diff --git a/egs/librispeech/ASR/README.md b/egs/librispeech/ASR/README.md
index a738b652f..e2aaa9d7e 100644
--- a/egs/librispeech/ASR/README.md
+++ b/egs/librispeech/ASR/README.md
@@ -22,6 +22,7 @@ The following table lists the differences among them.
| `pruned_transducer_stateless4` | Conformer(modified) | Embedding + Conv1d | same as pruned_transducer_stateless2 + save averaged models periodically during training |
| `pruned_transducer_stateless5` | Conformer(modified) | Embedding + Conv1d | same as pruned_transducer_stateless4 + more layers + random combiner|
| `pruned_transducer_stateless6` | Conformer(modified) | Embedding + Conv1d | same as pruned_transducer_stateless4 + distillation with hubert|
+| `pruned_stateless_emformer_rnnt2` | Emformer(from torchaudio) | Embedding + Conv1d | Using Emformer from torchaudio for streaming ASR|
The decoder in `transducer_stateless` is modified from the paper
diff --git a/egs/librispeech/ASR/RESULTS.md b/egs/librispeech/ASR/RESULTS.md
index 453751ba5..15f72e55f 100644
--- a/egs/librispeech/ASR/RESULTS.md
+++ b/egs/librispeech/ASR/RESULTS.md
@@ -1,5 +1,69 @@
## Results
+### LibriSpeech BPE training results (Pruned Stateless Emformer RNN-T)
+
+[pruned_stateless_emformer_rnnt2](./pruned_stateless_emformer_rnnt2)
+
+Use [Emformer](https://arxiv.org/abs/2010.10759) from [torchaudio](https://github.com/pytorch/audio)
+for streaming ASR. The Emformer model is imported from torchaudio without modifications.
+
+| | test-clean | test-other | comment |
+|-------------------------------------|------------|------------|----------------------------------------|
+| greedy search (max sym per frame 1) | 4.28 | 11.42 | --epoch 39 --avg 6 --max-duration 600 |
+| modified beam search | 4.22 | 11.16 | --epoch 39 --avg 6 --max-duration 600 |
+| fast beam search | 4.29 | 11.26 | --epoch 39 --avg 6 --max-duration 600 |
+
+
+The training commands are:
+```bash
+export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
+
+./pruned_stateless_emformer_rnnt2/train.py \
+ --world-size 8 \
+ --num-epochs 40 \
+ --start-epoch 1 \
+ --exp-dir pruned_stateless_emformer_rnnt2/exp-full \
+ --full-libri 1 \
+ --use-fp16 0 \
+ --max-duration 200 \
+ --prune-range 5 \
+ --lm-scale 0.25 \
+ --master-port 12358 \
+ --num-encoder-layers 18 \
+ --left-context-length 128 \
+ --segment-length 8 \
+ --right-context-length 4
+```
+
+The tensorboard log can be found at
+
+
+The decoding commands are:
+```bash
+for m in greedy_search fast_beam_search modified_beam_search; do
+ for epoch in 39; do
+ for avg in 6; do
+ ./pruned_stateless_emformer_rnnt2/decode.py \
+ --epoch $epoch \
+ --avg $avg \
+ --use-averaged-model 1 \
+ --exp-dir pruned_stateless_emformer_rnnt2/exp-full \
+ --max-duration 50 \
+ --decoding-method $m \
+ --num-encoder-layers 18 \
+ --left-context-length 128 \
+ --segment-length 8 \
+ --right-context-length 4
+ done
+ done
+done
+```
+
+You can find a pretrained model, training logs, decoding logs, and decoding
+results at:
+
+
+
### LibriSpeech BPE training results (Pruned Stateless Transducer 5)
[pruned_transducer_stateless5](./pruned_transducer_stateless5)