for"
|
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
)
|
||||||
elif len(filenames) < params.avg:
|
elif len(filenames) < params.avg:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
@ -690,13 +682,12 @@ def main():
|
|||||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
else:
|
else:
|
||||||
if params.iter > 0:
|
if params.iter > 0:
|
||||||
filenames = find_checkpoints(
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
params.exp_dir, iteration=-params.iter
|
: params.avg + 1
|
||||||
)[: params.avg + 1]
|
]
|
||||||
if len(filenames) == 0:
|
if len(filenames) == 0:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"No checkpoints found for"
|
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
)
|
||||||
elif len(filenames) < params.avg + 1:
|
elif len(filenames) < params.avg + 1:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
@ -724,7 +715,7 @@ def main():
|
|||||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
logging.info(
|
logging.info(
|
||||||
f"Calculating the averaged model over epoch range from "
|
"Calculating the averaged model over epoch range from "
|
||||||
f"{start} (excluded) to {params.epoch}"
|
f"{start} (excluded) to {params.epoch}"
|
||||||
)
|
)
|
||||||
model.to(device)
|
model.to(device)
|
||||||
@ -749,9 +740,7 @@ def main():
|
|||||||
)
|
)
|
||||||
decoding_graph.scores *= params.ngram_lm_scale
|
decoding_graph.scores *= params.ngram_lm_scale
|
||||||
else:
|
else:
|
||||||
decoding_graph = k2.trivial_graph(
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
params.vocab_size - 1, device=device
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
decoding_graph = None
|
decoding_graph = None
|
||||||
|
|
||||||
|
@ -89,20 +89,24 @@ def get_parser():
|
|||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=15,
|
default=15,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help=(
|
||||||
|
"Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch' and '--iter'",
|
"'--epoch' and '--iter'"
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--use-averaged-model",
|
"--use-averaged-model",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=False,
|
default=False,
|
||||||
help="Whether to load averaged model. Currently it only supports "
|
help=(
|
||||||
|
"Whether to load averaged model. Currently it only supports "
|
||||||
"using --epoch. If True, it would decode with the averaged model "
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
"Actually only the models with epoch number of `epoch-avg` and "
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
"`epoch` are loaded for averaging. ",
|
"`epoch` are loaded for averaging. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -133,8 +137,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
add_model_arguments(parser)
|
add_model_arguments(parser)
|
||||||
@ -167,13 +170,12 @@ def main():
|
|||||||
|
|
||||||
if not params.use_averaged_model:
|
if not params.use_averaged_model:
|
||||||
if params.iter > 0:
|
if params.iter > 0:
|
||||||
filenames = find_checkpoints(
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
params.exp_dir, iteration=-params.iter
|
: params.avg
|
||||||
)[: params.avg]
|
]
|
||||||
if len(filenames) == 0:
|
if len(filenames) == 0:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"No checkpoints found for"
|
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
)
|
||||||
elif len(filenames) < params.avg:
|
elif len(filenames) < params.avg:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
@ -196,13 +198,12 @@ def main():
|
|||||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
else:
|
else:
|
||||||
if params.iter > 0:
|
if params.iter > 0:
|
||||||
filenames = find_checkpoints(
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
params.exp_dir, iteration=-params.iter
|
: params.avg + 1
|
||||||
)[: params.avg + 1]
|
]
|
||||||
if len(filenames) == 0:
|
if len(filenames) == 0:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"No checkpoints found for"
|
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
)
|
||||||
elif len(filenames) < params.avg + 1:
|
elif len(filenames) < params.avg + 1:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
@ -230,7 +231,7 @@ def main():
|
|||||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
logging.info(
|
logging.info(
|
||||||
f"Calculating the averaged model over epoch range from "
|
"Calculating the averaged model over epoch range from "
|
||||||
f"{start} (excluded) to {params.epoch}"
|
f"{start} (excluded) to {params.epoch}"
|
||||||
)
|
)
|
||||||
model.to(device)
|
model.to(device)
|
||||||
@ -266,9 +267,7 @@ def main():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
main()
|
main()
|
||||||
|
@ -81,9 +81,11 @@ def get_parser():
|
|||||||
"--checkpoint",
|
"--checkpoint",
|
||||||
type=str,
|
type=str,
|
||||||
required=True,
|
required=True,
|
||||||
help="Path to the checkpoint. "
|
help=(
|
||||||
|
"Path to the checkpoint. "
|
||||||
"The checkpoint is assumed to be saved by "
|
"The checkpoint is assumed to be saved by "
|
||||||
"icefall.checkpoint.save_checkpoint().",
|
"icefall.checkpoint.save_checkpoint()."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -109,10 +111,12 @@ def get_parser():
|
|||||||
"sound_files",
|
"sound_files",
|
||||||
type=str,
|
type=str,
|
||||||
nargs="+",
|
nargs="+",
|
||||||
help="The input sound file(s) to transcribe. "
|
help=(
|
||||||
|
"The input sound file(s) to transcribe. "
|
||||||
"Supported formats are those supported by torchaudio.load(). "
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
"For example, wav and flac are supported. "
|
"For example, wav and flac are supported. "
|
||||||
"The sample rate has to be 16kHz.",
|
"The sample rate has to be 16kHz."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -159,8 +163,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
@ -191,10 +194,9 @@ def read_sound_files(
|
|||||||
ans = []
|
ans = []
|
||||||
for f in filenames:
|
for f in filenames:
|
||||||
wave, sample_rate = torchaudio.load(f)
|
wave, sample_rate = torchaudio.load(f)
|
||||||
assert sample_rate == expected_sample_rate, (
|
assert (
|
||||||
f"expected sample rate: {expected_sample_rate}. "
|
sample_rate == expected_sample_rate
|
||||||
f"Given: {sample_rate}"
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||||
)
|
|
||||||
# We use only the first channel
|
# We use only the first channel
|
||||||
ans.append(wave[0])
|
ans.append(wave[0])
|
||||||
return ans
|
return ans
|
||||||
@ -254,15 +256,11 @@ def main():
|
|||||||
features = fbank(waves)
|
features = fbank(waves)
|
||||||
feature_lengths = [f.size(0) for f in features]
|
feature_lengths = [f.size(0) for f in features]
|
||||||
|
|
||||||
features = pad_sequence(
|
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||||
features, batch_first=True, padding_value=math.log(1e-10)
|
|
||||||
)
|
|
||||||
|
|
||||||
feature_lengths = torch.tensor(feature_lengths, device=device)
|
feature_lengths = torch.tensor(feature_lengths, device=device)
|
||||||
|
|
||||||
encoder_out, encoder_out_lens = model.encoder(
|
encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lengths)
|
||||||
x=features, x_lens=feature_lengths
|
|
||||||
)
|
|
||||||
|
|
||||||
num_waves = encoder_out.size(0)
|
num_waves = encoder_out.size(0)
|
||||||
hyps = []
|
hyps = []
|
||||||
@ -334,9 +332,7 @@ def main():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
main()
|
main()
|
||||||
|
@ -92,9 +92,7 @@ from icefall.env import get_env_info
|
|||||||
from icefall.lexicon import Lexicon
|
from icefall.lexicon import Lexicon
|
||||||
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
||||||
|
|
||||||
LRSchedulerType = Union[
|
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
|
||||||
torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
def add_model_arguments(parser: argparse.ArgumentParser):
|
def add_model_arguments(parser: argparse.ArgumentParser):
|
||||||
@ -220,8 +218,7 @@ def get_parser():
|
|||||||
"--initial-lr",
|
"--initial-lr",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.003,
|
default=0.003,
|
||||||
help="The initial learning rate. This value should not need "
|
help="The initial learning rate. This value should not need to be changed.",
|
||||||
"to be changed.",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -244,42 +241,45 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--prune-range",
|
"--prune-range",
|
||||||
type=int,
|
type=int,
|
||||||
default=5,
|
default=5,
|
||||||
help="The prune range for rnnt loss, it means how many symbols(context)"
|
help=(
|
||||||
"we are using to compute the loss",
|
"The prune range for rnnt loss, it means how many symbols(context)"
|
||||||
|
"we are using to compute the loss"
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--lm-scale",
|
"--lm-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.25,
|
default=0.25,
|
||||||
help="The scale to smooth the loss with lm "
|
help=(
|
||||||
"(output of prediction network) part.",
|
"The scale to smooth the loss with lm (output of prediction network) part."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--am-scale",
|
"--am-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.0,
|
default=0.0,
|
||||||
help="The scale to smooth the loss with am (output of encoder network)"
|
help="The scale to smooth the loss with am (output of encoder network)part.",
|
||||||
"part.",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--simple-loss-scale",
|
"--simple-loss-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.5,
|
default=0.5,
|
||||||
help="To get pruning ranges, we will calculate a simple version"
|
help=(
|
||||||
|
"To get pruning ranges, we will calculate a simple version"
|
||||||
"loss(joiner is just addition), this simple loss also uses for"
|
"loss(joiner is just addition), this simple loss also uses for"
|
||||||
"training (as a regularization item). We will scale the simple loss"
|
"training (as a regularization item). We will scale the simple loss"
|
||||||
"with this parameter before adding to the final loss.",
|
"with this parameter before adding to the final loss."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -603,11 +603,7 @@ def compute_loss(
|
|||||||
warmup: a floating point value which increases throughout training;
|
warmup: a floating point value which increases throughout training;
|
||||||
values >= 1.0 are fully warmed up and have all modules present.
|
values >= 1.0 are fully warmed up and have all modules present.
|
||||||
"""
|
"""
|
||||||
device = (
|
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
|
||||||
model.device
|
|
||||||
if isinstance(model, DDP)
|
|
||||||
else next(model.parameters()).device
|
|
||||||
)
|
|
||||||
feature = batch["inputs"]
|
feature = batch["inputs"]
|
||||||
# at entry, feature is (N, T, C)
|
# at entry, feature is (N, T, C)
|
||||||
assert feature.ndim == 3
|
assert feature.ndim == 3
|
||||||
@ -636,23 +632,16 @@ def compute_loss(
|
|||||||
# overwhelming the simple_loss and causing it to diverge,
|
# overwhelming the simple_loss and causing it to diverge,
|
||||||
# in case it had not fully learned the alignment yet.
|
# in case it had not fully learned the alignment yet.
|
||||||
pruned_loss_scale = (
|
pruned_loss_scale = (
|
||||||
0.0
|
0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
|
||||||
if warmup < 1.0
|
|
||||||
else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
|
|
||||||
)
|
|
||||||
loss = (
|
|
||||||
params.simple_loss_scale * simple_loss
|
|
||||||
+ pruned_loss_scale * pruned_loss
|
|
||||||
)
|
)
|
||||||
|
loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
|
||||||
|
|
||||||
assert loss.requires_grad == is_training
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
info = MetricsTracker()
|
info = MetricsTracker()
|
||||||
with warnings.catch_warnings():
|
with warnings.catch_warnings():
|
||||||
warnings.simplefilter("ignore")
|
warnings.simplefilter("ignore")
|
||||||
info["frames"] = (
|
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
||||||
(feature_lens // params.subsampling_factor).sum().item()
|
|
||||||
)
|
|
||||||
|
|
||||||
# Note: We use reduction=sum while computing the loss.
|
# Note: We use reduction=sum while computing the loss.
|
||||||
info["loss"] = loss.detach().cpu().item()
|
info["loss"] = loss.detach().cpu().item()
|
||||||
@ -771,9 +760,7 @@ def train_one_epoch(
|
|||||||
scaler.update()
|
scaler.update()
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
except: # noqa
|
except: # noqa
|
||||||
display_and_save_batch(
|
display_and_save_batch(batch, params=params, graph_compiler=graph_compiler)
|
||||||
batch, params=params, graph_compiler=graph_compiler
|
|
||||||
)
|
|
||||||
raise
|
raise
|
||||||
|
|
||||||
if params.print_diagnostics and batch_idx == 5:
|
if params.print_diagnostics and batch_idx == 5:
|
||||||
@ -829,9 +816,7 @@ def train_one_epoch(
|
|||||||
loss_info.write_summary(
|
loss_info.write_summary(
|
||||||
tb_writer, "train/current_", params.batch_idx_train
|
tb_writer, "train/current_", params.batch_idx_train
|
||||||
)
|
)
|
||||||
tot_loss.write_summary(
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||||
tb_writer, "train/tot_", params.batch_idx_train
|
|
||||||
)
|
|
||||||
|
|
||||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||||
logging.info("Computing validation loss")
|
logging.info("Computing validation loss")
|
||||||
@ -939,7 +924,7 @@ def run(rank, world_size, args):
|
|||||||
|
|
||||||
if params.print_diagnostics:
|
if params.print_diagnostics:
|
||||||
opts = diagnostics.TensorDiagnosticOptions(
|
opts = diagnostics.TensorDiagnosticOptions(
|
||||||
2 ** 22
|
2**22
|
||||||
) # allow 4 megabytes per sub-module
|
) # allow 4 megabytes per sub-module
|
||||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||||
|
|
||||||
@ -1104,9 +1089,7 @@ def scan_pessimistic_batches_for_oom(
|
|||||||
f"Failing criterion: {criterion} "
|
f"Failing criterion: {criterion} "
|
||||||
f"(={crit_values[criterion]}) ..."
|
f"(={crit_values[criterion]}) ..."
|
||||||
)
|
)
|
||||||
display_and_save_batch(
|
display_and_save_batch(batch, params=params, graph_compiler=graph_compiler)
|
||||||
batch, params=params, graph_compiler=graph_compiler
|
|
||||||
)
|
|
||||||
raise
|
raise
|
||||||
|
|
||||||
|
|
||||||
|
@ -85,9 +85,7 @@ def compute_fbank_aishell4(num_mel_bins: int = 80):
|
|||||||
)
|
)
|
||||||
if "train" in partition:
|
if "train" in partition:
|
||||||
cut_set = (
|
cut_set = (
|
||||||
cut_set
|
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||||
+ cut_set.perturb_speed(0.9)
|
|
||||||
+ cut_set.perturb_speed(1.1)
|
|
||||||
)
|
)
|
||||||
cut_set = cut_set.compute_and_store_features(
|
cut_set = cut_set.compute_and_store_features(
|
||||||
extractor=extractor,
|
extractor=extractor,
|
||||||
@ -120,9 +118,7 @@ def get_args():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
@ -86,9 +86,7 @@ def lexicon_to_fst_no_sil(
|
|||||||
cur_state = loop_state
|
cur_state = loop_state
|
||||||
|
|
||||||
word = word2id[word]
|
word = word2id[word]
|
||||||
pieces = [
|
pieces = [token2id[i] if i in token2id else token2id["<unk>"] for i in pieces]
|
||||||
token2id[i] if i in token2id else token2id["<unk>"] for i in pieces
|
|
||||||
]
|
|
||||||
|
|
||||||
for i in range(len(pieces) - 1):
|
for i in range(len(pieces) - 1):
|
||||||
w = word if i == 0 else eps
|
w = word if i == 0 else eps
|
||||||
@ -142,9 +140,7 @@ def contain_oov(token_sym_table: Dict[str, int], tokens: List[str]) -> bool:
|
|||||||
return False
|
return False
|
||||||
|
|
||||||
|
|
||||||
def generate_lexicon(
|
def generate_lexicon(token_sym_table: Dict[str, int], words: List[str]) -> Lexicon:
|
||||||
token_sym_table: Dict[str, int], words: List[str]
|
|
||||||
) -> Lexicon:
|
|
||||||
"""Generate a lexicon from a word list and token_sym_table.
|
"""Generate a lexicon from a word list and token_sym_table.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
|
@ -317,9 +317,7 @@ def lexicon_to_fst(
|
|||||||
|
|
||||||
def get_args():
|
def get_args():
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument(
|
parser.add_argument("--lang-dir", type=str, help="The lang dir, data/lang_phone")
|
||||||
"--lang-dir", type=str, help="The lang dir, data/lang_phone"
|
|
||||||
)
|
|
||||||
return parser.parse_args()
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
@ -88,9 +88,7 @@ def test_read_lexicon(filename: str):
|
|||||||
fsa.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
fsa.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
||||||
fsa.draw("L.pdf", title="L")
|
fsa.draw("L.pdf", title="L")
|
||||||
|
|
||||||
fsa_disambig = lexicon_to_fst(
|
fsa_disambig = lexicon_to_fst(lexicon_disambig, phone2id=phone2id, word2id=word2id)
|
||||||
lexicon_disambig, phone2id=phone2id, word2id=word2id
|
|
||||||
)
|
|
||||||
fsa_disambig.labels_sym = k2.SymbolTable.from_file("phones.txt")
|
fsa_disambig.labels_sym = k2.SymbolTable.from_file("phones.txt")
|
||||||
fsa_disambig.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
fsa_disambig.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
||||||
fsa_disambig.draw("L_disambig.pdf", title="L_disambig")
|
fsa_disambig.draw("L_disambig.pdf", title="L_disambig")
|
||||||
|
@ -50,15 +50,15 @@ def get_parser():
|
|||||||
"-n",
|
"-n",
|
||||||
default=1,
|
default=1,
|
||||||
type=int,
|
type=int,
|
||||||
help="number of characters to split, i.e., \
|
help=(
|
||||||
aabb -> a a b b with -n 1 and aa bb with -n 2",
|
"number of characters to split, i.e., aabb -> a a b"
|
||||||
|
" b with -n 1 and aa bb with -n 2"
|
||||||
|
),
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--skip-ncols", "-s", default=0, type=int, help="skip first n columns"
|
"--skip-ncols", "-s", default=0, type=int, help="skip first n columns"
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument("--space", default="<space>", type=str, help="space symbol")
|
||||||
"--space", default="<space>", type=str, help="space symbol"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--non-lang-syms",
|
"--non-lang-syms",
|
||||||
"-l",
|
"-l",
|
||||||
@ -66,9 +66,7 @@ def get_parser():
|
|||||||
type=str,
|
type=str,
|
||||||
help="list of non-linguistic symobles, e.g., <NOISE> etc.",
|
help="list of non-linguistic symobles, e.g., <NOISE> etc.",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument("text", type=str, default=False, nargs="?", help="input text")
|
||||||
"text", type=str, default=False, nargs="?", help="input text"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--trans_type",
|
"--trans_type",
|
||||||
"-t",
|
"-t",
|
||||||
@ -108,8 +106,7 @@ def token2id(
|
|||||||
if token_type == "lazy_pinyin":
|
if token_type == "lazy_pinyin":
|
||||||
text = lazy_pinyin(chars_list)
|
text = lazy_pinyin(chars_list)
|
||||||
sub_ids = [
|
sub_ids = [
|
||||||
token_table[txt] if txt in token_table else oov_id
|
token_table[txt] if txt in token_table else oov_id for txt in text
|
||||||
for txt in text
|
|
||||||
]
|
]
|
||||||
ids.append(sub_ids)
|
ids.append(sub_ids)
|
||||||
else: # token_type = "pinyin"
|
else: # token_type = "pinyin"
|
||||||
@ -135,9 +132,7 @@ def main():
|
|||||||
if args.text:
|
if args.text:
|
||||||
f = codecs.open(args.text, encoding="utf-8")
|
f = codecs.open(args.text, encoding="utf-8")
|
||||||
else:
|
else:
|
||||||
f = codecs.getreader("utf-8")(
|
f = codecs.getreader("utf-8")(sys.stdin if is_python2 else sys.stdin.buffer)
|
||||||
sys.stdin if is_python2 else sys.stdin.buffer
|
|
||||||
)
|
|
||||||
|
|
||||||
sys.stdout = codecs.getwriter("utf-8")(
|
sys.stdout = codecs.getwriter("utf-8")(
|
||||||
sys.stdout if is_python2 else sys.stdout.buffer
|
sys.stdout if is_python2 else sys.stdout.buffer
|
||||||
|
@ -74,10 +74,12 @@ class Aishell4AsrDataModule:
|
|||||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
group = parser.add_argument_group(
|
group = parser.add_argument_group(
|
||||||
title="ASR data related options",
|
title="ASR data related options",
|
||||||
description="These options are used for the preparation of "
|
description=(
|
||||||
|
"These options are used for the preparation of "
|
||||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
"effective batch sizes, sampling strategies, applied data "
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
"augmentations, etc.",
|
"augmentations, etc."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
@ -91,66 +93,81 @@ class Aishell4AsrDataModule:
|
|||||||
"--max-duration",
|
"--max-duration",
|
||||||
type=int,
|
type=int,
|
||||||
default=200.0,
|
default=200.0,
|
||||||
help="Maximum pooled recordings duration (seconds) in a "
|
help=(
|
||||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
"Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--bucketing-sampler",
|
"--bucketing-sampler",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled, the batches will come from buckets of "
|
help=(
|
||||||
"similar duration (saves padding frames).",
|
"When enabled, the batches will come from buckets of "
|
||||||
|
"similar duration (saves padding frames)."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--num-buckets",
|
"--num-buckets",
|
||||||
type=int,
|
type=int,
|
||||||
default=300,
|
default=300,
|
||||||
help="The number of buckets for the DynamicBucketingSampler"
|
help=(
|
||||||
"(you might want to increase it for larger datasets).",
|
"The number of buckets for the DynamicBucketingSampler"
|
||||||
|
"(you might want to increase it for larger datasets)."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--concatenate-cuts",
|
"--concatenate-cuts",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=False,
|
default=False,
|
||||||
help="When enabled, utterances (cuts) will be concatenated "
|
help=(
|
||||||
"to minimize the amount of padding.",
|
"When enabled, utterances (cuts) will be concatenated "
|
||||||
|
"to minimize the amount of padding."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--duration-factor",
|
"--duration-factor",
|
||||||
type=float,
|
type=float,
|
||||||
default=1.0,
|
default=1.0,
|
||||||
help="Determines the maximum duration of a concatenated cut "
|
help=(
|
||||||
"relative to the duration of the longest cut in a batch.",
|
"Determines the maximum duration of a concatenated cut "
|
||||||
|
"relative to the duration of the longest cut in a batch."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--gap",
|
"--gap",
|
||||||
type=float,
|
type=float,
|
||||||
default=1.0,
|
default=1.0,
|
||||||
help="The amount of padding (in seconds) inserted between "
|
help=(
|
||||||
|
"The amount of padding (in seconds) inserted between "
|
||||||
"concatenated cuts. This padding is filled with noise when "
|
"concatenated cuts. This padding is filled with noise when "
|
||||||
"noise augmentation is used.",
|
"noise augmentation is used."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--on-the-fly-feats",
|
"--on-the-fly-feats",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=False,
|
default=False,
|
||||||
help="When enabled, use on-the-fly cut mixing and feature "
|
help=(
|
||||||
|
"When enabled, use on-the-fly cut mixing and feature "
|
||||||
"extraction. Will drop existing precomputed feature manifests "
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
"if available.",
|
"if available."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--shuffle",
|
"--shuffle",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled (=default), the examples will be "
|
help=(
|
||||||
"shuffled for each epoch.",
|
"When enabled (=default), the examples will be shuffled for each epoch."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
@ -164,17 +181,18 @@ class Aishell4AsrDataModule:
|
|||||||
"--return-cuts",
|
"--return-cuts",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled, each batch will have the "
|
help=(
|
||||||
|
"When enabled, each batch will have the "
|
||||||
"field: batch['supervisions']['cut'] with the cuts that "
|
"field: batch['supervisions']['cut'] with the cuts that "
|
||||||
"were used to construct it.",
|
"were used to construct it."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--num-workers",
|
"--num-workers",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The number of training dataloader workers that "
|
help="The number of training dataloader workers that collect the batches.",
|
||||||
"collect the batches.",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
@ -188,18 +206,22 @@ class Aishell4AsrDataModule:
|
|||||||
"--spec-aug-time-warp-factor",
|
"--spec-aug-time-warp-factor",
|
||||||
type=int,
|
type=int,
|
||||||
default=80,
|
default=80,
|
||||||
help="Used only when --enable-spec-aug is True. "
|
help=(
|
||||||
|
"Used only when --enable-spec-aug is True. "
|
||||||
"It specifies the factor for time warping in SpecAugment. "
|
"It specifies the factor for time warping in SpecAugment. "
|
||||||
"Larger values mean more warping. "
|
"Larger values mean more warping. "
|
||||||
"A value less than 1 means to disable time warp.",
|
"A value less than 1 means to disable time warp."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--enable-musan",
|
"--enable-musan",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled, select noise from MUSAN and mix it"
|
help=(
|
||||||
"with training dataset. ",
|
"When enabled, select noise from MUSAN and mix it"
|
||||||
|
"with training dataset. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
@ -222,24 +244,20 @@ class Aishell4AsrDataModule:
|
|||||||
The state dict for the training sampler.
|
The state dict for the training sampler.
|
||||||
"""
|
"""
|
||||||
logging.info("About to get Musan cuts")
|
logging.info("About to get Musan cuts")
|
||||||
cuts_musan = load_manifest(
|
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||||
self.args.manifest_dir / "musan_cuts.jsonl.gz"
|
|
||||||
)
|
|
||||||
|
|
||||||
transforms = []
|
transforms = []
|
||||||
if self.args.enable_musan:
|
if self.args.enable_musan:
|
||||||
logging.info("Enable MUSAN")
|
logging.info("Enable MUSAN")
|
||||||
transforms.append(
|
transforms.append(
|
||||||
CutMix(
|
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||||
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
|
|
||||||
)
|
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Disable MUSAN")
|
logging.info("Disable MUSAN")
|
||||||
|
|
||||||
if self.args.concatenate_cuts:
|
if self.args.concatenate_cuts:
|
||||||
logging.info(
|
logging.info(
|
||||||
f"Using cut concatenation with duration factor "
|
"Using cut concatenation with duration factor "
|
||||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||||
)
|
)
|
||||||
# Cut concatenation should be the first transform in the list,
|
# Cut concatenation should be the first transform in the list,
|
||||||
@ -254,9 +272,7 @@ class Aishell4AsrDataModule:
|
|||||||
input_transforms = []
|
input_transforms = []
|
||||||
if self.args.enable_spec_aug:
|
if self.args.enable_spec_aug:
|
||||||
logging.info("Enable SpecAugment")
|
logging.info("Enable SpecAugment")
|
||||||
logging.info(
|
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||||
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
|
||||||
)
|
|
||||||
# Set the value of num_frame_masks according to Lhotse's version.
|
# Set the value of num_frame_masks according to Lhotse's version.
|
||||||
# In different Lhotse's versions, the default of num_frame_masks is
|
# In different Lhotse's versions, the default of num_frame_masks is
|
||||||
# different.
|
# different.
|
||||||
@ -300,9 +316,7 @@ class Aishell4AsrDataModule:
|
|||||||
# Drop feats to be on the safe side.
|
# Drop feats to be on the safe side.
|
||||||
train = K2SpeechRecognitionDataset(
|
train = K2SpeechRecognitionDataset(
|
||||||
cut_transforms=transforms,
|
cut_transforms=transforms,
|
||||||
input_strategy=OnTheFlyFeatures(
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
|
||||||
),
|
|
||||||
input_transforms=input_transforms,
|
input_transforms=input_transforms,
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
@ -359,9 +373,7 @@ class Aishell4AsrDataModule:
|
|||||||
if self.args.on_the_fly_feats:
|
if self.args.on_the_fly_feats:
|
||||||
validate = K2SpeechRecognitionDataset(
|
validate = K2SpeechRecognitionDataset(
|
||||||
cut_transforms=transforms,
|
cut_transforms=transforms,
|
||||||
input_strategy=OnTheFlyFeatures(
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
|
||||||
),
|
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
|
@ -117,20 +117,24 @@ def get_parser():
|
|||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=15,
|
default=15,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help=(
|
||||||
|
"Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch' and '--iter'",
|
"'--epoch' and '--iter'"
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--use-averaged-model",
|
"--use-averaged-model",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=False,
|
default=False,
|
||||||
help="Whether to load averaged model. Currently it only supports "
|
help=(
|
||||||
|
"Whether to load averaged model. Currently it only supports "
|
||||||
"using --epoch. If True, it would decode with the averaged model "
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
"Actually only the models with epoch number of `epoch-avg` and "
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
"`epoch` are loaded for averaging. ",
|
"`epoch` are loaded for averaging. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -201,8 +205,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
@ -260,9 +263,7 @@ def decode_one_batch(
|
|||||||
supervisions = batch["supervisions"]
|
supervisions = batch["supervisions"]
|
||||||
feature_lens = supervisions["num_frames"].to(device)
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
encoder_out, encoder_out_lens = model.encoder(
|
encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
|
||||||
x=feature, x_lens=feature_lens
|
|
||||||
)
|
|
||||||
hyps = []
|
hyps = []
|
||||||
|
|
||||||
if params.decoding_method == "fast_beam_search":
|
if params.decoding_method == "fast_beam_search":
|
||||||
@ -277,10 +278,7 @@ def decode_one_batch(
|
|||||||
)
|
)
|
||||||
for i in range(encoder_out.size(0)):
|
for i in range(encoder_out.size(0)):
|
||||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||||
elif (
|
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
params.decoding_method == "greedy_search"
|
|
||||||
and params.max_sym_per_frame == 1
|
|
||||||
):
|
|
||||||
hyp_tokens = greedy_search_batch(
|
hyp_tokens = greedy_search_batch(
|
||||||
model=model,
|
model=model,
|
||||||
encoder_out=encoder_out,
|
encoder_out=encoder_out,
|
||||||
@ -326,11 +324,7 @@ def decode_one_batch(
|
|||||||
return {"greedy_search": hyps}
|
return {"greedy_search": hyps}
|
||||||
elif params.decoding_method == "fast_beam_search":
|
elif params.decoding_method == "fast_beam_search":
|
||||||
return {
|
return {
|
||||||
(
|
f"beam_{params.beam}_max_contexts_{params.max_contexts}_max_states_{params.max_states}": hyps
|
||||||
f"beam_{params.beam}_"
|
|
||||||
f"max_contexts_{params.max_contexts}_"
|
|
||||||
f"max_states_{params.max_states}"
|
|
||||||
): hyps
|
|
||||||
}
|
}
|
||||||
else:
|
else:
|
||||||
return {f"beam_size_{params.beam_size}": hyps}
|
return {f"beam_size_{params.beam_size}": hyps}
|
||||||
@ -401,9 +395,7 @@ def decode_dataset(
|
|||||||
if batch_idx % log_interval == 0:
|
if batch_idx % log_interval == 0:
|
||||||
batch_str = f"{batch_idx}/{num_batches}"
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
logging.info(
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
|
||||||
)
|
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
@ -436,8 +428,7 @@ def save_results(
|
|||||||
|
|
||||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
errs_info = (
|
errs_info = (
|
||||||
params.res_dir
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
)
|
||||||
with open(errs_info, "w") as f:
|
with open(errs_info, "w") as f:
|
||||||
print("settings\tWER", file=f)
|
print("settings\tWER", file=f)
|
||||||
@ -480,9 +471,7 @@ def main():
|
|||||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
params.suffix += f"-max-states-{params.max_states}"
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
elif "beam_search" in params.decoding_method:
|
elif "beam_search" in params.decoding_method:
|
||||||
params.suffix += (
|
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||||
f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
params.suffix += f"-context-{params.context_size}"
|
params.suffix += f"-context-{params.context_size}"
|
||||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
@ -510,13 +499,12 @@ def main():
|
|||||||
|
|
||||||
if not params.use_averaged_model:
|
if not params.use_averaged_model:
|
||||||
if params.iter > 0:
|
if params.iter > 0:
|
||||||
filenames = find_checkpoints(
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
params.exp_dir, iteration=-params.iter
|
: params.avg
|
||||||
)[: params.avg]
|
]
|
||||||
if len(filenames) == 0:
|
if len(filenames) == 0:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"No checkpoints found for"
|
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
)
|
||||||
elif len(filenames) < params.avg:
|
elif len(filenames) < params.avg:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
@ -543,13 +531,12 @@ def main():
|
|||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
if params.iter > 0:
|
if params.iter > 0:
|
||||||
filenames = find_checkpoints(
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
params.exp_dir, iteration=-params.iter
|
: params.avg + 1
|
||||||
)[: params.avg + 1]
|
]
|
||||||
if len(filenames) == 0:
|
if len(filenames) == 0:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"No checkpoints found for"
|
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
)
|
||||||
elif len(filenames) < params.avg + 1:
|
elif len(filenames) < params.avg + 1:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
@ -578,7 +565,7 @@ def main():
|
|||||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
logging.info(
|
logging.info(
|
||||||
f"Calculating the averaged model over epoch range from "
|
"Calculating the averaged model over epoch range from "
|
||||||
f"{start} (excluded) to {params.epoch}"
|
f"{start} (excluded) to {params.epoch}"
|
||||||
)
|
)
|
||||||
model.to(device)
|
model.to(device)
|
||||||
|
@ -89,20 +89,24 @@ def get_parser():
|
|||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=15,
|
default=15,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help=(
|
||||||
|
"Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch' and '--iter'",
|
"'--epoch' and '--iter'"
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--use-averaged-model",
|
"--use-averaged-model",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=False,
|
default=False,
|
||||||
help="Whether to load averaged model. Currently it only supports "
|
help=(
|
||||||
|
"Whether to load averaged model. Currently it only supports "
|
||||||
"using --epoch. If True, it would decode with the averaged model "
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
"Actually only the models with epoch number of `epoch-avg` and "
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
"`epoch` are loaded for averaging. ",
|
"`epoch` are loaded for averaging. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -136,8 +140,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
add_model_arguments(parser)
|
add_model_arguments(parser)
|
||||||
@ -169,13 +172,12 @@ def main():
|
|||||||
|
|
||||||
if not params.use_averaged_model:
|
if not params.use_averaged_model:
|
||||||
if params.iter > 0:
|
if params.iter > 0:
|
||||||
filenames = find_checkpoints(
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
params.exp_dir, iteration=-params.iter
|
: params.avg
|
||||||
)[: params.avg]
|
]
|
||||||
if len(filenames) == 0:
|
if len(filenames) == 0:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"No checkpoints found for"
|
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
)
|
||||||
elif len(filenames) < params.avg:
|
elif len(filenames) < params.avg:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
@ -202,13 +204,12 @@ def main():
|
|||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
if params.iter > 0:
|
if params.iter > 0:
|
||||||
filenames = find_checkpoints(
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
params.exp_dir, iteration=-params.iter
|
: params.avg + 1
|
||||||
)[: params.avg + 1]
|
]
|
||||||
if len(filenames) == 0:
|
if len(filenames) == 0:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"No checkpoints found for"
|
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
)
|
||||||
elif len(filenames) < params.avg + 1:
|
elif len(filenames) < params.avg + 1:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
@ -237,7 +238,7 @@ def main():
|
|||||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
logging.info(
|
logging.info(
|
||||||
f"Calculating the averaged model over epoch range from "
|
"Calculating the averaged model over epoch range from "
|
||||||
f"{start} (excluded) to {params.epoch}"
|
f"{start} (excluded) to {params.epoch}"
|
||||||
)
|
)
|
||||||
model.to(device)
|
model.to(device)
|
||||||
@ -276,9 +277,7 @@ def main():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
main()
|
main()
|
||||||
|
@ -94,9 +94,11 @@ def get_parser():
|
|||||||
"--checkpoint",
|
"--checkpoint",
|
||||||
type=str,
|
type=str,
|
||||||
required=True,
|
required=True,
|
||||||
help="Path to the checkpoint. "
|
help=(
|
||||||
|
"Path to the checkpoint. "
|
||||||
"The checkpoint is assumed to be saved by "
|
"The checkpoint is assumed to be saved by "
|
||||||
"icefall.checkpoint.save_checkpoint().",
|
"icefall.checkpoint.save_checkpoint()."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -122,10 +124,12 @@ def get_parser():
|
|||||||
"sound_files",
|
"sound_files",
|
||||||
type=str,
|
type=str,
|
||||||
nargs="+",
|
nargs="+",
|
||||||
help="The input sound file(s) to transcribe. "
|
help=(
|
||||||
|
"The input sound file(s) to transcribe. "
|
||||||
"Supported formats are those supported by torchaudio.load(). "
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
"For example, wav and flac are supported. "
|
"For example, wav and flac are supported. "
|
||||||
"The sample rate has to be 16kHz.",
|
"The sample rate has to be 16kHz."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -172,8 +176,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
@ -204,10 +207,9 @@ def read_sound_files(
|
|||||||
ans = []
|
ans = []
|
||||||
for f in filenames:
|
for f in filenames:
|
||||||
wave, sample_rate = torchaudio.load(f)
|
wave, sample_rate = torchaudio.load(f)
|
||||||
assert sample_rate == expected_sample_rate, (
|
assert (
|
||||||
f"expected sample rate: {expected_sample_rate}. "
|
sample_rate == expected_sample_rate
|
||||||
f"Given: {sample_rate}"
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||||
)
|
|
||||||
# We use only the first channel
|
# We use only the first channel
|
||||||
ans.append(wave[0])
|
ans.append(wave[0])
|
||||||
return ans
|
return ans
|
||||||
@ -266,15 +268,11 @@ def main():
|
|||||||
features = fbank(waves)
|
features = fbank(waves)
|
||||||
feature_lengths = [f.size(0) for f in features]
|
feature_lengths = [f.size(0) for f in features]
|
||||||
|
|
||||||
features = pad_sequence(
|
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||||
features, batch_first=True, padding_value=math.log(1e-10)
|
|
||||||
)
|
|
||||||
|
|
||||||
feature_lengths = torch.tensor(feature_lengths, device=device)
|
feature_lengths = torch.tensor(feature_lengths, device=device)
|
||||||
|
|
||||||
encoder_out, encoder_out_lens = model.encoder(
|
encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lengths)
|
||||||
x=features, x_lens=feature_lengths
|
|
||||||
)
|
|
||||||
|
|
||||||
num_waves = encoder_out.size(0)
|
num_waves = encoder_out.size(0)
|
||||||
hyps = []
|
hyps = []
|
||||||
@ -306,10 +304,7 @@ def main():
|
|||||||
|
|
||||||
for i in range(encoder_out.size(0)):
|
for i in range(encoder_out.size(0)):
|
||||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||||
elif (
|
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
params.decoding_method == "greedy_search"
|
|
||||||
and params.max_sym_per_frame == 1
|
|
||||||
):
|
|
||||||
hyp_tokens = greedy_search_batch(
|
hyp_tokens = greedy_search_batch(
|
||||||
model=model,
|
model=model,
|
||||||
encoder_out=encoder_out,
|
encoder_out=encoder_out,
|
||||||
@ -350,9 +345,7 @@ def main():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
main()
|
main()
|
||||||
|
@ -85,9 +85,7 @@ from icefall.env import get_env_info
|
|||||||
from icefall.lexicon import Lexicon
|
from icefall.lexicon import Lexicon
|
||||||
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
||||||
|
|
||||||
LRSchedulerType = Union[
|
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
|
||||||
torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
def add_model_arguments(parser: argparse.ArgumentParser):
|
def add_model_arguments(parser: argparse.ArgumentParser):
|
||||||
@ -213,8 +211,7 @@ def get_parser():
|
|||||||
"--initial-lr",
|
"--initial-lr",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.003,
|
default=0.003,
|
||||||
help="The initial learning rate. This value should not need "
|
help="The initial learning rate. This value should not need to be changed.",
|
||||||
"to be changed.",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -237,42 +234,45 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--prune-range",
|
"--prune-range",
|
||||||
type=int,
|
type=int,
|
||||||
default=5,
|
default=5,
|
||||||
help="The prune range for rnnt loss, it means how many symbols(context)"
|
help=(
|
||||||
"we are using to compute the loss",
|
"The prune range for rnnt loss, it means how many symbols(context)"
|
||||||
|
"we are using to compute the loss"
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--lm-scale",
|
"--lm-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.25,
|
default=0.25,
|
||||||
help="The scale to smooth the loss with lm "
|
help=(
|
||||||
"(output of prediction network) part.",
|
"The scale to smooth the loss with lm (output of prediction network) part."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--am-scale",
|
"--am-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.0,
|
default=0.0,
|
||||||
help="The scale to smooth the loss with am (output of encoder network)"
|
help="The scale to smooth the loss with am (output of encoder network)part.",
|
||||||
"part.",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--simple-loss-scale",
|
"--simple-loss-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.5,
|
default=0.5,
|
||||||
help="To get pruning ranges, we will calculate a simple version"
|
help=(
|
||||||
|
"To get pruning ranges, we will calculate a simple version"
|
||||||
"loss(joiner is just addition), this simple loss also uses for"
|
"loss(joiner is just addition), this simple loss also uses for"
|
||||||
"training (as a regularization item). We will scale the simple loss"
|
"training (as a regularization item). We will scale the simple loss"
|
||||||
"with this parameter before adding to the final loss.",
|
"with this parameter before adding to the final loss."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -599,11 +599,7 @@ def compute_loss(
|
|||||||
warmup: a floating point value which increases throughout training;
|
warmup: a floating point value which increases throughout training;
|
||||||
values >= 1.0 are fully warmed up and have all modules present.
|
values >= 1.0 are fully warmed up and have all modules present.
|
||||||
"""
|
"""
|
||||||
device = (
|
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
|
||||||
model.device
|
|
||||||
if isinstance(model, DDP)
|
|
||||||
else next(model.parameters()).device
|
|
||||||
)
|
|
||||||
feature = batch["inputs"]
|
feature = batch["inputs"]
|
||||||
# at entry, feature is (N, T, C)
|
# at entry, feature is (N, T, C)
|
||||||
assert feature.ndim == 3
|
assert feature.ndim == 3
|
||||||
@ -633,22 +629,15 @@ def compute_loss(
|
|||||||
# overwhelming the simple_loss and causing it to diverge,
|
# overwhelming the simple_loss and causing it to diverge,
|
||||||
# in case it had not fully learned the alignment yet.
|
# in case it had not fully learned the alignment yet.
|
||||||
pruned_loss_scale = (
|
pruned_loss_scale = (
|
||||||
0.0
|
0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
|
||||||
if warmup < 1.0
|
|
||||||
else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
|
|
||||||
)
|
|
||||||
loss = (
|
|
||||||
params.simple_loss_scale * simple_loss
|
|
||||||
+ pruned_loss_scale * pruned_loss
|
|
||||||
)
|
)
|
||||||
|
loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
|
||||||
assert loss.requires_grad == is_training
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
info = MetricsTracker()
|
info = MetricsTracker()
|
||||||
with warnings.catch_warnings():
|
with warnings.catch_warnings():
|
||||||
warnings.simplefilter("ignore")
|
warnings.simplefilter("ignore")
|
||||||
info["frames"] = (
|
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
||||||
(feature_lens // params.subsampling_factor).sum().item()
|
|
||||||
)
|
|
||||||
|
|
||||||
# Note: We use reduction=sum while computing the loss.
|
# Note: We use reduction=sum while computing the loss.
|
||||||
info["loss"] = loss.detach().cpu().item()
|
info["loss"] = loss.detach().cpu().item()
|
||||||
@ -827,9 +816,7 @@ def train_one_epoch(
|
|||||||
loss_info.write_summary(
|
loss_info.write_summary(
|
||||||
tb_writer, "train/current_", params.batch_idx_train
|
tb_writer, "train/current_", params.batch_idx_train
|
||||||
)
|
)
|
||||||
tot_loss.write_summary(
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||||
tb_writer, "train/tot_", params.batch_idx_train
|
|
||||||
)
|
|
||||||
|
|
||||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||||
logging.info("Computing validation loss")
|
logging.info("Computing validation loss")
|
||||||
@ -937,7 +924,7 @@ def run(rank, world_size, args):
|
|||||||
|
|
||||||
if params.print_diagnostics:
|
if params.print_diagnostics:
|
||||||
opts = diagnostics.TensorDiagnosticOptions(
|
opts = diagnostics.TensorDiagnosticOptions(
|
||||||
2 ** 22
|
2**22
|
||||||
) # allow 4 megabytes per sub-module
|
) # allow 4 megabytes per sub-module
|
||||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||||
|
|
||||||
|
@ -84,9 +84,7 @@ def compute_fbank_alimeeting(num_mel_bins: int = 80):
|
|||||||
)
|
)
|
||||||
if "train" in partition:
|
if "train" in partition:
|
||||||
cut_set = (
|
cut_set = (
|
||||||
cut_set
|
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||||
+ cut_set.perturb_speed(0.9)
|
|
||||||
+ cut_set.perturb_speed(1.1)
|
|
||||||
)
|
)
|
||||||
cur_num_jobs = num_jobs if ex is None else 80
|
cur_num_jobs = num_jobs if ex is None else 80
|
||||||
cur_num_jobs = min(cur_num_jobs, len(cut_set))
|
cur_num_jobs = min(cur_num_jobs, len(cut_set))
|
||||||
@ -121,9 +119,7 @@ def get_args():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
@ -86,9 +86,7 @@ def lexicon_to_fst_no_sil(
|
|||||||
cur_state = loop_state
|
cur_state = loop_state
|
||||||
|
|
||||||
word = word2id[word]
|
word = word2id[word]
|
||||||
pieces = [
|
pieces = [token2id[i] if i in token2id else token2id["<unk>"] for i in pieces]
|
||||||
token2id[i] if i in token2id else token2id["<unk>"] for i in pieces
|
|
||||||
]
|
|
||||||
|
|
||||||
for i in range(len(pieces) - 1):
|
for i in range(len(pieces) - 1):
|
||||||
w = word if i == 0 else eps
|
w = word if i == 0 else eps
|
||||||
@ -142,9 +140,7 @@ def contain_oov(token_sym_table: Dict[str, int], tokens: List[str]) -> bool:
|
|||||||
return False
|
return False
|
||||||
|
|
||||||
|
|
||||||
def generate_lexicon(
|
def generate_lexicon(token_sym_table: Dict[str, int], words: List[str]) -> Lexicon:
|
||||||
token_sym_table: Dict[str, int], words: List[str]
|
|
||||||
) -> Lexicon:
|
|
||||||
"""Generate a lexicon from a word list and token_sym_table.
|
"""Generate a lexicon from a word list and token_sym_table.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
|
@ -317,9 +317,7 @@ def lexicon_to_fst(
|
|||||||
|
|
||||||
def get_args():
|
def get_args():
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument(
|
parser.add_argument("--lang-dir", type=str, help="The lang dir, data/lang_phone")
|
||||||
"--lang-dir", type=str, help="The lang dir, data/lang_phone"
|
|
||||||
)
|
|
||||||
return parser.parse_args()
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
@ -88,9 +88,7 @@ def test_read_lexicon(filename: str):
|
|||||||
fsa.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
fsa.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
||||||
fsa.draw("L.pdf", title="L")
|
fsa.draw("L.pdf", title="L")
|
||||||
|
|
||||||
fsa_disambig = lexicon_to_fst(
|
fsa_disambig = lexicon_to_fst(lexicon_disambig, phone2id=phone2id, word2id=word2id)
|
||||||
lexicon_disambig, phone2id=phone2id, word2id=word2id
|
|
||||||
)
|
|
||||||
fsa_disambig.labels_sym = k2.SymbolTable.from_file("phones.txt")
|
fsa_disambig.labels_sym = k2.SymbolTable.from_file("phones.txt")
|
||||||
fsa_disambig.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
fsa_disambig.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
||||||
fsa_disambig.draw("L_disambig.pdf", title="L_disambig")
|
fsa_disambig.draw("L_disambig.pdf", title="L_disambig")
|
||||||
|
@ -30,8 +30,8 @@ with word segmenting:
|
|||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
|
|
||||||
import paddle
|
|
||||||
import jieba
|
import jieba
|
||||||
|
import paddle
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
paddle.enable_static()
|
paddle.enable_static()
|
||||||
|
@ -50,15 +50,15 @@ def get_parser():
|
|||||||
"-n",
|
"-n",
|
||||||
default=1,
|
default=1,
|
||||||
type=int,
|
type=int,
|
||||||
help="number of characters to split, i.e., \
|
help=(
|
||||||
aabb -> a a b b with -n 1 and aa bb with -n 2",
|
"number of characters to split, i.e., aabb -> a a b"
|
||||||
|
" b with -n 1 and aa bb with -n 2"
|
||||||
|
),
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--skip-ncols", "-s", default=0, type=int, help="skip first n columns"
|
"--skip-ncols", "-s", default=0, type=int, help="skip first n columns"
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument("--space", default="<space>", type=str, help="space symbol")
|
||||||
"--space", default="<space>", type=str, help="space symbol"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--non-lang-syms",
|
"--non-lang-syms",
|
||||||
"-l",
|
"-l",
|
||||||
@ -66,9 +66,7 @@ def get_parser():
|
|||||||
type=str,
|
type=str,
|
||||||
help="list of non-linguistic symobles, e.g., <NOISE> etc.",
|
help="list of non-linguistic symobles, e.g., <NOISE> etc.",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument("text", type=str, default=False, nargs="?", help="input text")
|
||||||
"text", type=str, default=False, nargs="?", help="input text"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--trans_type",
|
"--trans_type",
|
||||||
"-t",
|
"-t",
|
||||||
@ -108,8 +106,7 @@ def token2id(
|
|||||||
if token_type == "lazy_pinyin":
|
if token_type == "lazy_pinyin":
|
||||||
text = lazy_pinyin(chars_list)
|
text = lazy_pinyin(chars_list)
|
||||||
sub_ids = [
|
sub_ids = [
|
||||||
token_table[txt] if txt in token_table else oov_id
|
token_table[txt] if txt in token_table else oov_id for txt in text
|
||||||
for txt in text
|
|
||||||
]
|
]
|
||||||
ids.append(sub_ids)
|
ids.append(sub_ids)
|
||||||
else: # token_type = "pinyin"
|
else: # token_type = "pinyin"
|
||||||
@ -135,9 +132,7 @@ def main():
|
|||||||
if args.text:
|
if args.text:
|
||||||
f = codecs.open(args.text, encoding="utf-8")
|
f = codecs.open(args.text, encoding="utf-8")
|
||||||
else:
|
else:
|
||||||
f = codecs.getreader("utf-8")(
|
f = codecs.getreader("utf-8")(sys.stdin if is_python2 else sys.stdin.buffer)
|
||||||
sys.stdin if is_python2 else sys.stdin.buffer
|
|
||||||
)
|
|
||||||
|
|
||||||
sys.stdout = codecs.getwriter("utf-8")(
|
sys.stdout = codecs.getwriter("utf-8")(
|
||||||
sys.stdout if is_python2 else sys.stdout.buffer
|
sys.stdout if is_python2 else sys.stdout.buffer
|
||||||
|
@ -81,10 +81,12 @@ class AlimeetingAsrDataModule:
|
|||||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
group = parser.add_argument_group(
|
group = parser.add_argument_group(
|
||||||
title="ASR data related options",
|
title="ASR data related options",
|
||||||
description="These options are used for the preparation of "
|
description=(
|
||||||
|
"These options are used for the preparation of "
|
||||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
"effective batch sizes, sampling strategies, applied data "
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
"augmentations, etc.",
|
"augmentations, etc."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--manifest-dir",
|
"--manifest-dir",
|
||||||
@ -96,75 +98,91 @@ class AlimeetingAsrDataModule:
|
|||||||
"--max-duration",
|
"--max-duration",
|
||||||
type=int,
|
type=int,
|
||||||
default=200.0,
|
default=200.0,
|
||||||
help="Maximum pooled recordings duration (seconds) in a "
|
help=(
|
||||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
"Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--bucketing-sampler",
|
"--bucketing-sampler",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled, the batches will come from buckets of "
|
help=(
|
||||||
"similar duration (saves padding frames).",
|
"When enabled, the batches will come from buckets of "
|
||||||
|
"similar duration (saves padding frames)."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--num-buckets",
|
"--num-buckets",
|
||||||
type=int,
|
type=int,
|
||||||
default=300,
|
default=300,
|
||||||
help="The number of buckets for the DynamicBucketingSampler"
|
help=(
|
||||||
"(you might want to increase it for larger datasets).",
|
"The number of buckets for the DynamicBucketingSampler"
|
||||||
|
"(you might want to increase it for larger datasets)."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--concatenate-cuts",
|
"--concatenate-cuts",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=False,
|
default=False,
|
||||||
help="When enabled, utterances (cuts) will be concatenated "
|
help=(
|
||||||
"to minimize the amount of padding.",
|
"When enabled, utterances (cuts) will be concatenated "
|
||||||
|
"to minimize the amount of padding."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--duration-factor",
|
"--duration-factor",
|
||||||
type=float,
|
type=float,
|
||||||
default=1.0,
|
default=1.0,
|
||||||
help="Determines the maximum duration of a concatenated cut "
|
help=(
|
||||||
"relative to the duration of the longest cut in a batch.",
|
"Determines the maximum duration of a concatenated cut "
|
||||||
|
"relative to the duration of the longest cut in a batch."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--gap",
|
"--gap",
|
||||||
type=float,
|
type=float,
|
||||||
default=1.0,
|
default=1.0,
|
||||||
help="The amount of padding (in seconds) inserted between "
|
help=(
|
||||||
|
"The amount of padding (in seconds) inserted between "
|
||||||
"concatenated cuts. This padding is filled with noise when "
|
"concatenated cuts. This padding is filled with noise when "
|
||||||
"noise augmentation is used.",
|
"noise augmentation is used."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--on-the-fly-feats",
|
"--on-the-fly-feats",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=False,
|
default=False,
|
||||||
help="When enabled, use on-the-fly cut mixing and feature "
|
help=(
|
||||||
|
"When enabled, use on-the-fly cut mixing and feature "
|
||||||
"extraction. Will drop existing precomputed feature manifests "
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
"if available.",
|
"if available."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--shuffle",
|
"--shuffle",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled (=default), the examples will be "
|
help=(
|
||||||
"shuffled for each epoch.",
|
"When enabled (=default), the examples will be shuffled for each epoch."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--return-cuts",
|
"--return-cuts",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled, each batch will have the "
|
help=(
|
||||||
|
"When enabled, each batch will have the "
|
||||||
"field: batch['supervisions']['cut'] with the cuts that "
|
"field: batch['supervisions']['cut'] with the cuts that "
|
||||||
"were used to construct it.",
|
"were used to construct it."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--num-workers",
|
"--num-workers",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The number of training dataloader workers that "
|
help="The number of training dataloader workers that collect the batches.",
|
||||||
"collect the batches.",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
@ -178,18 +196,22 @@ class AlimeetingAsrDataModule:
|
|||||||
"--spec-aug-time-warp-factor",
|
"--spec-aug-time-warp-factor",
|
||||||
type=int,
|
type=int,
|
||||||
default=80,
|
default=80,
|
||||||
help="Used only when --enable-spec-aug is True. "
|
help=(
|
||||||
|
"Used only when --enable-spec-aug is True. "
|
||||||
"It specifies the factor for time warping in SpecAugment. "
|
"It specifies the factor for time warping in SpecAugment. "
|
||||||
"Larger values mean more warping. "
|
"Larger values mean more warping. "
|
||||||
"A value less than 1 means to disable time warp.",
|
"A value less than 1 means to disable time warp."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--enable-musan",
|
"--enable-musan",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=True,
|
||||||
help="When enabled, select noise from MUSAN and mix it"
|
help=(
|
||||||
"with training dataset. ",
|
"When enabled, select noise from MUSAN and mix it"
|
||||||
|
"with training dataset. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
def train_dataloaders(
|
def train_dataloaders(
|
||||||
@ -205,24 +227,20 @@ class AlimeetingAsrDataModule:
|
|||||||
The state dict for the training sampler.
|
The state dict for the training sampler.
|
||||||
"""
|
"""
|
||||||
logging.info("About to get Musan cuts")
|
logging.info("About to get Musan cuts")
|
||||||
cuts_musan = load_manifest(
|
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||||
self.args.manifest_dir / "musan_cuts.jsonl.gz"
|
|
||||||
)
|
|
||||||
|
|
||||||
transforms = []
|
transforms = []
|
||||||
if self.args.enable_musan:
|
if self.args.enable_musan:
|
||||||
logging.info("Enable MUSAN")
|
logging.info("Enable MUSAN")
|
||||||
transforms.append(
|
transforms.append(
|
||||||
CutMix(
|
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||||
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
|
|
||||||
)
|
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Disable MUSAN")
|
logging.info("Disable MUSAN")
|
||||||
|
|
||||||
if self.args.concatenate_cuts:
|
if self.args.concatenate_cuts:
|
||||||
logging.info(
|
logging.info(
|
||||||
f"Using cut concatenation with duration factor "
|
"Using cut concatenation with duration factor "
|
||||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||||
)
|
)
|
||||||
# Cut concatenation should be the first transform in the list,
|
# Cut concatenation should be the first transform in the list,
|
||||||
@ -237,9 +255,7 @@ class AlimeetingAsrDataModule:
|
|||||||
input_transforms = []
|
input_transforms = []
|
||||||
if self.args.enable_spec_aug:
|
if self.args.enable_spec_aug:
|
||||||
logging.info("Enable SpecAugment")
|
logging.info("Enable SpecAugment")
|
||||||
logging.info(
|
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||||
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
|
||||||
)
|
|
||||||
# Set the value of num_frame_masks according to Lhotse's version.
|
# Set the value of num_frame_masks according to Lhotse's version.
|
||||||
# In different Lhotse's versions, the default of num_frame_masks is
|
# In different Lhotse's versions, the default of num_frame_masks is
|
||||||
# different.
|
# different.
|
||||||
@ -282,9 +298,7 @@ class AlimeetingAsrDataModule:
|
|||||||
# Drop feats to be on the safe side.
|
# Drop feats to be on the safe side.
|
||||||
train = K2SpeechRecognitionDataset(
|
train = K2SpeechRecognitionDataset(
|
||||||
cut_transforms=transforms,
|
cut_transforms=transforms,
|
||||||
input_strategy=OnTheFlyFeatures(
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
|
||||||
),
|
|
||||||
input_transforms=input_transforms,
|
input_transforms=input_transforms,
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
@ -341,9 +355,7 @@ class AlimeetingAsrDataModule:
|
|||||||
if self.args.on_the_fly_feats:
|
if self.args.on_the_fly_feats:
|
||||||
validate = K2SpeechRecognitionDataset(
|
validate = K2SpeechRecognitionDataset(
|
||||||
cut_transforms=transforms,
|
cut_transforms=transforms,
|
||||||
input_strategy=OnTheFlyFeatures(
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
|
||||||
),
|
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
|
@ -70,11 +70,7 @@ from beam_search import (
|
|||||||
from lhotse.cut import Cut
|
from lhotse.cut import Cut
|
||||||
from train import get_params, get_transducer_model
|
from train import get_params, get_transducer_model
|
||||||
|
|
||||||
from icefall.checkpoint import (
|
from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint
|
||||||
average_checkpoints,
|
|
||||||
find_checkpoints,
|
|
||||||
load_checkpoint,
|
|
||||||
)
|
|
||||||
from icefall.lexicon import Lexicon
|
from icefall.lexicon import Lexicon
|
||||||
from icefall.utils import (
|
from icefall.utils import (
|
||||||
AttributeDict,
|
AttributeDict,
|
||||||
@ -93,25 +89,30 @@ def get_parser():
|
|||||||
"--epoch",
|
"--epoch",
|
||||||
type=int,
|
type=int,
|
||||||
default=28,
|
default=28,
|
||||||
help="It specifies the checkpoint to use for decoding."
|
help=(
|
||||||
"Note: Epoch counts from 0.",
|
"It specifies the checkpoint to use for decoding.Note: Epoch counts from 0."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--batch",
|
"--batch",
|
||||||
type=int,
|
type=int,
|
||||||
default=None,
|
default=None,
|
||||||
help="It specifies the batch checkpoint to use for decoding."
|
help=(
|
||||||
"Note: Epoch counts from 0.",
|
"It specifies the batch checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=15,
|
default=15,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help=(
|
||||||
|
"Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch'. ",
|
"'--epoch'. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -193,8 +194,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
@ -249,9 +249,7 @@ def decode_one_batch(
|
|||||||
|
|
||||||
supervisions = batch["supervisions"]
|
supervisions = batch["supervisions"]
|
||||||
feature_lens = supervisions["num_frames"].to(device)
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
encoder_out, encoder_out_lens = model.encoder(
|
encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
|
||||||
x=feature, x_lens=feature_lens
|
|
||||||
)
|
|
||||||
hyps = []
|
hyps = []
|
||||||
|
|
||||||
if params.decoding_method == "fast_beam_search":
|
if params.decoding_method == "fast_beam_search":
|
||||||
@ -266,10 +264,7 @@ def decode_one_batch(
|
|||||||
)
|
)
|
||||||
for i in range(encoder_out.size(0)):
|
for i in range(encoder_out.size(0)):
|
||||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||||
elif (
|
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
params.decoding_method == "greedy_search"
|
|
||||||
and params.max_sym_per_frame == 1
|
|
||||||
):
|
|
||||||
hyp_tokens = greedy_search_batch(
|
hyp_tokens = greedy_search_batch(
|
||||||
model=model,
|
model=model,
|
||||||
encoder_out=encoder_out,
|
encoder_out=encoder_out,
|
||||||
@ -315,11 +310,7 @@ def decode_one_batch(
|
|||||||
return {"greedy_search": hyps}
|
return {"greedy_search": hyps}
|
||||||
elif params.decoding_method == "fast_beam_search":
|
elif params.decoding_method == "fast_beam_search":
|
||||||
return {
|
return {
|
||||||
(
|
f"beam_{params.beam}_max_contexts_{params.max_contexts}_max_states_{params.max_states}": hyps
|
||||||
f"beam_{params.beam}_"
|
|
||||||
f"max_contexts_{params.max_contexts}_"
|
|
||||||
f"max_states_{params.max_states}"
|
|
||||||
): hyps
|
|
||||||
}
|
}
|
||||||
else:
|
else:
|
||||||
return {f"beam_size_{params.beam_size}": hyps}
|
return {f"beam_size_{params.beam_size}": hyps}
|
||||||
@ -390,9 +381,7 @@ def decode_dataset(
|
|||||||
if batch_idx % log_interval == 0:
|
if batch_idx % log_interval == 0:
|
||||||
batch_str = f"{batch_idx}/{num_batches}"
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
logging.info(
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
|
||||||
)
|
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
@ -425,8 +414,7 @@ def save_results(
|
|||||||
|
|
||||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
errs_info = (
|
errs_info = (
|
||||||
params.res_dir
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
)
|
||||||
with open(errs_info, "w") as f:
|
with open(errs_info, "w") as f:
|
||||||
print("settings\tWER", file=f)
|
print("settings\tWER", file=f)
|
||||||
@ -563,8 +551,7 @@ def main():
|
|||||||
)
|
)
|
||||||
|
|
||||||
dev_shards = [
|
dev_shards = [
|
||||||
str(path)
|
str(path) for path in sorted(glob.glob(os.path.join(dev, "shared-*.tar")))
|
||||||
for path in sorted(glob.glob(os.path.join(dev, "shared-*.tar")))
|
|
||||||
]
|
]
|
||||||
cuts_dev_webdataset = CutSet.from_webdataset(
|
cuts_dev_webdataset = CutSet.from_webdataset(
|
||||||
dev_shards,
|
dev_shards,
|
||||||
@ -574,8 +561,7 @@ def main():
|
|||||||
)
|
)
|
||||||
|
|
||||||
test_shards = [
|
test_shards = [
|
||||||
str(path)
|
str(path) for path in sorted(glob.glob(os.path.join(test, "shared-*.tar")))
|
||||||
for path in sorted(glob.glob(os.path.join(test, "shared-*.tar")))
|
|
||||||
]
|
]
|
||||||
cuts_test_webdataset = CutSet.from_webdataset(
|
cuts_test_webdataset = CutSet.from_webdataset(
|
||||||
test_shards,
|
test_shards,
|
||||||
@ -588,9 +574,7 @@ def main():
|
|||||||
return 1.0 <= c.duration
|
return 1.0 <= c.duration
|
||||||
|
|
||||||
cuts_dev_webdataset = cuts_dev_webdataset.filter(remove_short_and_long_utt)
|
cuts_dev_webdataset = cuts_dev_webdataset.filter(remove_short_and_long_utt)
|
||||||
cuts_test_webdataset = cuts_test_webdataset.filter(
|
cuts_test_webdataset = cuts_test_webdataset.filter(remove_short_and_long_utt)
|
||||||
remove_short_and_long_utt
|
|
||||||
)
|
|
||||||
|
|
||||||
dev_dl = alimeeting.valid_dataloaders(cuts_dev_webdataset)
|
dev_dl = alimeeting.valid_dataloaders(cuts_dev_webdataset)
|
||||||
test_dl = alimeeting.test_dataloaders(cuts_test_webdataset)
|
test_dl = alimeeting.test_dataloaders(cuts_test_webdataset)
|
||||||
|
@ -62,17 +62,20 @@ def get_parser():
|
|||||||
"--epoch",
|
"--epoch",
|
||||||
type=int,
|
type=int,
|
||||||
default=28,
|
default=28,
|
||||||
help="It specifies the checkpoint to use for decoding."
|
help=(
|
||||||
"Note: Epoch counts from 0.",
|
"It specifies the checkpoint to use for decoding.Note: Epoch counts from 0."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=15,
|
default=15,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help=(
|
||||||
|
"Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch'. ",
|
"'--epoch'. "
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -103,8 +106,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
@ -173,9 +175,7 @@ def main():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
main()
|
main()
|
||||||
|
@ -85,9 +85,11 @@ def get_parser():
|
|||||||
"--checkpoint",
|
"--checkpoint",
|
||||||
type=str,
|
type=str,
|
||||||
required=True,
|
required=True,
|
||||||
help="Path to the checkpoint. "
|
help=(
|
||||||
|
"Path to the checkpoint. "
|
||||||
"The checkpoint is assumed to be saved by "
|
"The checkpoint is assumed to be saved by "
|
||||||
"icefall.checkpoint.save_checkpoint().",
|
"icefall.checkpoint.save_checkpoint()."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -112,10 +114,12 @@ def get_parser():
|
|||||||
"sound_files",
|
"sound_files",
|
||||||
type=str,
|
type=str,
|
||||||
nargs="+",
|
nargs="+",
|
||||||
help="The input sound file(s) to transcribe. "
|
help=(
|
||||||
|
"The input sound file(s) to transcribe. "
|
||||||
"Supported formats are those supported by torchaudio.load(). "
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
"For example, wav and flac are supported. "
|
"For example, wav and flac are supported. "
|
||||||
"The sample rate has to be 16kHz.",
|
"The sample rate has to be 16kHz."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -162,8 +166,7 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -193,10 +196,9 @@ def read_sound_files(
|
|||||||
ans = []
|
ans = []
|
||||||
for f in filenames:
|
for f in filenames:
|
||||||
wave, sample_rate = torchaudio.load(f)
|
wave, sample_rate = torchaudio.load(f)
|
||||||
assert sample_rate == expected_sample_rate, (
|
assert (
|
||||||
f"expected sample rate: {expected_sample_rate}. "
|
sample_rate == expected_sample_rate
|
||||||
f"Given: {sample_rate}"
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||||
)
|
|
||||||
# We use only the first channel
|
# We use only the first channel
|
||||||
ans.append(wave[0])
|
ans.append(wave[0])
|
||||||
return ans
|
return ans
|
||||||
@ -257,9 +259,7 @@ def main():
|
|||||||
features = fbank(waves)
|
features = fbank(waves)
|
||||||
feature_lengths = [f.size(0) for f in features]
|
feature_lengths = [f.size(0) for f in features]
|
||||||
|
|
||||||
features = pad_sequence(
|
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||||
features, batch_first=True, padding_value=math.log(1e-10)
|
|
||||||
)
|
|
||||||
|
|
||||||
feature_lengths = torch.tensor(feature_lengths, device=device)
|
feature_lengths = torch.tensor(feature_lengths, device=device)
|
||||||
|
|
||||||
@ -284,10 +284,7 @@ def main():
|
|||||||
)
|
)
|
||||||
for i in range(encoder_out.size(0)):
|
for i in range(encoder_out.size(0)):
|
||||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||||
elif (
|
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
params.decoding_method == "greedy_search"
|
|
||||||
and params.max_sym_per_frame == 1
|
|
||||||
):
|
|
||||||
hyp_tokens = greedy_search_batch(
|
hyp_tokens = greedy_search_batch(
|
||||||
model=model,
|
model=model,
|
||||||
encoder_out=encoder_out,
|
encoder_out=encoder_out,
|
||||||
@ -339,9 +336,7 @@ def main():
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
main()
|
main()
|
||||||
|
@ -81,9 +81,7 @@ from icefall.env import get_env_info
|
|||||||
from icefall.lexicon import Lexicon
|
from icefall.lexicon import Lexicon
|
||||||
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
||||||
|
|
||||||
LRSchedulerType = Union[
|
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
|
||||||
torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler
|
|
||||||
]
|
|
||||||
|
|
||||||
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
||||||
|
|
||||||
@ -187,42 +185,45 @@ def get_parser():
|
|||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=2,
|
default=2,
|
||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
"2 means tri-gram",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--prune-range",
|
"--prune-range",
|
||||||
type=int,
|
type=int,
|
||||||
default=5,
|
default=5,
|
||||||
help="The prune range for rnnt loss, it means how many symbols(context)"
|
help=(
|
||||||
"we are using to compute the loss",
|
"The prune range for rnnt loss, it means how many symbols(context)"
|
||||||
|
"we are using to compute the loss"
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--lm-scale",
|
"--lm-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.25,
|
default=0.25,
|
||||||
help="The scale to smooth the loss with lm "
|
help=(
|
||||||
"(output of prediction network) part.",
|
"The scale to smooth the loss with lm (output of prediction network) part."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--am-scale",
|
"--am-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.0,
|
default=0.0,
|
||||||
help="The scale to smooth the loss with am (output of encoder network)"
|
help="The scale to smooth the loss with am (output of encoder network)part.",
|
||||||
"part.",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--simple-loss-scale",
|
"--simple-loss-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.5,
|
default=0.5,
|
||||||
help="To get pruning ranges, we will calculate a simple version"
|
help=(
|
||||||
|
"To get pruning ranges, we will calculate a simple version"
|
||||||
"loss(joiner is just addition), this simple loss also uses for"
|
"loss(joiner is just addition), this simple loss also uses for"
|
||||||
"training (as a regularization item). We will scale the simple loss"
|
"training (as a regularization item). We will scale the simple loss"
|
||||||
"with this parameter before adding to the final loss.",
|
"with this parameter before adding to the final loss."
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -542,22 +543,15 @@ def compute_loss(
|
|||||||
# overwhelming the simple_loss and causing it to diverge,
|
# overwhelming the simple_loss and causing it to diverge,
|
||||||
# in case it had not fully learned the alignment yet.
|
# in case it had not fully learned the alignment yet.
|
||||||
pruned_loss_scale = (
|
pruned_loss_scale = (
|
||||||
0.0
|
0.0 if warmup < 1.0 else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
|
||||||
if warmup < 1.0
|
|
||||||
else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
|
|
||||||
)
|
|
||||||
loss = (
|
|
||||||
params.simple_loss_scale * simple_loss
|
|
||||||
+ pruned_loss_scale * pruned_loss
|
|
||||||
)
|
)
|
||||||
|
loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
|
||||||
assert loss.requires_grad == is_training
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
info = MetricsTracker()
|
info = MetricsTracker()
|
||||||
with warnings.catch_warnings():
|
with warnings.catch_warnings():
|
||||||
warnings.simplefilter("ignore")
|
warnings.simplefilter("ignore")
|
||||||
info["frames"] = (
|
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
||||||
(feature_lens // params.subsampling_factor).sum().item()
|
|
||||||
)
|
|
||||||
|
|
||||||
# Note: We use reduction=sum while computing the loss.
|
# Note: We use reduction=sum while computing the loss.
|
||||||
info["loss"] = loss.detach().cpu().item()
|
info["loss"] = loss.detach().cpu().item()
|
||||||
@ -711,9 +705,7 @@ def train_one_epoch(
|
|||||||
loss_info.write_summary(
|
loss_info.write_summary(
|
||||||
tb_writer, "train/current_", params.batch_idx_train
|
tb_writer, "train/current_", params.batch_idx_train
|
||||||
)
|
)
|
||||||
tot_loss.write_summary(
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||||
tb_writer, "train/tot_", params.batch_idx_train
|
|
||||||
)
|
|
||||||
|
|
||||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||||
logging.info("Computing validation loss")
|
logging.info("Computing validation loss")
|
||||||
@ -813,7 +805,7 @@ def run(rank, world_size, args):
|
|||||||
|
|
||||||
if params.print_diagnostics:
|
if params.print_diagnostics:
|
||||||
opts = diagnostics.TensorDiagnosticOptions(
|
opts = diagnostics.TensorDiagnosticOptions(
|
||||||
2 ** 22
|
2**22
|
||||||
) # allow 4 megabytes per sub-module
|
) # allow 4 megabytes per sub-module
|
||||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||||
|
|
||||||
|
@ -25,15 +25,10 @@ from random import Random
|
|||||||
from typing import List, Tuple
|
from typing import List, Tuple
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from lhotse import (
|
from lhotse import ( # fmt: off; See the following for why LilcomChunkyWriter is preferred; https://github.com/k2-fsa/icefall/pull/404; https://github.com/lhotse-speech/lhotse/pull/527; fmt: on
|
||||||
CutSet,
|
CutSet,
|
||||||
Fbank,
|
Fbank,
|
||||||
FbankConfig,
|
FbankConfig,
|
||||||
# fmt: off
|
|
||||||
# See the following for why LilcomChunkyWriter is preferred
|
|
||||||
# https://github.com/k2-fsa/icefall/pull/404
|
|
||||||
# https://github.com/lhotse-speech/lhotse/pull/527
|
|
||||||
# fmt: on
|
|
||||||
LilcomChunkyWriter,
|
LilcomChunkyWriter,
|
||||||
RecordingSet,
|
RecordingSet,
|
||||||
SupervisionSet,
|
SupervisionSet,
|
||||||
@ -81,17 +76,13 @@ def make_cutset_blueprints(
|
|||||||
cut_sets.append((f"eval{i}", cut_set))
|
cut_sets.append((f"eval{i}", cut_set))
|
||||||
|
|
||||||
# Create train and valid cuts
|
# Create train and valid cuts
|
||||||
logging.info(
|
logging.info("Loading, trimming, and shuffling the remaining core+noncore cuts.")
|
||||||
"Loading, trimming, and shuffling the remaining core+noncore cuts."
|
|
||||||
)
|
|
||||||
recording_set = RecordingSet.from_file(
|
recording_set = RecordingSet.from_file(
|
||||||
manifest_dir / "csj_recordings_core.jsonl.gz"
|
manifest_dir / "csj_recordings_core.jsonl.gz"
|
||||||
) + RecordingSet.from_file(manifest_dir / "csj_recordings_noncore.jsonl.gz")
|
) + RecordingSet.from_file(manifest_dir / "csj_recordings_noncore.jsonl.gz")
|
||||||
supervision_set = SupervisionSet.from_file(
|
supervision_set = SupervisionSet.from_file(
|
||||||
manifest_dir / "csj_supervisions_core.jsonl.gz"
|
manifest_dir / "csj_supervisions_core.jsonl.gz"
|
||||||
) + SupervisionSet.from_file(
|
) + SupervisionSet.from_file(manifest_dir / "csj_supervisions_noncore.jsonl.gz")
|
||||||
manifest_dir / "csj_supervisions_noncore.jsonl.gz"
|
|
||||||
)
|
|
||||||
|
|
||||||
cut_set = CutSet.from_manifests(
|
cut_set = CutSet.from_manifests(
|
||||||
recordings=recording_set,
|
recordings=recording_set,
|
||||||
@ -101,15 +92,12 @@ def make_cutset_blueprints(
|
|||||||
cut_set = cut_set.shuffle(Random(RNG_SEED))
|
cut_set = cut_set.shuffle(Random(RNG_SEED))
|
||||||
|
|
||||||
logging.info(
|
logging.info(
|
||||||
"Creating valid and train cuts from core and noncore,"
|
f"Creating valid and train cuts from core and noncore,split at {split}."
|
||||||
f"split at {split}."
|
|
||||||
)
|
)
|
||||||
valid_set = CutSet.from_cuts(islice(cut_set, 0, split))
|
valid_set = CutSet.from_cuts(islice(cut_set, 0, split))
|
||||||
|
|
||||||
train_set = CutSet.from_cuts(islice(cut_set, split, None))
|
train_set = CutSet.from_cuts(islice(cut_set, split, None))
|
||||||
train_set = (
|
train_set = train_set + train_set.perturb_speed(0.9) + train_set.perturb_speed(1.1)
|
||||||
train_set + train_set.perturb_speed(0.9) + train_set.perturb_speed(1.1)
|
|
||||||
)
|
|
||||||
|
|
||||||
cut_sets.extend([("valid", valid_set), ("train", train_set)])
|
cut_sets.extend([("valid", valid_set), ("train", train_set)])
|
||||||
|
|
||||||
@ -122,15 +110,9 @@ def get_args():
|
|||||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument("--manifest-dir", type=Path, help="Path to save manifests")
|
||||||
"--manifest-dir", type=Path, help="Path to save manifests"
|
parser.add_argument("--fbank-dir", type=Path, help="Path to save fbank features")
|
||||||
)
|
parser.add_argument("--split", type=int, default=4000, help="Split at this index")
|
||||||
parser.add_argument(
|
|
||||||
"--fbank-dir", type=Path, help="Path to save fbank features"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--split", type=int, default=4000, help="Split at this index"
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser.parse_args()
|
return parser.parse_args()
|
||||||
|
|
||||||
@ -141,9 +123,7 @@ def main():
|
|||||||
extractor = Fbank(FbankConfig(num_mel_bins=80))
|
extractor = Fbank(FbankConfig(num_mel_bins=80))
|
||||||
num_jobs = min(16, os.cpu_count())
|
num_jobs = min(16, os.cpu_count())
|
||||||
|
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
@ -26,7 +26,6 @@ from lhotse.recipes.utils import read_manifests_if_cached
|
|||||||
|
|
||||||
from icefall.utils import get_executor
|
from icefall.utils import get_executor
|
||||||
|
|
||||||
|
|
||||||
ARGPARSE_DESCRIPTION = """
|
ARGPARSE_DESCRIPTION = """
|
||||||
This file computes fbank features of the musan dataset.
|
This file computes fbank features of the musan dataset.
|
||||||
It looks for manifests in the directory data/manifests.
|
It looks for manifests in the directory data/manifests.
|
||||||
@ -84,9 +83,7 @@ def compute_fbank_musan(manifest_dir: Path, fbank_dir: Path):
|
|||||||
# create chunks of Musan with duration 5 - 10 seconds
|
# create chunks of Musan with duration 5 - 10 seconds
|
||||||
musan_cuts = (
|
musan_cuts = (
|
||||||
CutSet.from_manifests(
|
CutSet.from_manifests(
|
||||||
recordings=combine(
|
recordings=combine(part["recordings"] for part in manifests.values())
|
||||||
part["recordings"] for part in manifests.values()
|
|
||||||
)
|
|
||||||
)
|
)
|
||||||
.cut_into_windows(10.0)
|
.cut_into_windows(10.0)
|
||||||
.filter(lambda c: c.duration > 5)
|
.filter(lambda c: c.duration > 5)
|
||||||
@ -107,21 +104,15 @@ def get_args():
|
|||||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument("--manifest-dir", type=Path, help="Path to save manifests")
|
||||||
"--manifest-dir", type=Path, help="Path to save manifests"
|
parser.add_argument("--fbank-dir", type=Path, help="Path to save fbank features")
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--fbank-dir", type=Path, help="Path to save fbank features"
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser.parse_args()
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
args = get_args()
|
args = get_args()
|
||||||
formatter = (
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
compute_fbank_musan(args.manifest_dir, args.fbank_dir)
|
compute_fbank_musan(args.manifest_dir, args.fbank_dir)
|
||||||
|
@ -318,4 +318,3 @@ spk_id = 2
|
|||||||
ャ = ǐa
|
ャ = ǐa
|
||||||
ュ = ǐu
|
ュ = ǐu
|
||||||
ョ = ǐo
|
ョ = ǐo
|
||||||
|
|
||||||
|
@ -318,4 +318,3 @@ spk_id = 2
|
|||||||
ャ = ǐa
|
ャ = ǐa
|
||||||
ュ = ǐu
|
ュ = ǐu
|
||||||
ョ = ǐo
|
ョ = ǐo
|
||||||
|
|
||||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user