added scripts for BPE model training

This commit is contained in:
JinZr 2023-07-20 12:11:03 +08:00
parent 48303ed667
commit a704a2758b
4 changed files with 186 additions and 5 deletions

View File

@ -0,0 +1,63 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Zengrui Jin)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from pathlib import Path
from tqdm.auto import tqdm
from icefall.utils import tokenize_by_CJK_char
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--lang-dir",
type=str,
help="""Output directory.
The generated transcript_chars.txt is saved to this directory.
""",
)
parser.add_argument(
"--text",
type=str,
help="WenetSpeech training transcript.",
)
return parser.parse_args()
def main():
args = get_args()
lang_dir = Path(args.lang_dir)
text = Path(args.text)
assert lang_dir.exists() and text.exists(), f"{lang_dir} or {text} does not exist!"
transcript_path = lang_dir / "transcript_chars.txt"
with open(text, "r", encoding="utf-8") as fin:
text_lines = fin.readlines()
tokenized_lines = []
for line in tqdm(text_lines, desc="Tokenizing training transcript"):
tokenized_lines.append(f"{tokenize_by_CJK_char(line)}\n")
with open(transcript_path, "w+", encoding="utf-8") as fout:
fout.writelines(tokenized_lines)
if __name__ == "__main__":
main()

View File

@ -0,0 +1 @@
../../../wenetspeech/ASR/local/text2token.py

View File

@ -0,0 +1,108 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# You can install sentencepiece via:
#
# pip install sentencepiece
#
# Due to an issue reported in
# https://github.com/google/sentencepiece/pull/642#issuecomment-857972030
#
# Please install a version >=0.1.96
import argparse
import shutil
from pathlib import Path
import sentencepiece as spm
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--lang-dir",
type=str,
help="""Input and output directory.
The generated bpe.model is saved to this directory.
""",
)
parser.add_argument(
"--transcript",
type=str,
help="Training transcript.",
)
parser.add_argument(
"--vocab-size",
type=int,
help="Vocabulary size for BPE training",
)
parser.add_argument(
"--byte-fallback",
type=bool,
default=True,
help="Enable byte fallback for BPE model.",
)
return parser.parse_args()
def main():
args = get_args()
vocab_size = args.vocab_size
lang_dir = Path(args.lang_dir)
model_type = "unigram"
model_prefix = f"{lang_dir}/{model_type}_{vocab_size}"
train_text = args.transcript
character_coverage = 0.98
input_sentence_size = 100000000
user_defined_symbols = ["<blk>", "<sos/eos>"]
unk_id = len(user_defined_symbols)
# Note: unk_id is fixed to 2.
# If you change it, you should also change other
# places that are using it.
model_file = Path(model_prefix + ".model")
if not model_file.is_file():
spm.SentencePieceTrainer.train(
input=train_text,
vocab_size=vocab_size,
model_type=model_type,
model_prefix=model_prefix,
input_sentence_size=input_sentence_size,
character_coverage=character_coverage,
user_defined_symbols=user_defined_symbols,
unk_id=unk_id,
bos_id=-1,
eos_id=-1,
byte_fallback=args.byte_fallback,
)
else:
print(f"{model_file} exists - skipping")
return
shutil.copyfile(model_file, f"{lang_dir}/bpe.model")
if __name__ == "__main__":
main()

View File

@ -15,9 +15,7 @@ dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
vocab_sizes=(
# 2000
# 1000
500
2000
)
@ -185,7 +183,7 @@ if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
if [ ! -f data/manifests/.magicdata.done ]; then
mkdir -p data/manifests
lhotse prepare magicdata -j $nj $dl_dir/magicdata data/manifests/magicdata
lhotse prepare magicdata $dl_dir/magicdata data/manifests/magicdata
touch data/manifests/.magicdata.done
fi
@ -246,9 +244,20 @@ if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
ln -svf $(realpath ../../../../wenetspeech/ASR/data/fbank/cuts_TEST_NET_raw.jsonl.gz) .
cd ../..
else
log "Abort! Please run ../../wenetspeech/ASR/prepare.sh --stage 5 --stop-stage 5"
log "Abort! Please run ../../wenetspeech/ASR/prepare.sh"
exit 1
fi
if [ -d ../../wenetspeech/ASR/data/lang_char/ ]; then
cd data
cp -r ../../../../wenetspeech/ASR/data/lang_char .
cd ..
else
log "Abort! Please run ../../wenetspeech/ASR/prepare.sh"
exit 1
fi
fi
log "Dataset: KeSpeech"