diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.train.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.train.py.swp index 742ca4b03..f3a2f079b 100644 Binary files a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.train.py.swp and b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.train.py.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/train.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/train.py index 99a35df64..8dac60025 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/train.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/train.py @@ -736,16 +736,13 @@ def compute_loss( token_ids=token_ids, ) - logging.info('1') # Works with a BPE model decoding_graph = k2.ctc_graph(token_ids, modified=False, device=device) - logging.info('2') dense_fsa_vec = k2.DenseFsaVec( ctc_output, supervision_segments, allow_truncate=params.subsampling_factor - 1, ) - logging.info('3') ctc_loss = k2.ctc_loss( decoding_graph=decoding_graph, @@ -754,7 +751,6 @@ def compute_loss( reduction="sum", use_double_scores=params.use_double_scores, ) - logging.info('4') assert ctc_loss.requires_grad == is_training loss += params.ctc_loss_scale * ctc_loss